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The operator C : IRn→ IRn is a contractor [4] for the equation
f (x) = 0, if{

C ([x])⊂ [x] (contractance)
x ∈ [x] and f (x) = 0⇒ x ∈ C ([x]) (consistence)
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Building contractors
Consider the primitive equation

x1+ x2 = x3

with x1 ∈ [x1], x2 ∈ [x2], x3 ∈ [x3] .
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We have

x3 = x1+ x2⇒ x3 ∈ [x3]∩ ([x1]+ [x2])
x1 = x3−x2⇒ x1 ∈ [x1]∩ ([x3]− [x2])
x2 = x3−x1⇒ x2 ∈ [x2]∩ ([x3]− [x1])
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The contractor associated with x1+ x2 = x3 is thus

C

 [x1]
[x2]
[x3]

=

 [x1]∩ ([x3]− [x2])
[x2]∩ ([x3]− [x1])
[x3]∩ ([x1]+ [x2])
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A trajectory is a function f : R→ Rn. For instance

f (t) =
(

cos t
sin t

)
is a trajectory.
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Order relation

f ≤ g⇔∀t,∀i , fi (t)≤ gi (t) .
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We have

h = f ∧g⇔∀t,∀i ,hi (t) =min(fi (t) ,gi (t)) ,
h = f ∨g⇔∀t,∀i ,hi (t) =max(fi (t) ,gi (t)) .
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The set of trajectories is a lattice. Interval of trajectories (tubes)
can be defined.
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Example.

[f] (t) =
(

cos t+
[
0, t2

]
sin t+[−1,1]

)
is an interval trajectory (or tube).
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Tube arithmetics
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If [x ] and [y ] are two scalar tubes [1], we have

[z ] = [x ]+ [y ]⇒ [z ] (t) = [x ] (t)+ [y ] (t) (sum)
[z ] = shifta ([x ])⇒ [z ] (t) = [x ] (t+a) (shift)
[z ] = [x ]◦ [y ]⇒ [z ] (t) = [x ] ([y ] (t)) (composition)
[z ] =

∫
[x ]⇒ [z ] (t) =

[∫ t
0 x
− (τ)dτ,

∫ t
0 x

+ (τ)dτ
]

(integral)
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Tube Contractors
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Tube arithmetic allows us to build contractors [3].
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Consider for instance the differential constraint

ẋ (t) = x (t+1) ·u (t) ,
x (t) ∈ [x ] (t) , ẋ (t) ∈ [ẋ ] (t) ,u (t) ∈ [u] (t)

We decompose as follows
x (t) = x (0)+

∫ t
0 y (τ)dτ

y (t) = a (t) ·u (t) .
a (t) = x (t+1)
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Possible contractors are

[x ] (t) = [x ] (t)∩
(
[x ] (0)+

∫ t
0 [y ] (τ)dτ

)
[y ] (t) = [y ] (t)∩ [a] (t) · [u] (t)
[u] (t) = [u] (t)∩ [y ](t)

[a](t)

[a] (t) = [a] (t)∩ [y ](t)
[u](t)

[a] (t) = [a] (t)∩ [x ] (t+1)
[x ] (t) = [x ] (t)∩ [a] (t−1)
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Example. Consider x (t) ∈ [x ] (t) with the constraint

∀t, x (t) = x (t+1)

Contract the tube [x ] (t) .
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We first decompose into primitive trajectory constraints

x (t) = a (t+1)
x (t) = a (t) .
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Contractors

[x ] (t) : = [x ] (t)∩ [a] (t+1)
[a] (t) : = [a] (t)∩ [x ] (t−1)
[x ] (t) : = [x ] (t)∩ [a] (t)
[a] (t) : = [a] (t)∩ [x ] (t)

Guaranteed simulation of nonlinear continuous-time dynamical systems using interval methods



Lagrangian simulation
Eulerian simulation

Guaranteed simulation of nonlinear continuous-time dynamical systems using interval methods



Lagrangian simulation
Eulerian simulation

Guaranteed simulation of nonlinear continuous-time dynamical systems using interval methods



Lagrangian simulation
Eulerian simulation

Guaranteed simulation of nonlinear continuous-time dynamical systems using interval methods



Lagrangian simulation
Eulerian simulation

Guaranteed simulation of nonlinear continuous-time dynamical systems using interval methods



Lagrangian simulation
Eulerian simulation

Guaranteed simulation of nonlinear continuous-time dynamical systems using interval methods



Lagrangian simulation
Eulerian simulation

Guaranteed simulation of nonlinear continuous-time dynamical systems using interval methods



Lagrangian simulation
Eulerian simulation

Guaranteed simulation of nonlinear continuous-time dynamical systems using interval methods



Lagrangian simulation
Eulerian simulation

http://www.simon-rohou.fr/research/tubex-lib/ [7]
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Time-space estimation
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Classical state estimation{
ẋ(t) = f (x(t) ,u(t)) t ∈ R
0 = g (x(t) , t) t ∈ T⊂ R.

Space constraint g (x(t) , t) = 0.
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Example. 

ẋ1 = x3 cosx4
ẋ2 = x3 cosx4
ẋ3 = u1
ẋ4 = u2

(x1 (5)−1)2+(x2 (5)−2)2−4= 0
(x1 (7)−1)2+(x2 (7)−2)2−9= 0
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With time-space constraints{
ẋ(t) = f (x(t) ,u(t)) t ∈ R
0 = g (x(t) ,x(t ′) , t, t ′) (t, t ′) ∈ T⊂ R×R.
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Example. An ultrasonic underwater robot with state

x = (x1,x2, . . .) = (x ,y ,θ ,v , . . .)

At time t the robot emits an onmidirectional sound. At time t ′ it
receives it (

x1−x
′
1

)2
+
(
x2−x

′
2

)2
− c
(
t− t ′

)2
= 0.

Guaranteed simulation of nonlinear continuous-time dynamical systems using interval methods



Lagrangian simulation
Eulerian simulation

Mass spring problem
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The mass spring satisfies

ẍ+ ẋ+ x−x3 = 0

i.e. {
ẋ1 = x2
ẋ2 = −x2−x1+ x3

1

The initial state is unknown.

Guaranteed simulation of nonlinear continuous-time dynamical systems using interval methods



Lagrangian simulation
Eulerian simulation

Guaranteed simulation of nonlinear continuous-time dynamical systems using interval methods



Lagrangian simulation
Eulerian simulation


ẋ1 = x2
ẋ2 =−x2−x1+ x3

1
L−x1 (t1)+L−x1 (t2) = c (t2− t1) .
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Swarm localization
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Consider n robots R1, . . . ,Rn described by

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
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Omnidirectional sounds are emitted and received.
A ping is a 4-uple (a,b, i , j) where a is the emission time, b is the
reception time, i is the emitting robot and j the receiver.

Guaranteed simulation of nonlinear continuous-time dynamical systems using interval methods



Lagrangian simulation
Eulerian simulation

Guaranteed simulation of nonlinear continuous-time dynamical systems using interval methods



Lagrangian simulation
Eulerian simulation

With the time space constraint

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
g
(
xi(k) (a (k)) ,xj(k) (b (k)) ,a (k) ,b (k)

)
= 0

where
g (xi ,xj ,a,b) = ‖x1−x2‖− c (b−a) .
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Clocks are uncertain. We only have measurements ã (k) , b̃ (k) of
a (k) ,b (k) thanks to clocks hi . Thus

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
g
(
xi(k) (a (k)) ,xj(k) (b (k)) ,a (k) ,b (k)

)
= 0

ã (k) = hi(k) (a (k))

b̃ (k) = hj(k) (b (k))
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The drift of the clocks is bounded

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
g
(
xi(k) (a (k)) ,xj(k) (b (k)) ,a (k) ,b (k)

)
= 0

ã (k) = hi(k) (a (k))

b̃ (k) = hj(k) (b (k))

ḣi = 1+nh, nh ∈ [nh]
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https://youtu.be/j-ERcoXF1Ks [2]
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https://youtu.be/jr8xKIe0Nds
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https://youtu.be/GycJxGFvYE8
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Maze
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An interval is a domain which encloses a real number.
A polygon is a domain which encloses a vector of Rn.
A maze is a domain which encloses a path. [6]
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A maze is a set of paths.
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Mazes can be made more accurate:
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Here, a maze L is composed of [6][5].
A paving P

Doors between adjacent boxes

Guaranteed simulation of nonlinear continuous-time dynamical systems using interval methods



Lagrangian simulation
Eulerian simulation

The set of mazes forms a lattice with respect to ⊂.
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Eulerian smoother
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Example. Take the Van der Pol system with

X0 = [a] = [0,0.6]× [0.8,1.8]
X1 = [b] = [0.7,1.5]× [−0.2,0.2]
X2 = [c] = [0.2,0.6]× [−2.2,−1.5]
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An application of Eulerian state estimation moving taking
advantage of ocean currents.
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Visiting the three red boxes using a buoy that follows the currents
is an Eulerian state estimation problem
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