Interval constraint propagation; applications to robotics

Luc Jaulin, http://www.ensieta.fr/jaulin/ ENSIETA, Brest, France

DyToComp'09, Poznan, June 4, 2009.

1 Contractors

Interval bisection algorithms bisect all boxes in all directions and become inefficient. Interval methods can still be useful if

- the solution set X is small (optimization problem, solving equations),
- contraction procedures are used as much as possible,
- bisections are used only as a last resort.

1.1 Definition

The operator $\mathcal{C}:\mathbb{IR}^n \to \mathbb{IR}^n$ is a *contractor* if

 $\begin{cases} \forall [\mathbf{x}] \in \mathbb{I}\mathbb{R}^n, \ \mathcal{C}([\mathbf{x}]) \subset [\mathbf{x}] & (\text{contractance}), \\ (\mathbf{x} \in [\mathbf{x}], \mathcal{C}(\{\mathbf{x}\}) = \{\mathbf{x}\}) \Rightarrow \mathbf{x} \in \mathcal{C}([\mathbf{x}]) & (\text{completeness}). \end{cases} \end{cases}$ We define

$$\mathsf{set}\left(\mathcal{C}
ight) \stackrel{\mathsf{def}}{=} \left\{\mathbf{x} \in \mathbb{R}^n, \mathcal{C}(\{\mathbf{x}\}) = \left\{\mathbf{x}
ight\}
ight\}.$$

$\mathcal{C}_{\mathbb{X}}$ is monotonic if	$[\mathbf{x}] \subset [\mathbf{y}] \Rightarrow \mathcal{C}_{\mathbb{X}}([\mathbf{x}]) \subset \mathcal{C}_{\mathbb{X}}([\mathbf{y}])$
$\mathcal{C}_{\mathbb{X}}$ is <i>minimal</i> if	$\mathcal{C}_{\mathbb{X}}(\mathbf{[x]}) = \mathbf{[[x]} \cap \mathbb{X}\mathbf{]}$
$\mathcal{C}_{\mathbb{X}}$ is <i>thin</i> if	$\mathcal{C}_{\mathbb{X}}(\{\mathrm{x}\})=\{\mathrm{x}\}\cap\mathbb{X}$
$\mathcal{C}_{\mathbb{X}}$ is <i>idempotent</i> if	$\mathcal{C}_{\mathbb{X}}(\mathcal{C}_{\mathbb{X}}([\mathrm{x}])) = \mathcal{C}_{\mathbb{X}}([\mathrm{x}]).$

 $\mathcal{C}_{\mathbb{X}}$ is said to be convergent if

 $[\mathbf{x}](k) \to \mathbf{x} \quad \Rightarrow \quad \mathcal{C}_{\mathbb{X}}([\mathbf{x}](k)) \to \{\mathbf{x}\} \cap \mathbb{X}.$

1.2 Projection of constraints

Let $\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}$ be 3 variables such that

$$egin{array}{rcl} x &\in & [-\infty,5], \ y &\in & [-\infty,4], \ z &\in & [6,\infty], \ z &= & x+y. \end{array}$$

The values < 2 for x, < 1 for y and > 9 for z are inconsistent.

Since $x \in [-\infty, 5], y \in [-\infty, 4], z \in [6, \infty]$ and z = x + y, we have

$$egin{aligned} z &= x + y \Rightarrow \ z \in \ [6,\infty] \cap ([-\infty,5] + [-\infty,4]) \ &= [6,\infty] \cap [-\infty,9] = [6,9]. \ x &= z - y \Rightarrow \ x \in \ [-\infty,5] \cap ([6,\infty] - [-\infty,4]) \ &= [-\infty,5] \cap [2,\infty] = [2,5]. \ y &= z - x \Rightarrow \ y \in \ [-\infty,4] \cap ([6,\infty] - [-\infty,5]) \ &= [-\infty,4] \cap [1,\infty] = [1,4]. \end{aligned}$$

The contractor associated with z = x + y is.

Algorithm pplus(inout: $[z], [x], [y]$)		
1	$[z]:=[z]\cap ([x]+[y])$;	
2	$[x]:=[x]\cap \left(\left[z ight] -\left[y ight] ight)$;	
3	$[y] := [y] \cap ([z] - [x])$.	

The projection procedure developed for plus can be extended to other ternary constraints such as mult: z = x * y, or equivalently

$$\mathsf{mult} \triangleq \left\{ (x, y, z) \in \mathbb{R}^3 \mid z = x * y \right\}.$$

The resulting projection procedure becomes

Algorithm pmult(inout: $[z], [x], [y]$)		
1	$[z]:=[z]\cap \left(\left[x ight] st \left[y ight] ight)$;	
2	$[x]:=[x]\cap \left([z]*1/[y] ight)$;	
3	$[y]:=[y]\cap \left([z]*1/[x] ight).$	

Consider the binary constraint

$$\exp \triangleq \{(x, y) \in \mathbb{R}^n | y = \exp(x)\}.$$

The associated contractor is

Algorithm pexp(inout: $[y], [x]$)		
1	$[y]:=[y]\cap \exp\left(\left[x ight] ight)$;	
2	$[x] := [x] \cap \log([y]).$	

Any constraint for which such a projection procedure is available will be called a *primitive constraint*.

Projection of the sine constraint

1.3 Constraint propagation

A CSP (Constraint Satisfaction Problem) is composed of

- 1) a set of variables $\mathcal{V} = \{x_1, \ldots, x_n\}$,
- 2) a set of constraints $\mathcal{C} = \{c_1, \ldots, c_m\}$ and
- 3) a set of interval domains $\{[x_1], \ldots, [x_n]\}$.

Principle of propagation techniques: contract $[\mathbf{x}] = [x_1] \times \cdots \times [x_n]$ as follows:

 $(((((([\mathbf{x}] \square c_1) \square c_2) \square \dots) \square c_m) \square c_1) \square c_2) \dots,$ until a steady box is reached.

Example. Consider the system of two equations.

$$\begin{array}{rcl} y &=& x^2 \\ y &=& \sqrt{x}. \end{array}$$

We can build two contractors

$$\mathcal{C}_{1}: \begin{cases} [y] = [y] \cap [x]^{2} \\ [x] = [x] \cap \sqrt{[y]} \end{cases} \text{ associated to } y = x^{2} \\ \mathcal{C}_{2}: \begin{cases} [y] = [y] \cap \sqrt{[x]} \\ [x] = [x] \cap [y]^{2} \end{cases} \text{ associated to } y = \sqrt{x} \end{cases}$$

1.4 Decomposition into primitive constraints

$$egin{aligned} &x+\sin(xy)\leq 0,\ &x\in [-1,1], y\in [-1,1], z\in [-1,1] \end{aligned}$$

can be decomposed into

$$\begin{cases} a = xy & x \in [-1,1] \quad a \in [-\infty,\infty] \\ b = \sin(a) &, y \in [-1,1] \quad b \in [-\infty,\infty] \\ c = x + b & z \in [-1,1] \quad c \in [-\infty,0] \end{cases}$$

1.5 Set and contractors

A contractor is one way to represent a set of \mathbb{R}^n .

The set associated with a contractor $\ensuremath{\mathcal{C}}$ is

$$\operatorname{set}\left(\mathcal{C}\right) = \left\{\mathbf{x} \in \mathbb{R}^{n}, \mathcal{C}(\left\{\mathbf{x}\right\}) = \left\{\mathbf{x}\right\}\right\}.$$

1.6 Operations on contractors

intersection	$\left(\mathcal{C}_{1}\cap\mathcal{C}_{2} ight)\left(\left[\mathbf{x} ight] ight)\overset{def}{=}\mathcal{C}_{1}\left(\left[\mathbf{x} ight] ight)\cap\mathcal{C}_{2}\left(\left[\mathbf{x} ight] ight)$
union	$\left(\mathcal{C}_{1} \cup \mathcal{C}_{2}\right)\left([\mathbf{x}]\right) \stackrel{def}{=} \left[\mathcal{C}_{1}\left([\mathbf{x}]\right) \cup \mathcal{C}_{2}\left([\mathbf{x}]\right)\right]$
composition	$\left(\mathcal{C}_{1}\circ\mathcal{C}_{2} ight)\left(\left[\mathbf{x} ight] ight)\stackrel{def}{=}\mathcal{C}_{1}\left(\mathcal{C}_{2}\left(\left[\mathbf{x} ight] ight) ight)$
repetition	$\mathcal{C}^{\infty} \stackrel{def}{=} \mathcal{C} \circ \mathcal{C} \circ \mathcal{C} \circ \ldots$
repeat intersection	$\mathcal{C}_1 \sqcap \mathcal{C}_2 = (\mathcal{C}_1 \cap \mathcal{C}_2)^\infty$
repeat union	$\mathcal{C}_1 \sqcup \mathcal{C}_2 = (\mathcal{C}_1 \cup \mathcal{C}_2)^\infty$

1.7 QUIMPER

Quimper is a high-level language for QUick Interval Modeling and Programming in a bounded-ERror context.

Quimper is an interpreted language for set computation.

Quimper is available at

http://ibex-lib.org/

Application of contractors

2.1 Estimation problem

Constraints

$$P = EI; E = (R_1 + R_2) I;$$

$$U_1 = R_1I; U_2 = R_2I; E = U_1 + U_2.$$

Initial domains

$$\begin{array}{ll} R_{1} \in [0,\infty]\Omega, & R_{2} \in [0,\infty]\Omega, \\ E \in [23,26] \mathsf{V}, & I \in [4,8]\mathsf{A}, \\ U_{1} \in [10,11] \mathsf{V}, & U_{2} \in [14,17] \mathsf{V}, \\ P \in [124,130] \mathsf{W}, \end{array}$$

Constraints

$$P = EI; E = (R_1 + R_2)I;$$

$$U_1 = R_1I; U_2 = R_2I; E = U_1 + U_2.$$

We get the contracted domains

$$egin{aligned} R_1 \in [1.84, 2.31] \, \Omega, & R_2 \in [2.58, 3.35] \Omega, \ E \in [24, 26] {f V}, & I \in [4.769, 5.417] \, {f A}, \ U_1 \in [10, 11] {f V}, & U_2 \in [14, 16] {f V}, \ P \in [124, 130] {f W}, \end{aligned}$$

instead of the initial domains

$$\begin{array}{ll} R_1 \in [0,\infty]\Omega, & R_2 \in [0,\infty]\Omega, \\ E \in [23,26] \mathsf{V}, & I \in [4,8]\mathsf{A}, \\ U_1 \in [10,11] \mathsf{V}, & U_2 \in [14,17] \mathsf{V}, \\ P \in [124,130] \mathsf{W}, \end{array}$$

2.2 SLAM

Redermor, GESMA (Groupe d'Etude Sous-Marine de l'Atlantique)

Montrer la simulation

GPS (Global positioning system), only at the surface.

 $t_0 = 6000 \text{ s}, \quad \ell^0 = (-4.4582279^\circ, 48.2129206^\circ) \pm 2.5m$ $t_f = 12000 \text{ s}, \quad \ell^f = (-4.4546607^\circ, 48.2191297^\circ) \pm 2.5m$

Sonar (KLEIN 5400 side scan sonar).

Screenshot of SonarPro

Mine detecttion with SonarPro

Loch-Doppler returns the speed robot v_r .

 $\mathbf{v}_r \in \mathbf{ ilde{v}}_r + 0.004 * \left[-1,1
ight].\mathbf{ ilde{v}}_r + 0.004 * \left[-1,1
ight]$

Inertial central (Octans III from IXSEA).

$$\begin{pmatrix} \phi \\ \theta \\ \psi \end{pmatrix} \in \begin{pmatrix} \tilde{\phi} \\ \tilde{\theta} \\ \tilde{\psi} \end{pmatrix} + \begin{pmatrix} 1.75 \times 10^{-4} \cdot [-1,1] \\ 1.75 \times 10^{-4} \cdot [-1,1] \\ 5.27 \times 10^{-3} \cdot [-1,1] \end{pmatrix}$$

Six mines have been detected.

	i		0		1	2		3		4		5	
<i>,</i>	$\tau(i)$	7	054	70)92	73	7374		7748		9038		8
	$\sigma(i)$		1		2	1		0		1		5	
'	$\tilde{r}(i)$	52	2.42	.42 12		7 54.		52.68		27.73		26.98	
-	6		7	·		}		9) 1		.0]
-	10024		108	17 111		.72	11	232	11279		11688		
	4		3		3	•	4			5		1	
	37.90		36.	71	37.	37	31	31.03		3.51 1		5.05	

$$\begin{split} t &\in \{6000.0, 6000.1, 6000.2, \dots, 11999.4\},\\ i &\in \{0, 1, \dots, 11\},\\ \begin{pmatrix} p_x(t) \\ p_y(t) \end{pmatrix} = 111120 \begin{pmatrix} 0 & 1 \\ \cos\left(\ell_y(t) * \frac{\pi}{180}\right) & 0 \end{pmatrix} \begin{pmatrix} \ell_x(t) - \ell_x^0 \\ \ell_y(t) - \ell_y^0 \end{pmatrix},\\ \mathbf{p}(t) &= (p_x(t), p_y(t), p_z(t)),\\ \mathbf{R}_{\psi}(t) &= \begin{pmatrix} \cos\psi(t) & -\sin\psi(t) & 0 \\ \sin\psi(t) & \cos\psi(t) & 0 \\ 0 & 0 & 1 \end{pmatrix},\\ \mathbf{R}_{\theta}(t) &= \begin{pmatrix} \cos\theta(t) & 0 & \sin\theta(t) \\ 0 & 1 & 0 \\ -\sin\theta(t) & 0 & \cos\theta(t) \end{pmatrix}, \end{split}$$

$$egin{aligned} \mathbf{R}_arphi(t) &= egin{pmatrix} 1 & 0 & 0 \ 0 & \cosarphi(t) & -\sinarphi(t) \ 0 & \sinarphi(t) & -\sinarphi(t) \ 0 & \sinarphi(t) & \cosarphi(t) \end{pmatrix}, \ \mathbf{R}(t) &= \mathbf{R}_\psi(t)\mathbf{R}_ heta(t)\mathbf{R}_arphi(t), \ \dot{\mathbf{p}}(t) &= \mathbf{R}(t).\mathbf{v}_r(t), \ \|\mathbf{m}(\sigma(i)) - \mathbf{p}(au(i))\| &= r(i), \ \mathbf{R}^\mathsf{T}(au(i)) &(\mathbf{m}(\sigma(i)) - \mathbf{p}(au(i))) \in [0] imes [0,\infty]^{ imes 2}, \ m_z(\sigma(i)) - p_z(au(i)) - a(au(i)) \in [-0.5, 0.5] \end{aligned}$$

//------

Constants

N = 59996; // Number of time steps

Variables

```
function R[3][3]=euler(phi,theta,psi)
  cphi = cos(phi);
  sphi = sin(phi);
  ctheta = cos(theta);
  stheta = sin(theta);
  cpsi = cos(psi);
  spsi = sin(psi);
  R[1][1]=ctheta*cpsi;
  R[1][2]=-cphi*spsi+stheta*cpsi*sphi;
  R[1][3]=spsi*sphi+stheta*cpsi*cphi;
  R[2][1]=ctheta*spsi;
  R[2][2]=cpsi*cphi+stheta*spsi*sphi;
  R[2][3]=-cpsi*sphi+stheta*cphi*spsi;
  R[3][1]=-stheta;
  R[3][2]=ctheta*sphi;
  R[3][3]=ctheta*cphi;
```

end

```
contractor-list rotation
 for k=1:N-1;
   R[k]=euler(phi[k],theta[k],psi[k]);
 end
end
//-----
contractor-list statequ
 for k=1:N-1;
   p[k+1]=p[k]+0.1*R[k]*v[k];
 end
end
//-----
contractor init
 inter k=1:N-1;
   rotation(k)
 end
end
```

```
contractor fwd
inter k=1:N-1;
statequ(k)
end
end
//------
contractor bwd
inter k=1:N-1;
statequ(N-k)
end
end
```

```
main
```

```
p[1] :=read("gps_init.dat");
v :=read("Quimper_v.dat");
phi :=read("Quimper_phi.dat");
theta :=read("Quimper_theta.dat");
psi :=read("Quimper_psi.dat");
init;
fwd;
bwd;
column(p,px,1);
column(p,py,2);
print("--- Robot positions: ---");
newplot("gesmi.dat");
plot(px,py,color(rgb(1,1,1),rgb(0,0,0)));
end
```


Applications with bissections

3.1 Sailboat
State equations

$$\begin{cases} \dot{x} = v\cos\theta \\ \dot{y} = v\sin\theta - 1 \\ \dot{\theta} = \omega \\ \dot{\delta}_s = u_1 \\ \dot{\delta}_r = u_2 \\ \dot{v} = f_s\sin\delta_s - f_r\sin\delta_r - v \\ \dot{\omega} = (1 - \cos\delta_s)f_s - \cos\delta_r f_r - \omega \\ f_s = \cos(\theta + \delta_s) - v\sin\delta_s \\ f_r = v\sin\delta_r. \end{cases}$$

In a cruising phase

$$\dot{ heta}=0, \dot{\delta}_s=0, \dot{\delta}_r=0, \dot{v}=0, \dot{\omega}=0.$$

i.e.,

$$\begin{cases} 0 = & \omega \\ 0 = & u_1 \\ 0 = & u_2 \\ 0 = & f_s \sin \delta_s - f_r \sin \delta_r - v \\ 0 = & (1 - \cos \delta_s) f_s - \cos \delta_r . f_r - \omega \\ f_s = & \cos (\theta + \delta_s) - v \sin \delta_s \\ f_r = & v \sin \delta_r. \end{cases}$$

The polar diagram is

$$\mathbb{S}_y = \{(heta, v) \ | \exists f_s, \delta_s, f_r, \delta_r, \ f_s \sin \delta_s - f_r \sin \delta_r - v = 0 \ (1 - \cos \delta_s) f_s - \cos \delta_r f_r = 0 \ f_s = \cos (heta + \delta_s) - v \sin \delta_s \ f_r = v \sin \delta_r \}$$

3.2 Path planning

3.3 Counting connected components

(Collaboration with N. Delanoue and B. Cottenceau)

The point v is a *star* for $\mathbb{S} \subset \mathbb{R}^n$ if $\forall x \in \mathbb{S}, \forall \alpha \in [0, 1]$, $\alpha v + (1 - \alpha)x \in \mathbb{S}$.

\mathbf{v}_1 is a star for $\mathbb S$ whereas \mathbf{v}_2 is not

The set $\mathbb{S} \subset \mathbb{R}^n$ is *star-shaped* is there exists \mathbf{v} such that \mathbf{v} is a star for \mathbb{S} .

Theorem: Define the set

$$\mathbb{S} \stackrel{\mathsf{def}}{=} \{\mathbf{x} \in [\mathbf{x}] | f(\mathbf{x}) \leq \mathsf{0} \}$$

where f is differentiable. We have

$$\left\{ \mathbf{x} \in [\mathbf{x}] \mid f(\mathbf{x}) = \mathsf{0}, rac{df}{d\mathbf{x}}(\mathbf{x}).(\mathbf{x} - \mathbf{v}) \leq \mathsf{0}
ight\} = \emptyset \Rightarrow \mathbf{v}$$
 is a star for

Consider a subpaving $\mathcal{P}=\{[p_1],[p_2],\ldots\}$ covering $\mathbb S.$ The relation $\mathcal R$ defined by

 $[\mathbf{p}]\mathcal{R}[\mathbf{q}] \Leftrightarrow \mathbb{S} \cap [\mathbf{p}] \cap [\mathbf{q}] \neq \emptyset$

is star-spangled graph of the set \mathbb{S} if

 $\forall [\mathbf{p}] \in \mathcal{P}, \mathbb{S} \cap [\mathbf{p}] \text{ is star-shaped.}$

A star-spangled graph for the set

$$\mathbb{S} \stackrel{\text{def}}{=} \left\{ (x,y) \in \mathbb{R}^2 \mid \begin{pmatrix} x^2 + 4y^2 - 16 \\ 2\sin x - \cos y + y^2 - \frac{3}{2} \\ -(x + \frac{5}{2})^2 - 4(y - \frac{2}{5})^2 + \frac{3}{10} \end{pmatrix} \le 0 \right\},$$

is

For each $[\mathbf{p}]$ of the paving \mathcal{P} , a common star located at the corner of $[\mathbf{p}]$ (represented in red) has been found. **Theorem**: The number of connected components of the star-spangled graph of \mathbb{S} is equal to that of \mathbb{S} .

An extension of this approach has also been developed to compute a triangulation homeomorphic to \mathbb{S} .

3.4 Capture basin

(With M. Lhommeau and L. Hardouin)

Consider a rolling ball described by

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\sin(\theta(x_1)) - x_2 + u \end{cases}$$

where

$$\theta(x) = \sin(1.1.x) - \frac{1}{2}\sin(x)$$

3.5 Robust state estimation

Portsmouth, July 12-15, 2007.

Sauc'isse robot

q-relaxed intersection the 6 sets

