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Presentation available at http://youtu.be/GwWilYsR5AA
Mooc on control robmooc.ensta-bretagne.fr/ (in French)
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Problem. Given f : Rn→ R and a box [x]⊂ Rn, prove that

∀x ∈ [x] , f (x)≥ 0.

Interval arithmetic can solve e�ciently this problem.
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Example. Is the function

f (x) = x1x2− (x1 + x2)cosx2 + sinx1 · sinx2 +2

always positive for x1,x2 ∈ [−1,1] ?
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Interval arithmetic

[−1,3] + [2,5] = [1,8],
[−1,3] · [2,5] = [−5,15],
abs([−7,1]) = [0,7]
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The interval extension of

f (x1,x2) = x1 ·x2− (x1 + x2) · cosx2 + sinx1 · sinx2 +2

is

[f ] ([x1] , [x2]) = [x1] · [x2]− ([x1] + [x2]) · cos [x2]

+ sin [x1] · sin [x2] +2.
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Theorem (Moore, 1970)

[f ] ([x])⊂ R+⇒∀x ∈ [x] , f (x)≥ 0.
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Sailboat robotics

With F. Le Bars, P. Rousseau, O. Menage
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Collaboration ENSTA/IFREMER
With F. Le Bars, P. Rousseau, O. Menage.
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Vaimos at the WRSC (Ensta-Ifremer).
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ẋ = v cosθ +p1acosψ

ẏ = v sinθ +p1a sinψ

θ̇ = ω

v̇ = fs sinδs−fr sinu1−p2v2
p9

ω̇ = fs(p6−p7 cosδs)−p8fr cosu1−p3ω

p10
fs = p4a sin(θ −ψ + δs)
fr = p5v sinu1
σ = cos(θ −ψ) + cos(u2)

δs =

{
π−θ + ψ si σ ≤ 0

sign (sin(θ −ψ)) .u2 sinon.
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The robot satis�es a state equation

ẋ = f (x,u) .

With the controller u = g (x), the robot satis�es

ẋ = f (x) .
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With all uncertainties, the robot satis�es.

ẋ ∈ F(x)

which is a di�erential inclusion.
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Heading controller δr = δmax
r
π

.atan(tan θ−θ̄

2
)

δmax
s = π

2
.

(
cos(ψ−θ̄)+1

2

)
.
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Rudder {
δr = δmax

r
π

.atan(tan θ−θ̄

2
)
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Sail

δ
max
s =

π

2
·

(
cos
(
ψ− θ̄

)
+1

2

)
.
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Nominal vector �eld: θ ∗ = ϕ− 1
2
.atan

(
e
r

)
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A course θ ∗ may be unfeasible
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Controlleur : in : m,θ ,ψ,a,b; out : δr ,δ
max
s ; inout : q

e = det(b−a,m−a)
‖b−a‖

if |e|> r
2
then q = sign (e)

θ̄ = atan2(b−a)− 1
2
.atan

(
e
r

)
if cos

(
ψ− θ̄

)
+ cosζ < 0 then θ̄ = π + ψ−q.ζ .

δr = δmax
r
π

.atan(tan θ−θ̄

2
)

δmax
s = π

2
.

(
cos(ψ−θ̄)+1

2

)
.
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Jaulin, Le Bars (2012). An interval approach for stability analysis;
Application to sailboat robotics. IEEE TRO
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When the wind is known, the sailboat with the heading controller is
described by

ẋ = f (x) .
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The system
ẋ = f (x)

is Lyapunov-stable (1892) is there exists V (x)≥ 0 such that

V̇ (x) < 0 if x 6= 0,

V (x) = 0 i� x = 0.
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De�nition. Consider a di�erentiable function V (x) : Rn→ R. The
system ẋ = f (x) is V -stable if(

V (x)≥ 0 ⇒ V̇ (x)≤ ε < 0
)
.
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Theorem. If the system ẋ = f (x) is V -stable then

(i) ∀x(0) ,∃t ≥ 0 such that V (x(t)) < 0
(ii) if V (x(t)) < 0 then ∀τ > 0, V (x(t + τ)) < 0.
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Now, (
V (x)≥ 0 ⇒ V̇ (x) < 0

)
⇔

(
V (x)≥ 0⇒ ∂V

∂x
(x) .f (x) < 0

)
⇔ ∀x, ∂V

∂x
(x) .f (x) < 0 or V (x) < 0

⇔ max
(

∂V
∂x

(x) .f (x) ,V (x)
)
< 0
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Theorem. We have{
∂V
∂x

(x) .f (x)≥ 0
V (x)≥ 0

inconsistent ⇔ ẋ = f (x) is V -stable.

Interval method could easily prove the V -stability.
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Theorem. We have
∂V
∂x

(x) .a≥ 0
F− (x)≤ a≤ F+ (x)

V (x)≥ 0

inconsistent ⇔ _x ∈ F(x) is V -stable
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Di�erential inclusion_x ∈ F(x) for the sailboat. V (x) = x22 − r2max.
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Collaboration ENSTA-Ifremer. Fabrice Le Bars, Olivier Ménage,
Patrick Rousseau, . . .
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Rade de Brest
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Brest-Douarnenez. January 17, 2012, 8am
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Middle of Atlantic ocean,
350 km in 53h, Sep 6-9, 2012
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Consequence.
It is possible for a sailboat robot to navigate inside a corridor.
Essential, to create circulation rules when robot swarms are
considered.
Essential to determine who has to pay in case of accident.
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