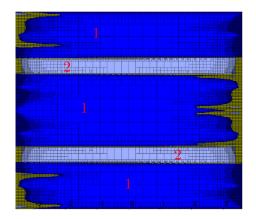
Partial borders and injective covering

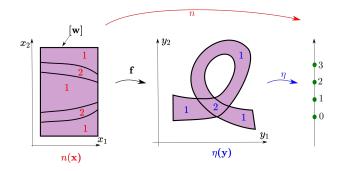
Brest (virtual) 2021, July 26



How to avoid these unclassified yellow boxes?

Problem

Problem Injective covering Sewing borders



Given a box $[\mathbf{w}]$, a continuous function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$. We define two functions $\eta: \mathbb{R}^2 \to \mathbb{N}$, $n: \mathbb{R}^2 \to \mathbb{N}$ as

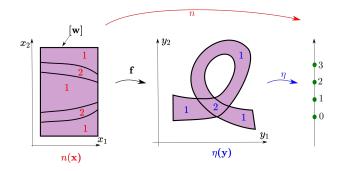
$$egin{aligned} &\eta(\mathbf{y}) = \mathsf{card}\left\{\mathbf{f}^{-1}(\{\mathbf{y}\}) \cap [\mathbf{w}]
ight\} \ &n(\mathbf{x}) = \eta(\mathbf{f}(\mathbf{x})) \end{aligned}$$

(日)

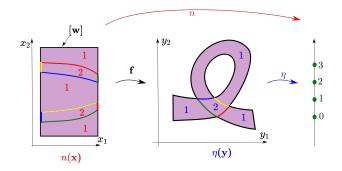
Proposition (initial). The function *n* changes on the set $\mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}])$. **Proposition** (new). The function *n* changes on the set

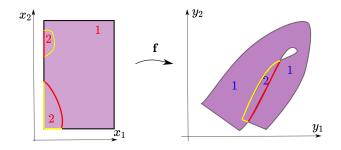
 $\mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}]) \cap \operatorname{int}([\mathbf{w}]).$

Problem Injective covering Sewing borders



Problem Injective covering Sewing borders





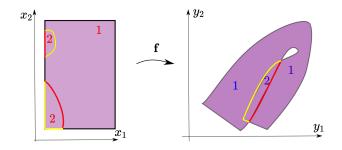
Assumptions

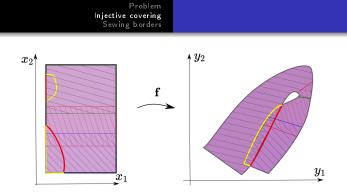
Given [y] we can get $\eta([y])$ using the winding number. We have an inclusion function [f] for f. For all $x \in [w]$, det $J_f(x) > 0$ (local injectivity)

イロト イポト イヨト イヨト 二日

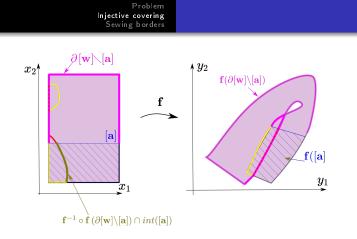
Problem. Characterize the function $n(\mathbf{x})$.

Injective covering





Injective covering of the waterfall



Proposition. If $[\mathbf{a}](i), i \in \{1, \dots, p\}$ is an injective covering of $[\mathbf{w}]$. Then

$$\mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}]) \cap \mathsf{int}([\mathbf{w}]) = \bigcup_{i \in \{1, \dots, p\}} \mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}] \setminus [\mathbf{a}](i)) \cap \mathsf{int}([\mathbf{a}](i))$$

Proof (\supset) .

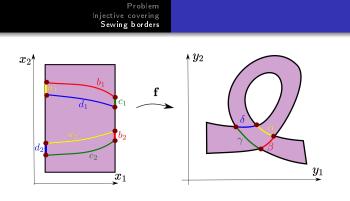
$\begin{array}{l} \mathbf{x} \in \bigcup_{i \in \{1, \dots, p\}} \mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}] \setminus [\mathbf{a}](i)) \cap \operatorname{int}([\mathbf{a}](i)) \\ \Rightarrow \qquad \exists i, \mathbf{x} \in \mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}] \setminus [\mathbf{a}](i)) \cap \operatorname{int}([\mathbf{a}](i)) \\ \Rightarrow \qquad \mathbf{x} \in \mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}]) \cap \operatorname{int}([\mathbf{w}]) \end{array}$

イロト 不得 とくき とくき とうき

Proof (\subset).

$$\begin{array}{ll} \mathbf{x} \in \mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}]) \cap \operatorname{int}([\mathbf{w}]) \\ \Rightarrow & \exists i, \mathbf{x} \in \mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}]) \cap \operatorname{int}([\mathbf{a}](i)) \\ \Rightarrow & \mathbf{x} \in \left(\left(\mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}] \setminus [\mathbf{a}](i)\right) \cup \left(\mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}] \cap [\mathbf{a}](i)\right)\right)\right) \\ & \cap \operatorname{int}([\mathbf{a}](i)) \\ \Rightarrow & \mathbf{x} \in \left(\mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}] \setminus [\mathbf{a}](i)) \cap \operatorname{int}([\mathbf{a}](i))\right) \\ & \cup \underbrace{\left(\mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}] \cap [\mathbf{a}](i)) \cap \operatorname{int}([\mathbf{a}](i))\right)}_{= \emptyset(\text{partial injectivity})} \\ \Rightarrow & \mathbf{x} \in \mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}] \setminus [\mathbf{a}](i)) \cap \operatorname{int}([\mathbf{a}](i)) \\ \Rightarrow & \mathbf{x} \in \mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}] \setminus [\mathbf{a}](i)) \cap \operatorname{int}([\mathbf{a}](i)) \\ \Rightarrow & \mathbf{x} \in \bigcup_{i \in \{1, \dots, p\}} \mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}] \setminus [\mathbf{a}](i)) \cap \operatorname{int}([\mathbf{a}](i)) \end{array}$$

Sewing borders



$$\begin{aligned} \mathscr{I}([\mathbf{w}]) &= \mathbf{f}(\partial[\mathbf{w}]) \setminus \partial \mathbf{f}([\mathbf{w}]) &= \alpha + \beta + \gamma + \delta \\ \mathscr{S}([\mathbf{w}]) &= \mathbf{f}^{-1}(\mathscr{I}([\mathbf{w}])) \cap \partial[\mathbf{w}] &= a_1 + c_1 + b_2 + d_2 \end{aligned}$$

 $\mathscr{S}([\mathbf{w}])$ is computed by inverting crossing points.

Proposition. If $[\mathbf{a}](i), i \in \{1, \dots, p\}$ is an injective covering of $[\mathbf{w}]$. Then

$$\mathbf{f}^{-1} \circ \mathbf{f}(\partial[\mathbf{w}]) \cap \mathsf{int}([\mathbf{w}]) = \bigcup_{i \in \{1, \dots, p\}} \mathbf{f}^{-1} \circ \mathbf{f}(\mathscr{S}([\mathbf{w}]) \setminus [\mathbf{a}](i)) \cap \mathsf{int}([\mathbf{a}](i))$$