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The operator C : IRn→ IRn is a contractor [4] for the equation
f (x) = 0, if{

C ([x])⊂ [x] (contractance)
x ∈ [x] and f (x) = 0⇒ x ∈ C ([x]) (consistence)
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Building contractors
Consider the primitive equation

x1+ x2 = x3

with x1 ∈ [x1], x2 ∈ [x2], x3 ∈ [x3] .
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We have

x3 = x1+ x2⇒ x3 ∈ [x3]∩ ([x1]+ [x2])
x1 = x3−x2⇒ x1 ∈ [x1]∩ ([x3]− [x2])
x2 = x3−x1⇒ x2 ∈ [x2]∩ ([x3]− [x1])
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The contractor associated with x1+ x2 = x3 is thus

C

 [x1]
[x2]
[x3]

=

 [x1]∩ ([x3]− [x2])
[x2]∩ ([x3]− [x1])
[x3]∩ ([x1]+ [x2])


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Tubes
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A trajectory is a function f : R→ Rn. For instance

f (t) =
(

cos t
sin t

)
is a trajectory.
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Order relation

f ≤ g⇔∀t,∀i , fi (t)≤ gi (t) .
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We have

h = f ∧g⇔∀t,∀i ,hi (t) =min(fi (t) ,gi (t)) ,
h = f ∨g⇔∀t,∀i ,hi (t) =max(fi (t) ,gi (t)) .
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The set of trajectories is a lattice. Interval of trajectories (tubes)
can be defined.
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Example.

[f] (t) =
(

cos t+
[
0, t2

]
sin t+[−1,1]

)
is an interval trajectory (or tube).
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Tube arithmetics
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If [x ] and [y ] are two scalar tubes [1], we have

[z ] = [x ]+ [y ]⇒ [z ] (t) = [x ] (t)+ [y ] (t) (sum)
[z ] = shifta ([x ])⇒ [z ] (t) = [x ] (t+a) (shift)
[z ] = [x ]◦ [y ]⇒ [z ] (t) = [x ] ([y ] (t)) (composition)
[z ] =

∫
[x ]⇒ [z ] (t) =

[∫ t
0 x
− (τ)dτ,

∫ t
0 x

+ (τ)dτ
]

(integral)
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Tube Contractors
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Tube arithmetic allows us to build contractors [3] [5].
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Consider for instance the differential constraint

ẋ (t) = x (t+1) ·u (t) ,
x (t) ∈ [x ] (t) , ẋ (t) ∈ [ẋ ] (t) ,u (t) ∈ [u] (t)

We decompose as follows
x (t) = x (0)+

∫ t
0 y (τ)dτ

y (t) = a (t) ·u (t) .
a (t) = x (t+1)
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Possible contractors are

[x ] (t) = [x ] (t)∩
(
[x ] (0)+

∫ t
0 [y ] (τ)dτ

)
[y ] (t) = [y ] (t)∩ [a] (t) · [u] (t)
[u] (t) = [u] (t)∩ [y ](t)

[a](t)

[a] (t) = [a] (t)∩ [y ](t)
[u](t)

[a] (t) = [a] (t)∩ [x ] (t+1)
[x ] (t) = [x ] (t)∩ [a] (t−1)
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Example. Consider x (t) ∈ [x ] (t) with the constraint

∀t, x (t) = x (t+1)

Contract the tube [x ] (t) .
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We first decompose into primitive trajectory constraints

x (t) = a (t+1)
x (t) = a (t) .
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Contractors

[x ] (t) : = [x ] (t)∩ [a] (t+1)
[a] (t) : = [a] (t)∩ [x ] (t−1)
[x ] (t) : = [x ] (t)∩ [a] (t)
[a] (t) : = [a] (t)∩ [x ] (t)
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http://www.simon-rohou.fr/research/tubex-lib/ [8]
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Time-space estimation
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Classical state estimation{
ẋ(t) = f (x(t) ,u(t)) t ∈ R
0 = g (x(t) , t) t ∈ T⊂ R.

Space constraint g (x(t) , t) = 0.
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Example. 

ẋ1 = x3 cosx4
ẋ2 = x3 cosx4
ẋ3 = u1
ẋ4 = u2

(x1 (5)−1)2+(x2 (5)−2)2−4= 0
(x1 (7)−1)2+(x2 (7)−2)2−9= 0
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With time-space constraints{
ẋ(t) = f (x(t) ,u(t)) t ∈ R
0 = g (x(t) ,x(t ′) , t, t ′) (t, t ′) ∈ T⊂ R×R.
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Example. An ultrasonic underwater robot with state

x = (x1,x2, . . .) = (x ,y ,θ ,v , . . .)

At time t the robot emits an onmidirectional sound. At time t ′ it
receives it (

x1−x
′
1

)2
+
(
x2−x

′
2

)2
− c
(
t− t ′

)2
= 0.
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Mass spring problem
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The mass spring satisfies

ẍ+ ẋ+ x−x3 = 0

i.e. {
ẋ1 = x2
ẋ2 = −x2−x1+ x3

1

The initial state is unknown.
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
ẋ1 = x2
ẋ2 =−x2−x1+ x3

1
L−x1 (t1)+L−x1 (t2) = c (t2− t1) .
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Swarm localization
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Consider n robots R1, . . . ,Rn described by

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
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Omnidirectional sounds are emitted and received.
A ping is a 4-uple (a,b, i , j) where a is the emission time, b is the
reception time, i is the emitting robot and j the receiver.
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With the time space constraint

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
g
(
xi(k) (a (k)) ,xj(k) (b (k)) ,a (k) ,b (k)

)
= 0

where
g (xi ,xj ,a,b) = ‖x1−x2‖− c (b−a) .
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Clocks are uncertain. We only have measurements ã (k) , b̃ (k) of
a (k) ,b (k) thanks to clocks hi . Thus

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
g
(
xi(k) (a (k)) ,xj(k) (b (k)) ,a (k) ,b (k)

)
= 0

ã (k) = hi(k) (a (k))

b̃ (k) = hj(k) (b (k))

Eulerian and Lagrangian Approaches for Filtering and Smoothing



Lagrangian approach
Eulerian approach

The drift of the clocks is bounded

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
g
(
xi(k) (a (k)) ,xj(k) (b (k)) ,a (k) ,b (k)

)
= 0

ã (k) = hi(k) (a (k))

b̃ (k) = hj(k) (b (k))

ḣi = 1+nh, nh ∈ [nh]
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https://youtu.be/j-ERcoXF1Ks [2]
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Eulerian and Lagrangian Approaches for Filtering and Smoothing

https://youtu.be/GycJxGFvYE8


Lagrangian approach
Eulerian approach

Eulerian approach

Eulerian and Lagrangian Approaches for Filtering and Smoothing



Lagrangian approach
Eulerian approach

Eulerian and Lagrangian Approaches for Filtering and Smoothing



Lagrangian approach
Eulerian approach

Eulerian and Lagrangian Approaches for Filtering and Smoothing



Lagrangian approach
Eulerian approach

Maze
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An interval is a domain which encloses a real number.
A polygon is a domain which encloses a vector of Rn.
A maze is a domain which encloses a path. [7]
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A maze is a set of paths.
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Mazes can be made more accurate:
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Here, a maze L is composed of [7][6].
A paving P

Doors between adjacent boxes
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The set of mazes forms a lattice with respect to ⊂.
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Eulerian smoother
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Example. Take the Van der Pol system with

X0 = [a] = [0,0.6]× [0.8,1.8]
X1 = [b] = [0.7,1.5]× [−0.2,0.2]
X2 = [c] = [0.2,0.6]× [−2.2,−1.5]
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An application of Eulerian state estimation moving taking
advantage of ocean currents.
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Visiting the three red boxes using a buoy that follows the currents
is an Eulerian state estimation problem
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