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Contractors
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Lagrangian approach

The operator ¢ : IR" — IR" is a contractor [4] for the equation

f(x)=0,if
{ % ([x]) C [x] (contractance)
x € [x] and f(x) =0=x€ % ([x]) (consistence)
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Lagrangian approach

Building contractors
Consider the primitive equation

X1+Xx2=Xx3

with x; € [x1], x2 € [x2], x3 € [x3].
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Lagrangian approach

We have

x3=x1+x2= x3€ [a]N([a]+[x])
xx=x3—x2= x1€ [x)]N([xs]—[x])
xx=x3—x1=> x2€ [x]N([xs]—[x1])
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Lagrangian approach

The contractor associated with x; + x> = x3 is thus

[x1] [xi] N ([xs] = [x])
T ] | = Peln(xs]—[x])
[x3] [xs] N ([a] + [x2])
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Lagrangian approach

A trajectory is a function f : R — R". For instance

o-( %)

is a trajectory.
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Lagrangian approach

Order relation

ng@Vt,VI,f;(t)Sg,(t)
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Lagrangian approach

We have

h =f Ag<VtVihi(t)=min(fi(t),g(t)),
h =f vge Ve, Vi hi(t)=max(fi(t),gi(t)).

Eulerian and Lagrangian Approaches for Filtering and Smo



Lagrangian approach

[x1(ta, 151D

[x1(t1)

\

1

f [tarts]

The set of trajectories is a lattice. Interval of trajectories (tubes)
can be defined.

Eulerian and Lagrangian Approaches for Filtering and Smo



Lagrangian approach

Example.
cost+ [0, t?
fo=( o )

is an interval trajectory (or tube).
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Lagrangian approach

Tube arithmetics
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If [x] and [y] are two scalar tubes [1], we have

[z] = DX + ] = [2] (t) = [X] (£) + [ (¢) (sum)

[z] = shift, ([x]) = [2] (t) = [X] (t + a) (shift)

[z] = [X] o [y] = [2] (2) = [x]([y](2)) (composition)
[2] =[x = [2](t) = [Jo x" () d. [y x* (r)dT] (integral)
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Lagrangian approach

Tube Contractors
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Lagrangian approach

Tube arithmetic allows us to build contractors [3] [5].
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Lagrangian approach

Consider for instance the differential constraint
x(t) = x(t+1)-u(e),
x(t) € [x](t),x(t) € [x](t),u(t) € [u](t)

We decompose as follows

x(t) = x(0)+ fgy(r)dr
y (1) a(t)-u(t).
a(t) x(t+1)
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Possible contractors are

(X)) = XN (x1(0)+ Js V] (z) d7)
I(t) = Dl(e)n[al(t)-[ul(r)

[W](t) = [u](t)m[g“:i

Bl(t) = [a(t)n Py

[a(t) = [al()N[x](t+1)

XI(t) = [(t)n[al(t—1)
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Lagrangian approach

Example. Consider x(t) € [x](t) with the constraint
Vt, x(t) =x(t+1)

Contract the tube [x](t).
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Lagrangian approach

We first decompose into primitive trajectory constraints

x(t) = a(t+1)
x(t) = a(t).
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Contractors

XI(1) = =[xI(t)nla(t+1)
[al(8) = =T[al(t)Nx](t-1)
[X](t) = =[xI(t)nfal(t)
[al(2) = =T[al(t)N[x](¢)
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# tubex-lib

& Tubes: basics

Deition
Arithmetics on tubes
Integralsof tubes
Set inversion

[T ——"

handle tubes with Tub

Definition

Atube [¥](-) is defined as an envelope enclosing an uncertain trajectory X(-) : F& — IR". Itis built as
aninterval of two functions [x~(-), X* ()] such that V1, X" (1) € X*(1). Atrajectory X() belongs to
the tube [x](-)if V1, X(1) € [x](1). Fig. 1 illustrates a tube implemented with a set of boxes. This
sliced implementation s detailed hereinafter

=]

Fig. 1A tube [x]() aset of sices.
suchasx*().

Code example:

float tisestep = 0.1;
Interval donain(o, 1o} ;
Tube a(domain, Litestep, Funclion("L, "(L-5)2 + [-5.5,0.51"))

http://www.simon-rohou.fr/research /tubex-lib/ [8]
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http://www.simon-rohou.fr/research/tubex-lib/

Lagrangian approach

Time-space estimation
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Lagrangian approach

Classical state estimation

{i((t) = f(x(t),u(t)) teR
0 = g(x(t),t) teTCR.

Space constraint g(x(t),t) =0.
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Lagrangian approach

Example.

Xl = X3 COS Xy

Xo = X3 COS Xy

X3 =

).<4 = U
(x1(5)—1)°+(x2(5)—2)>—4=0
(1 (7) =1+ (x(7)—2)>-9=0
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Lagrangian approach

With time-space constraints

{)’((t) = f(x(t),u(t)) teR
0 = g(x(t),x(t),t,t') (t,t) e TCRxR.
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Lagrangian approach

Example. An ultrasonic underwater robot with state
X =(x1,x2,...) =(x,y,0,v,...)

At time t the robot emits an onmidirectional sound. At time t’ it
receives it

<X1—X1>2—|— (Xz—Xé)z—C(t—t/)2 =0.
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Lagrangian approach

Mass spring problem

Eulerian and Lagrangian Approaches for Filtering and Smo



Lagrangian approach

The mass spring satisfies

X4+x4+x-x3=0

X1 = X2
X = —X2—X1+Xf’

The initial state is unknown.
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Lagrangian approach
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Lagrangian approach

X1:X2
Xp = —Xp — X1 —|—x13
L—Xl(t1)+L—X1(l’2):C(tz—tl).
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Lagrangian approach

Swarm localization
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Lagrangian approach

Consider n robots %1, ...,%, described by

Xj = f(X,’,U,’),U,‘ € [U,'] .
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Lagrangian approach

Omnidirectional sounds are emitted and received.
A ping is a 4-uple (a, b,i,j) where a is the emission time, b is the
reception time, i is the emitting robot and j the receiver.
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Lagrangian approach

x(6)  x/(a)
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Lagrangian approach

With the time space constraint

X,‘ = f(X,‘,U,‘),U,’ S [U,‘] .
g (xi(ky (a(k)) . %j(k) (b(K)),a(k),b(k)) =0

where
g(x;,xj,a, b) = ”Xl_X2” _C(b_a)‘

Eulerian and Lagrangian Approaches for Filtering and Smo



Lagrangian approach

Clocks are uncertain. We only have measurements 4(k),b(k) of
a(k),b(k) thanks to clocks h;. Thus

x; = f(x;,u;),u; € [u;].

g (Xi(k ( (K))sxjk) (b(K)),a(k),b(k)) =
3(k) = hi(ky (a(k))

b(k) = J(k( (k)
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Lagrangian approach

The drift of the clocks is bounded

)k,' = f(X,‘,U,‘),U,‘ S [U,‘] .

g (xi(0) (a(K) x50 (b(K)). a(K)  b(K)) =0
(K) = iy (a(K))

3
f_;(k) = hjk) (b(k))
hi =1+ np, np € [ng]
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Lagrangian approach

Se——) 0]

https://youtu.be/j-ERcoXF1Ks [2]
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https://youtu.be/j-ERcoXF1Ks

Lagrangian approach

https://youtu.be/jr8xKleONds
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https://youtu.be/jr8xKIe0Nds

Lagrangian approach

https://youtu.be/GycJxGFvYES8
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https://youtu.be/GycJxGFvYE8

Eulerian approach
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Eulerian approach
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Eulerian approach
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Eulerian approach

An interval is a domain which encloses a real number.
A polygon is a domain which encloses a vector of R".
A maze is a domain which encloses a path. [7]
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Eulerian approach

A maze is a set of paths.
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Eulerian approach

Mazes can be made more accurate:

&/
a1
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Eulerian approach

Here, a maze .Z is composed of [7][6].
e A paving &

@ Doors between adjacent boxes
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Eulerian approach

The set of mazes forms a lattice with respect to C.
T \'
E \ - \
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Eulerian approach

Eulerian smoother
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Eulerian approach

Example. Take the Van der Pol system with

Xo =[a] =1[0,0.6] x [0.8,1.8]
X; =[b]=1[0.7,1.5] x [-0.2,0.2]
X, =[c]=[0.2,0.6] x [-2.2,—1.5]
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Eulerian approach
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Eulerian approach
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Eulerian approach
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Eulerian approach

An application of Eulerian state estimation moving taking
advantage of ocean currents.
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Eulerian approach

Direction et intensite des courants moyens s
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Visiting the three red boxes using a buoy that follows the currents
is an Eulerian state estimation problem




Eulerian approach

W F. Le Bars, J. Sliwka, O. Reynet, and L. Jaulin.
State estimation with fleeting data.
Automatica, 48(2):381-387, 2012.

[ A. Bethencourt and L. Jaulin.
Cooperative localization of underwater robots with
unsynchronized clocks.
Journal of Behavioral Robotics, 4(4):233-244, 2013.

[§ A. Bethencourt and L. Jaulin.
Solving non-linear constraint satisfaction problems involving
time-dependant functions.
Mathematics in Computer Science, 3(3), 2014.

[1 G. Chabert and L. Jaulin.
Contractor Programming.
Artificial Intelligence, 173:1079-1100, 20009.

[1 A. Chapoutot, J. Alexandre dit Sandretto, and O. Mullier.



Eulerian approach
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