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1 V-stability



Vaimos (IFREMER and ENSTA)







X1: outside the corridor.

X2: inside the corridor.



Definition. Consider a differentiable function V (x) : Rn→
R. The system is V -stable if

�
V (x) ≥ 0 ⇒ V̇ (x) < 0

�
.

Checking the V -stability can be done using using interval

analysis.





Système non-holonomes



2 Station keeping problem



The problem of station keeping for a robot is to stay inside

a disk around origin.



Consider a non holonomous robot described by





ẋ = cos θ
ẏ = sin θ

θ̇ = u.

Since ẋ2 + ẏ2 = 1, this robot cannot stop.



Transformation from Cartesian to polar



The polar form for the state equations is





(i) ϕ̇ = sinϕ
d + u

(ii) ḋ = − cosϕ.
(iii) α̇ = −sinϕd .



We propose here the following control

u =

�
+1 if cosϕ ≤ 1√

2
(the robot turns left)

− sinϕ otherwise (the robot goes toward zero)



The closed loop state equations are





(i) ϕ̇ =






sinϕ
d + 1 if cosϕ ≤ 1√

2�
1
d − 1

�
sinϕ otherwise

(ii) ḋ = − cosϕ.











3 Capture tubes



Consider the time dependant system

S : ẋ = f (x, t)

and a tube

G(t) ⊂ Rn, t ∈ R.



The tube G(t) is said to be a capture tube if

x(t) ∈ G(t), τ > 0⇒ x(t+ τ) ∈ G(t+ τ).



Theorem. Consider the tube

G (t) = {x,g (x, t) ≤ 0}

where g : Rn ×R→ Rm. If the system





(i)
∂gi
∂x

(x, t) .f(x, t) +
∂gi
∂t
(x, t)

� 	
 �
ġi(x,t)

≥ 0

(ii) gi (x, t) = 0
(iii) g (x, t) ≤ 0

is inconsistent for all (x, t, i), then G (t) is a capture tube

for S : ẋ = f (x, t)



A software Bubbibex has been built by students from EN-

STA Bretagne.

Bubbibex uses interval analysis to prove the inconsistency.



4 Test-case



Robot





ẋ = u1
ẏ = u2
θ̇ = −θ.

Target (xd, yd) = (t, 0). We choose the control

u1 = −x+ t, u2 = −y.



Remark. We have

ẋ = −x+ t

i.e.

x (t) = e−t (x0 + 1) + t− 1

The error on x is

ex (t) = e
−t (x0 + 1)− 1



The closed loop system satisfies





ẋ = −x+ t
ẏ = −y
θ̇ = −θ.



Target tube. The tube we want is

G (t) = {x | g (x, t) ≤ 0} ,

with
�
g1 (x, t) = (x1 − t)2 + x22 − r2
g2 (x, t) = (cosx3 − 1)2 + sin2 x3 − 0.2.

For r = 4, Bubbibex proves that G (t) is a capture tube.

For r < 1, some trajectories leave G (t) forever.



5 Lattice and capture tubes



Consider S : ẋ = f (x, t).

If T is the set of tubes and Tc is the set of all capture tubes

of S then (Tc,⊂) is a sublattice of (T,⊂).



We have indeed
�
G1(t) ∈ Tc

G2(t) ∈ Tc
⇒

�
G1(t) ∩G2(t) ∈ Tc

G1(t) ∪G2(t) ∈ Tc



Remark. If G(t) ∈ T, define

capt (G(t)) =
�


G(t) ∈ Tc | G(t) ⊂ G(t)
�
.

This set corresponds to the smallest capture tube which

encloses G(t).



6 Computing capture tubes



Problem. GivenG(t) ∈ T, compute an interval
�
G−(t),G+(t)

�
∈

IT such that

capt (G(t)) ∈
�
G
−(t),G+(t)

�
.



Proposition 1. We have

capt (G(t)) = {(x, t) | ∃ (x0, t0) , x0 ∈ G(t0)
t ≥ t0, x = φt−t0 (x0, t0) }.



Proposition 2. We have

capt (G(t)) = G(t) ∪∆G(t),

with

∆G(t) = {(x, t) | ∃ (x0, t0) , x0 ∈ ∂G(t0),
t ≥ t0, x = φt−t0 (x0, t0)
φ]t0,t] (x0, t0) /∈ G(t) }







7 Test case



S :






ẋ = −x+ t
ẏ = −y
θ̇ = −θ.

G (t) :

�
g1 (x, t) = (x1 − t)2 + x22 − r (t)
g2 (x, t) = (cosx3 − 1)2 + sin2 x3 − 0.2.

r (t) = 0.2 · (t+ 1)2 .

Some trajectories leave and come back to G (t).
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