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Consider the system

S : ẋ(t) = f(x(t))

Denote by ϕ(t,x) the �ow map.
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Positive invariant set
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A set A is positive invariant [1] if

x ∈ A, t ≥ 0 =⇒ ϕ(t,x) ∈ A.

Or equivalently
ϕ([0,∞],A)⊂ A.

The set of all positive invariant sets is a complete lattice.
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A lattice (L ,≤) is a partially ordered set, closed under least upper
and greatest lower bounds [2].
A machine lattice (LM ,≤) of L is complete sublattice of (L ,≤)
which is �nite. Moreover both L and LM have the same top and
bottom.
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Machine lattice
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Kleene algebra

We consider a set F of automorphism f :P (X)→P (X) such that

f (X) = X
f (A∩B) = f (A)∩ f (B)

Note that f is inclusion monotonic.
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Kleene(+, ·,∗) Kleene(∩,◦,∗)
Addition a+b f ∩g
Product a ·b f ◦g

Associativity a+(b+ c) = (a+b)+ c f ∩ (g ∩h) = (f ∩g)∩h
a(bc) = (ab)c f ◦ (g ◦h) = (f ◦g)◦h

Commutativity a+b = b+a f ∩g = g ∩ f
Distributivity a(b+ c) = (ab)+(ac) f ◦ (g ∩h) = (f ◦g)∩ (f ◦h)

(b+ c)a= (ba)+(ca) (g ∩h)◦ f = (g ◦ f )∩ (h ◦ f )
zero a+0= a f ∩>= f

One a1= 1a= a f ◦ Id = Id ◦ f = f

Annihilation a0= 0a= 0 f ◦>=>
Idempotence a+a= a f ∩ f = f

Partial order a≤ b⇔ a+b = b f ⊃ g ⇔ f ∩g = g

Kleene star a∗ = 1+a+aa+aaa+ ... f ∗ = Id ∩ f ∩ f 2∩ f 3∩ . . .
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Reducers

To an automorphism f ∈F , we can associate the reducer
R = Id ∩ f .

Kleene algebra to compute with invariant sets of dynamical systems



Motivation
Kleene algebra
Boolean lattice

Applications

We have

A⊂ B⇒R (A)⊂R (B) monotonicity
R (A)⊂ A degrowth
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Theorem. We have
(Id ∩ f )∞ = f ∗

Proof. Since f is such that f (A∩B)) = f (A)∩ f (B), we have

(Id ∩ f )2 (A) = (Id ∩ f )(A∩ f (A)) =
= A∩ f (A)∩ f (A∩ f (A))
= A∩ f (A)∩ f 2 (A)

and

(Id ∩ f )∞ (A) = A∩ f (A)∩ f 2 (A)∩ f 3 (A)∩·· ·= f ∗ (A) .
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We de�ne

Fix(f ∗) = {A | f ∗(A) = A}= Fix(Id ∩ f )

From the Knaster�Tarski theorem, it is a complete sublattice of L .
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(a) : Red nodes : A, (b):A∩ f (A), (c):A∩ f (A)∩ f 2 (A),
(d):f ∗ (A) .
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Goal. Compute with closure sets f ∗
i
,i ∈ {1,2, . . .}, i.e., compute

with expressions such as

f ∗ (A)∩ (g∗ (A)∪h∗ (A))∗

We want to factorize the �xed point operators as much as possible.
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Factorization properties [3]

f ∗∩ f ∗ = f ∗

(f ∗)∗ = f ∗

(f ∗∩g∗)∗ = (f ∩g)∗

f ∗ ◦ (f ◦g∗)∗ = (f ∩g)∗
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Dealing state equations
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De�ne −→
f (A) = ϕ([−1,0],A)
←−
f (A) = ϕ([0,1],A)

We have

−→
f (Rn) = Rn

−→
f (A∩B) =

−→
f (A)∩

−→
f (B)

←−
f (Rn) = Rn

←−
f (A∩B) =

←−
f (A)∩

←−
f (B)
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The sets
−→
f ∗ (A) ,

←−
f ∗ (A) correspond to the largest positive and

negative invariant sets included in A.
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The largest invariant set included in A is(−→
f ∩
←−
f
)∗

(A)
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Kleene intervals
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Given an automorphism f , we want to compute f ∗(a) where a is in
(L ,≤) (for instance (Rn,⊂)).
Machine sublattice LM of L (maze for instance).
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Interval automorphism
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An interval automorphism [f −, f +] containing f is a pair of two
machine automorphism f −, f + with such that

a ∈LM ⇒ f − (a)≤ f (a)≤ f + (a) .

Lemma. We have

Fix
(
(f −)

∗)⊂LM ∩Fix(f ∗)⊂ Fix
(
(f +)

∗)
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Fixed points Fix
(
(f −)

∗)
in magenta, Fix

(
(f +)

∗)
in blue
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Theorem. If a ∈ [a−,a+], where a−,a+ both belong to LM , then

(i) f ∗ (a) ∈
[
(f −)

∗
(a−) ,(f +)

∗
(a+)

]
(ii) f ∗ ◦ (f −)∗ (a−) = (f −)

∗
(a−)

(iii) f ∗ (a)≤ (Id ∩ f +)i (a+) , ∀i ≥ 0

Kleene algebra to compute with invariant sets of dynamical systems



Motivation
Kleene algebra
Boolean lattice

Applications

Algorithm
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Computation of f ∗ (a) ,a ∈ [a]
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Boolean lattice
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A Boolean lattice L is a complemented distributive lattice.
Every element a has a unique complement a, satisfying a∨a =>
and a∧a =⊥.
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We have
a ≤ b⇔ b ≤ a

a∨b = b∧a (De Morgan's laws)

a∧b = b∨a
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Interval arithmetic
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[a−,a+] =
[
a+,a−

]
f ([a−,a+]) = [f (a−) , f (a+)]

[a−,a+]∧ [b−,b+] = [a−∧b−,a+∧b+]
[a−,a+]∨ [b−,b+] = [a−∨b−,a+∨b+]
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Monotonic case

Compute x = f ∗1 (a)∨ (f ∗2 (b)∧ f ∗3 (c)) . We have

x ∈ [ f ∗1 (a−)∨ (f ∗2 (b−)∧ f ∗3 (c−))(
Id ∩ f i1

)
(a+)∨

((
Id ∩ f i2

)
(b+)∧

(
Id ∩ f i3

)
(c+)

)
]
.
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Non monotonic case
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We want to compute x = f ∗1 (a)∧ f ∗2
(
b
)
. Applying interval

arithmetic rules, we get

x ∈
[
f ∗1
(
a−
)
∧ f ∗2

(
b+
)
, f ∗1

(
a+
)
∧ f ∗2

(
b−
)]

,

i.e., we need to go up to the �xed point for both bounds.
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Forward reach set
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Forward reach set of A de�ned by

Forw(f,A) = {x | ∃t ≥ 0,∃x0 ∈ A,ϕ(t,x0) = x} .

We get

Forw(f,A) =
←−
f ∗
(
A
)
.
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Monotonic path planning

Kleene algebra to compute with invariant sets of dynamical systems



Motivation
Kleene algebra
Boolean lattice

Applications

The set of paths that start in the set A and reach B is given by

Path(A,B) = Forw(A)∩Back(B) =
←−
f ∗
(
A
)
∩
−→
f ∗
(
B
)
.
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A to B problem
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Consider two sets A,B such that B⊂ A. We want to compute the
set

X=CaptA→B= {x | ∃t ≥ 0,ϕ(t,x) ∈ B and ∀t1 ∈ [0, t],ϕ(t1,x) ∈ A} .
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Non monotonic path planning
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Find the set X of all paths that start in A, avoid B and reach C.
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