Kleene algebra to compute with invariant sets of dynamical systems

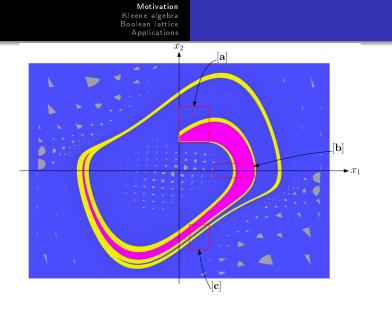
Kleene algebra to compute with invariant sets of dynamica

A 3 b

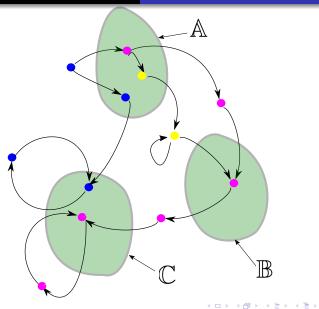
Motivation

Motivation [5][4]

Kleene algebra to compute with invariant sets of dynamica



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ Kleene algebra to compute with invariant sets of dynamica



Kleene algebra to compute with invariant sets of dynamica

Consider the system

$$\mathscr{S}$$
: $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t))$

Denote by $\varphi(t, \mathbf{x})$ the flow map.

э

Motivation

Positive invariant set

<ロ> (日) (日) (日) (日) (日) Kleene algebra to compute with invariant sets of dynamica

A set \mathbbm{A} is positive invariant [1] if

$$\mathbf{x} \in \mathbb{A}, t \geq 0 \Longrightarrow arphi(t, \mathbf{x}) \in \mathbb{A}.$$

Or equivalently

 $\varphi([0,\infty],\mathbb{A})\subset\mathbb{A}.$

The set of all positive invariant sets is a complete lattice.

< ∃ >

Kleene algebra Boolean lattice

Kleene algebra

Kleene algebra to compute with invariant sets of dynamica

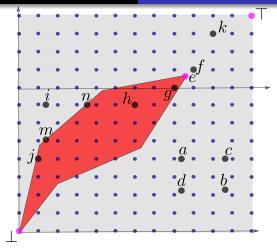
Kleene algebra Boolean lattice Applications

Lattice

イロト イヨト イヨト イヨト Kleene algebra to compute with invariant sets of dynamica

ъ.

A lattice (\mathcal{L}, \leq) is a partially ordered set, closed under least upper and greatest lower bounds [2]. A machine lattice (\mathcal{L}_M, \leq) of \mathcal{L} is complete sublattice of (\mathcal{L}, \leq) which is finite. Moreover both \mathcal{L} and \mathcal{L}_M have the same top and bottom. Kleene algebra Boolean lattice



Machine lattice

Kleene algebra

We consider a set \mathscr{F} of automorphism $f:\mathscr{P}(\mathbb{X})\to\mathscr{P}(\mathbb{X})$ such that

$$f(\mathbb{X}) = \mathbb{X}$$
$$f(\mathbb{A} \cap \mathbb{B}) = f(\mathbb{A}) \cap f(\mathbb{B})$$

Note that f is inclusion monotonic.

· • = • • = •

	$Kleene(+,\cdot,*)$	$Kleene(\cap,\circ,*)$
Addition	a+b	$f \cap g$
Product	a · b	$f \circ g$
Associativity	a+(b+c)=(a+b)+c	$f \cap (g \cap h) = (f \cap g) \cap h$
	a(bc) = (ab)c	$f \circ (g \circ h) = (f \circ g) \circ h$
Commutativity	a+b=b+a	$f \cap g = g \cap f$
Distributivity	a(b+c) = (ab) + (ac)	$f \circ (g \cap h) = (f \circ g) \cap (f \circ h)$
	(b+c)a = (ba)+(ca)	$(g \cap h) \circ f = (g \circ f) \cap (h \circ f)$
zero	a + 0 = a	$f \cap \top = f$
One	a1 = 1a = a	$f \circ Id = Id \circ f = f$
Annihilation	a0 = 0a = 0	$f \circ \top = \top$
Idempotence	a + a = a	$f \cap f = f$
Partial order	$a \leq b \Leftrightarrow a + b = b$	$f \supset g \Leftrightarrow f \cap g = g$
Kleene star	$a^* = 1 + a + aa + aaa + \dots$	$f^* = Id \cap f \cap f^2 \cap f^3 \cap \dots$

(日) (部) (注) (注) (こ)

Reducers

To an automorphism $f \in \mathscr{F}$, we can associate the reducer $\mathscr{R} = Id \cap f$.

Kleene algebra Boolean lattice Applications

We have

$$\mathbb{A} \subset \mathbb{B} \Rightarrow \mathscr{R}(\mathbb{A}) \subset \mathscr{R}(\mathbb{B})$$
 monotonicity
 $\mathscr{R}(\mathbb{A}) \subset \mathbb{A}$ degrowth

Kleene algebra to compute with invariant sets of dynamica

Motivation Kleene algebra Boolean lattice

Theorem. We have

$$(\mathit{Id} \cap f)^{\infty} = f^*$$

Proof. Since f is such that $f(\mathbb{A} \cap \mathbb{B}) = f(\mathbb{A}) \cap f(\mathbb{B})$, we have

$$(Id \cap f)^{2}(\mathbb{A}) = (Id \cap f)(\mathbb{A} \cap f(\mathbb{A})) = = \mathbb{A} \cap f(\mathbb{A}) \cap f(\mathbb{A} \cap f(\mathbb{A})) = \mathbb{A} \cap f(\mathbb{A}) \cap f^{2}(\mathbb{A})$$

and

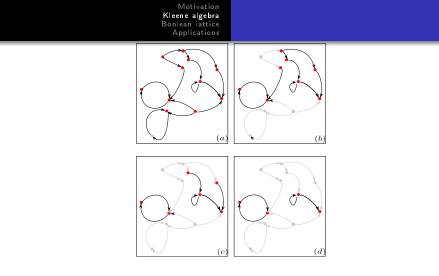
$$(Id \cap f)^{\infty}(\mathbb{A}) = \mathbb{A} \cap f(\mathbb{A}) \cap f^{2}(\mathbb{A}) \cap f^{3}(\mathbb{A}) \cap \cdots = f^{*}(\mathbb{A}).$$

э

We define

$$\mathsf{Fix}(f^*) = \{\mathbb{A} \mid f^*(\mathbb{A}) = \mathbb{A}\} = \mathsf{Fix}(Id \cap f)$$

From the Knaster-Tarski theorem, it is a complete sublattice of \mathscr{L} .



(a) : Red nodes : \mathbb{A} , (b): $\mathbb{A} \cap f(\mathbb{A})$, (c): $\mathbb{A} \cap f(\mathbb{A}) \cap f^{2}(\mathbb{A})$, $(d): f^*(A).$

э

Goal. Compute with closure sets $f_i^*, i \in \{1, 2, ...\}$, *i.e.*, compute with expressions such as

```
f^*(\mathbb{A})\cap (g^*(\mathbb{A})\cup h^*(\mathbb{A}))^*
```

We want to factorize the fixed point operators as much as possible.

4 B 6 4 B

Kleene algebra Boolean lattice

Factorization properties [3]

$$f^* \cap f^* = f^* (f^*)^* = f^* (f^* \cap g^*)^* = (f \cap g)^* f^* \circ (f \circ g^*)^* = (f \cap g)^*$$

イロト イポト イヨト イヨト Kleene algebra to compute with invariant sets of dynamica

Motivation Kleene algebra Boolean lattice

Dealing state equations

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > Kleene algebra to compute with invariant sets of dynamica

э

Kleene algebra Boolean lattice Applications

Define

$$\overrightarrow{f}(\mathbb{A}) = \overrightarrow{\varphi([-1,0],\overline{\mathbb{A}})} \\ \overleftarrow{f}(\mathbb{A}) = \overrightarrow{\varphi([0,1],\overline{\mathbb{A}})}$$

We have

$$\overrightarrow{f}(\mathbb{R}^n) = \mathbb{R}^n \qquad \overrightarrow{f}(\mathbb{A} \cap \mathbb{B}) = \overrightarrow{f}(\mathbb{A}) \cap \overrightarrow{f}(\mathbb{B})$$

$$\overleftarrow{f}(\mathbb{R}^n) = \mathbb{R}^n \qquad \overleftarrow{f}(\mathbb{A} \cap \mathbb{B}) = \overleftarrow{f}(\mathbb{A}) \cap \overleftarrow{f}(\mathbb{B})$$

イロト イヨト イヨト イヨト Kleene algebra to compute with invariant sets of dynamica

The sets $\overrightarrow{f}^*(\mathbb{A}), \overleftarrow{f}^*(\mathbb{A})$ correspond to the largest positive and negative invariant sets included in \mathbb{A} .

A = A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< 口 > < 同

Motivation Kleene algebra Boolean lattice

The largest invariant set included in A is

 $\left(\overrightarrow{f}\cap \overleftarrow{f}\right)^*(\mathbb{A})$

イロト イポト イヨト イヨト Kleene algebra to compute with invariant sets of dynamica

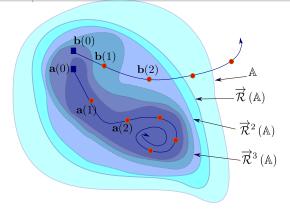
э

Kleene algebra Boolean lattice Applications

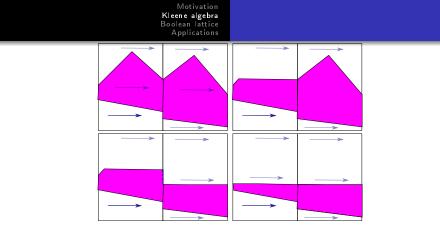
Illustration

Kleene algebra to compute with invariant sets of dynamica

Kleene algebra Boolean lattice Applications



・ロト ・聞ト ・ヨト ・ヨト Kleene algebra to compute with invariant sets of dynamica



・ロト ・ 御 ト ・ 注 ト ・ 注 ト Kleene algebra to compute with invariant sets of dynamica

Kleene algebra Boolean lattice Applications

Kleene intervals

Kleene algebra to compute with invariant sets of dynamica

Given an automorphism f, we want to compute $f^*(a)$ where a is in (\mathscr{L}, \leq) (for instance (\mathbb{R}^n, \subset)). Machine sublattice \mathscr{L}_M of \mathscr{L} (maze for instance). Kleene algebra Boolean lattice

Interval automorphism

(日) (同) (三) (三) Kleene algebra to compute with invariant sets of dynamica

э

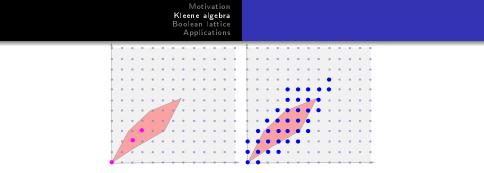
An interval automorphism $[f^-, f^+]$ containing f is a pair of two machine automorphism f^-, f^+ with such that

$$a \in \mathscr{L}_{M} \Rightarrow f^{-}(a) \leq f(a) \leq f^{+}(a).$$

Lemma. We have

$$\operatorname{Fix}((f^{-})^{*}) \subset \mathscr{L}_{M} \cap \operatorname{Fix}(f^{*}) \subset \operatorname{Fix}((f^{+})^{*})$$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



Fixed points $Fix((f^-)^*)$ in magenta, $Fix((f^+)^*)$ in blue

Kleene algebra to compute with invariant sets of dynamica

Theorem. If $a \in [a^-, a^+]$, where a^-, a^+ both belong to \mathscr{L}_M , then

$$\begin{array}{ll} (i) & f^*(a) \in \left[(f^-)^*(a^-), (f^+)^*(a^+) \right] \\ (ii) & f^* \circ (f^-)^*(a^-) = (f^-)^*(a^-) \\ (iii) & f^*(a) \leq (Id \cap f^+)^i(a^+), \, \forall i \geq 0 \end{array}$$

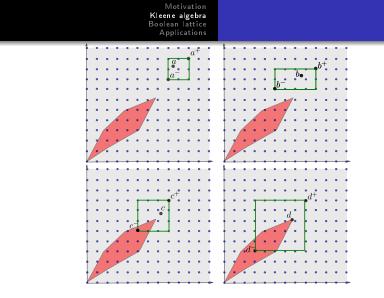
-

Kleene algebra Boolean lattice Applications

Algorithm

イロト イヨト イヨト イヨト Kleene algebra to compute with invariant sets of dynamica

Ξ.



Computation of $f^*(a), a \in [a]$

э

Kleene algebra Boolean lattice

Boolean lattice

Kleene algebra to compute with invariant sets of dynamica

A Boolean lattice \mathscr{L} is a complemented distributive lattice. Every element a has a unique complement \overline{a} , satisfying $a \lor \overline{a} = \top$ and $a \land \overline{a} = \bot$.

< ∃ →

Kleene algebra Boolean lattice Applications

We have

$$\begin{array}{l} a \leq b \Leftrightarrow \overline{b} \leq \overline{a} \\ \overline{a \lor b} = \overline{b} \land \overline{a} \\ \overline{a \land b} = \overline{b} \lor \overline{a} \end{array} \quad (De \ \mathsf{Morgan's} \ \mathsf{laws})$$

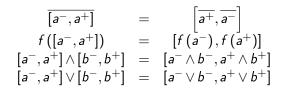
イロト イヨト イヨト イヨト Kleene algebra to compute with invariant sets of dynamica

Ξ.

Boolean lattice

Interval arithmetic

Kleene algebra to compute with invariant sets of dynamica



3

Monotonic case

Compute $x = f_1^*(a) \lor (f_2^*(b) \land f_3^*(c))$. We have

$$\begin{array}{ll} x \in & \left[& f_1^*\left(a^-\right) \lor \left(f_2^*\left(b^-\right) \land f_3^*\left(c^-\right)\right) \\ & \left(\textit{Id} \cap f_1^i\right) \left(a^+\right) \lor \left(\left(\textit{Id} \cap f_2^i\right) \left(b^+\right) \land \left(\textit{Id} \cap f_3^i\right) \left(c^+\right) \right) \right] \end{array} \right.$$

Kleene algebra to compute with invariant sets of dynamica

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Boolean lattice

Non monotonic case

・ロト ・部ト ・ヨト ・ヨト Kleene algebra to compute with invariant sets of dynamica

We want to compute $x = \overline{f_1^*(\overline{a})} \wedge f_2^*(\overline{b})$. Applying interval arithmetic rules, we get

$$x \in \left[\overline{f_1^*\left(\mathbf{a}^-\right)} \land f_2^*\left(\overline{b^+}\right), \overline{f_1^*\left(\overline{\mathbf{a}^+}\right)} \land f_2^*\left(\overline{b^-}\right)\right],$$

i.e., we need to go up to the fixed point for both bounds.

4 3 1 1 4

Boolean lattice Applications

Forward reach set

< □ > < □ > < □ > < □ > < □ > < □ > Kleene algebra to compute with invariant sets of dynamica

Forward reach set of $\mathbb A$ defined by

$$\mathsf{Forw}(\mathbf{f},\mathbb{A}) = \left\{ \mathbf{x} \mid \exists t \geq 0, \exists \mathbf{x}_0 \in \mathbb{A}, \varphi(t,\mathbf{x}_0) = \mathbf{x} \right\}.$$

We get

$$\mathsf{Forw}(\mathbf{f},\mathbb{A}) = \overleftarrow{\overline{f}^*(\overline{\mathbb{A}})}.$$

< 一型

æ

э

Monotonic path planning

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > Kleene algebra to compute with invariant sets of dynamica

э

The set of paths that start in the set $\mathbb A$ and reach $\mathbb B$ is given by

$$\mathsf{Path}\,(\mathbb{A},\mathbb{B})=\mathsf{Forw}\,(\mathbb{A})\cap\mathsf{Back}\,(\mathbb{B})=\overleftarrow{f^*(\overline{\mathbb{A}})}\cap\overrightarrow{f^*(\overline{\mathbb{B}})}.$$

Boolean lattice Applications

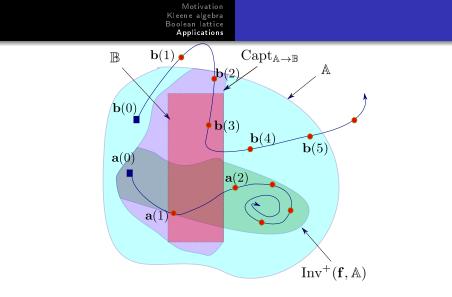
A to B problem

Kleene algebra to compute with invariant sets of dynamica

Consider two sets \mathbb{A},\mathbb{B} such that $\mathbb{B}\subset\mathbb{A}.$ We want to compute the set

 $\mathbb{X} = \mathsf{Capt}_{\mathbb{A} \to \mathbb{B}} = \{ \mathsf{x} \mid \exists t \geq 0, \phi(t, \mathsf{x}) \in \mathbb{B} \text{ and } \forall t_1 \in [0, t], \phi(t_1, \mathsf{x}) \in \mathbb{A} \}.$

★ 3 → < 3</p>



Kleene algebra to compute with invariant sets of dynamica

Motivation Kleene algebra Applications

Non monotonic path planning

(日) (同) (三) (三) Kleene algebra to compute with invariant sets of dynamica

э

Find the set $\mathbb X$ of all paths that start in $\mathbb A$, avoid $\mathbb B$ and reach $\mathbb C$.

- Franco Blanchini and Stefano Miani. Set-Theoretic Methods in Control. Springer Science & Business Media, October 2007.
- B. A. Davey and H. A. Priestley.
 Introduction to Lattices and Order.
 Cambridge University Press, (ISBN 0521784514), 2002.

Dexter Kozen.

A completeness theorem for kleene algebras and the algebra of regular events.

In Giles Kahn, editor, *Proceedings of the Sixth Annual IEEE Symp. on Logic in Computer Science, LICS 1991*, pages 214–225. IEEE Computer Society Press, July 1991.

T. Le Mézo, L. Jaulin, and B. Zerr. Inner approximation of a capture basin of a dynamical system.

• • • • • • •

In *Abstracts of the 9th Summer Workshop on Interval Methods.* Lyon, France, June 19-22, 2016.

🔋 T. Le Mézo, L. Jaulin, and B. Zerr.

An interval approach to compute invariant sets.

IEEE Transaction on Automatic Control, 62:4236–4243, 2017.

A 3 3 4 4