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Consider the system

S : ẋ(t) = γ(x(t))

Denote by ϕγ (t,x) the �ow map.
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A set A is positive invariant [1] if

x ∈ A, t ≥ 0 =⇒ ϕ(t,x) ∈ A.

Or equivalently
ϕγ ([0,∞],A)⊂ A.

The set of all positive invariant sets is a complete lattice.
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A lattice (L ,≤) is a partially ordered set, closed under least upper
and greatest lower bounds [2].
A machine lattice (LM ,≤) of L is complete sublattice of (L ,≤)
which is �nite. Moreover both L and LM have the same top and
bottom.
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Kleene algebra (K ,+, ·,∗)
Addition a+b

Product a ·b
Associativity a+ (b+ c) = (a+b) + c

a · (b · c) = (a ·b) · c
Commutativity a+b = b+a

Distributivity a · (b+ c) = (a ·b) + (a · c)

(b+ c) ·a = (b ·a) + (c ·a)

zero a+0 = a

One a ·1 = 1 ·a = a

Annihilation a ·0 = 0 ·a = 0

Idempotence a+a = a

Partial order a≤ b⇔ a+b = b

Kleene star a∗ = 1+a+a ·a+a ·a ·a+ ...

Kleene algebra to compute with invariant sets of dynamical systems



Motivation
Kleene algebra

Dynamical systems

Proposition. +, · are monotonic
Proof. Assume that a1 ≥ a, i.e., a1 = a+a1.
(i) a1 +b ≥ a+b⇔ a1 +b = a1 +b+a+b⇔ true.
(ii) a1 ·b ≥ a ·b⇔ a1 ·b = a1 ·b+a ·b⇔ a1 ·b = (a1 +a) ·b⇔ true.
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Proposition. We have

(1+a)∞ = a∗.

Proof.

(1+a)2 = (1+a) · (1+a) = 1+1 ·a+a ·1+a2 = 1+a+a2

and recursively:

(1+a)∞ = 1+a+a2 +a3 · · ·= a∗.
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A Kleene algebra K (≤,+, ·,∗,0,1) is a lattice with respect to the
relation order ≤.
We can also de�ne the machine Kleene algebra (KM ,≤) of K .
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An interval of K (≤,+, ·,∗,0,1) as a subset [a] of K which can be
written as

[a] = [a−,a+] =
{
a ∈K |a− ≤ a≤ a+

}
where a−,a+ belong to KM .
Note that both /0 and K are intervals of K .
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If a ∈ [a] = [a−,a+],b ∈ [b] = [b−,b+], we have

[a−,a+]
∗

=
[
(a−)

∗
,(a+)

∗]
[a−,a+] + [b−,b+] = [a−+b−,a+ +b+]
[a−,a+] · [b−,b+] = [a− ·b−,a+ ·b+] .
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Given a lattice (L ,∧,∨,⊥,>), an automorphism of L is a
function f :L →L such that

(i) f (>) = >
(ii) f (a∧b) = f (a)∧ f (b)

We denote by A (L ) the set of automorphism of L .
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Proposition. If f ,g are in A (L ), then:

(i) a≤ b⇒ f (a)≤ f (b)
(ii) f ∧g ∈A (L )
(iii) f ◦g ∈A (L )
(iv) Id∧ f ∧ f 2∧ f 3∧·· · ∈A (L )
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Proposition. If f ∗ = Id∧ f ∧ f 2∧ f 3∧ . . . , the set (A (L ),∧,◦,∗)
is a Kleene algebra.
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Kleene algebra (A (L ),∧,◦,∗)
Addition f ∧g
Product f ◦g

Associativity f ∧ (g ∧h) = (f ∧g)∧h
f ◦ (g ◦h) = (f ◦g)◦h

Commutativity f ∧g = f ∧g
Distributivity f ◦ (g ∧h) = (f ◦g)∧ (f ◦h)

(g ∧h)◦ f = (g ◦ f )∧ (h ◦ f )

zero f ∧>= f

One f ◦ Id = Id◦ f = f

Annihilation f ◦>=>
Idempotency f ∧ f = f

Partial order f ≥ g ⇔ f ∧g = g

Kleene star f ∗ = Id∧ f ∧ f 2∧ f 3∧ . . .
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Proof. For instance, to prove the distributivity
f ◦ (g ∧h) = (f ◦g)∧ (f ◦h) we proceed as follows:

f ◦ (g ∧h)(a) = f ◦ (g (a)∧h (a))
= (f ◦g)(a)∧ (f ◦h)(a) .
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We have (Id∧ f )∞ = f ∗, , i.e.,

Fix(f ∗) = {a | f ∗(a) = a}= Fix(Id∧ f )
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Factorization

We want to compute expressions, such as

f ∗ (a)∧ (g∗ (b)∨h∗ (a))∗ .

We have
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f ∗∧ f ∗ = f ∗

(f ∗)∗ = f ∗

(f ∗∧g∗)∗ = (f ∧g)∗

f ∗ ◦ (f ◦g∗)∗ = (f ∧g)∗

but we can do more.
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Assume for instance that we have to compute

f ∗(a)∧g∗(b).
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Given a lattice (L ,∧,◦) and an automorphism f ∈A (L ), we
want to compute f ∗(a) where a ∈L .
We consider a machine sublattice LM of L .
Since A (L ) is a Kleene algebra, we can de�ne intervals.
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An interval of A (L ) is a subset [f ] of A (L ) which can be
written as

[f ] = [f −, f +] =
{
f ∈A (L ) | f − ≤ f ≤ f +

}
where f −, f + belong to A (LM).
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We have

Fix
(
(f −)

∗)⊂LM ∩Fix(f ∗)⊂ Fix
(
(f +)

∗)
.
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Theorem. If a ∈ [a−,a+], where a−,a+ both belong to LM , then

(i) f ∗ (a) ∈
[
(f −)

∗
(a−) ,(f +)

∗
(a+)

]
(ii) f ∗ ◦ (f −)

∗
(a−) = (f −)

∗
(a−)

(iii) f ∗ (a)≤ (Id∧ f +)
i
(a+) , ∀i ≥ 0

Kleene algebra to compute with invariant sets of dynamical systems



Motivation
Kleene algebra

Dynamical systems

Fix
(
(f −)

∗)
and Fix

(
(f +)

∗)
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The powerset (P (Rn) ,∩,∪) is a lattice.

We want to �nd
−→
f in (A (P (Rn)) ,∩,◦,∗) such that

−→
f ∗ (A) =

{
a ∈ A |∀t ≥ 0,ϕγ (t,a) ∈ A

}
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The attractor associated to a is

Φγ (a) =
⋂
t≥0

ϕγ ([t,∞],a).
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If a ∈Y, the attractor inside Y is Φγ|Y (a) where the function γ|Y is
de�ned as

(γ|Y)(x) =

{
γ(x) if x ∈ Y
0 otherwize
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Given a paving P, we denote by P (x) the union of all [x] in P
containing x.
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Theorem. Consider the system S : ẋ(t) = γ(x(t)) and a paving P
of the state space,

−→
f (A) =

{
x |Φγ|P(x) (x)⊂ A

}
.

is an automorphism. Moreover,

−→
f ∗ (A) = Inv+(γ,A) =

{
a | ∀t ≥ 0,ϕγ (t,a) ∈ A

}
.
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The set-valued function

←−
f (A) =

{
x |Φ−γ|P(x) (x)⊂ A

}
is an automorphism. Moreover

←−
f ∗ (A) corresponds to the largest

negative invariant subset of A, i.e.,

←−
f ∗ (A) = Inv+(−γ,A) =

{
a | ∀t ≥ 0,ϕγ (−t,a) ∈ A

}
.
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Consider the system described by the state equation:{
ẋ1 = −x2
ẋ2 = −

(
1−x21

)
·x2 + x1.

To compute Inv+(−γ,A), we evaluate
[−→
f ∗
]

(A).
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The forward reach set of A is de�ned by

Forw(A) =
{
x | ∃t ≥ 0,ϕγ (−t,x) ∈ A

}
=

{
x | ∀t ≥ 0,ϕγ (−t,x) ∈ A

}
=

←−
f ∗
(
A
)
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In a Boolean lattice L , every a has a unique complement a, i.e.,
a∨a => and a∧a =⊥.
We have:

(i) a≤ b⇔ b ≤ a

(ii) a∨b = b∧a
(iii) a∧b = b∨a
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Two automorphisms f ,g are dual if(
Id∧ f ∧ f 2∧ f 3∧ . . .

)
(a) = (Id∨g ∨g2∨g3∨ . . .)(a).

and reciproquely.

The functions
←−
f ,
−→
f are dual.
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Finding the smallest �xed point
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Given a, we want to compute

x = a∨ f (a)∨ f 2 (a)∨ . . .

using duality in Boolean lattices.

x = a∨ f (a)∨ f 2 (a)∨ . . .
=

(
Id∧g ∧g2∧g3∧ . . .

)
(a)

= g∗ (a)

Therefore
x = g∗ (a).
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The backward reach set is:

Back(A) =
{
x | ∃t ≥ 0,ϕγ (t,x) ∈ A

}
=

{
x | ∀t ≥ 0,ϕγ (t,x) ∈ A

}
=

−→
f ∗
(
A
)
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Given two sets A,B, the between reach set is

Betw(A,B) =
{
x | ∃t1 ≥ 0,ϕγ (−t1,x) ∈ A,∃t2 ≥ 0,ϕγ (t,x) ∈ B

}
= Forw(A)∩Back(B)

=
←−
f ∗
(
A
)
∩
−→
f ∗
(
B
)
.
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Consider the system:

S : ẋ(t) = γ(x(t),u), u ∈ {0,1}

We want to compute the largest set X that can be reached from
the set A, i.e.,

X = (Forwu=1 ◦Forwu=0)∞ (A).
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It is the limit of

X(k +1) = Forwu=1 (Forwu=0 (X(k)))
X(0) = A

Thus
X(k +1) =

←−
f1
∗
(
Forwu=0 (X(k))

)
=

←−
f1
∗
(
←−
f0 ∗
(
X(k)

))
=

←−
f1
∗ ◦
←−
f0
∗
(
X(k)

)
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Therefore

X = lim
k→∞

X(k) =
(←−
f1
∗ ◦
←−
f0
∗
)∗ (

A
)

=
(←−
f1 ◦
←−
f0
)∗ (

A
)
.

Finally

X =
(←−
f1 ◦
←−
f0
)∗ (

A
)
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Path planning reach set
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We want the set X of all paths that start in A, avoid B and reach
C:

X = Betw
γ|B(A,C)

=

(
←−
f
γ|B
∗
(
A
)
∩
−→
f
γ|B
∗
(
C
))
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