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See the video of Wildburger : Introduction to Homology

https://youtu.be/ShWdSNJeuOg
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https://youtu.be/ShWdSNJeuOg
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Remark. a1 +a5 +a6 +a8 is a cycle

∂ (a1 +a5 +a6 +a8) = 0

To compute H1, we form the boundary equation:

a1 +a5 +a6 +a8 = 0
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We have
∂a1 = p1−p4
∂a2 = p2−p1
∂a3 = p4−p2
∂a4 = p1−p4
∂a5 = p2−p1
∂a6 = p3−p2
∂a7 = 0
∂a8 = p4−p3
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∂

 a1
...

a6


︸ ︷︷ ︸

a

=



1 0 0 −1
−1 1 0 0
0 −1 0 1
1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 0 0
0 0 −1 1


︸ ︷︷ ︸

B


p1
p2
p3
p4



Since ∂ is a group homomorphism,

∂ (n1a1 +n2a2 + · · ·+n6a6) = n1∂a1 +n2∂a2 + · · ·+n6∂a6

where ni ∈ N.
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Equivalently
∂ (nTa) = nT ·B ·p

The vector n generates a cycle if

∂ (nTa) = 0⇔ nT ·B = 0

To get the cycles, we have to compute the integer left kernel K of
B.
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https://sagecell.sagemath.org/
B = Matrix([[1,0,0,-1],[-1,1,0,0],[0,-1,0,1],[1,0,0,-1],[-1,1,0,0],[0,-
1,1,0],[0,0,0,0],[0,0,-1,1]])
B.left_kernel()
We get

K =


1 0 0 0 1 1 0 1
0 1 0 0 −1 0 0 0
0 0 1 0 0 −1 0 −1
0 0 0 1 1 1 0 1
0 0 0 0 0 0 1 0


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The generating cycle are:

a1 +a5 +a6 +a8
a2−a5
a3−a6−a8
a4 +a5 +a6 +a8
a7
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Following homology theory, we would say that
H1(X) = Z+Z+Z+Z+Z.
Now, what is the manifold X here ?
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Spanning tree method
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We read directly the generating cycle are:

a1 +a5 +a6 +a8
a2−a5
a3−a6−a8
a4 +a5 +a6 +a8
a7
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The number of generating cycles is
8 edges - (4 vertices−1 ) = 5
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Problem with this approach : We loose necessary features for the
winding numbers.
Is it a problem in our sonar context?
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Moreover, two cells are of interest : A1 and A1∪A2∪A3∪A4.
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We search for isowinding cycles.
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20 edges, 10 vertices
20− (10−1) = 11 independent cycles.
We do not need all 11 cycles for our sonar goal.
5 cycles are enough !
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Isowinding following
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Finally, we get 5 cycles.
The complexity is the method is O(n)
The decomposition into cycles is unique
Sets are adapted with our sonar exploration goal
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Sign method
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We have
w(ai+1) = w(ai)+ sign(p(ai))
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