Set-Membership Approach to the Kidnapped Robot Problem

Benoît Desrochers, Simon Lacroix and Luc Jaulin
IROS 2015, Hamburg.
Presentation available at https://youtu.be/oFvl0__NQpuc
1 OMNE
We consider the bounded-error estimation problem

\[f_i(p) \in [y_i] \]

where

\[[y_i] \subset \mathbb{R} \] is the \(i \)th collected interval data,
\[p \in \mathbb{R}^n \] is the parameter vector to be estimated,
\[p^* \] is the true value for \(p \).
The set of all p consistent with the ith measurement y_i is

$$\mathbb{P}_i = f_i^{-1}([y_i]).$$
Inlier or outlier?

$[y_i]$ is an inlier if $p^* \in \mathbb{P}_i$.
It is an outlier if $p^* \notin \mathbb{P}_i$.
OMNE (Outlier Minimal Number Estimator) [Walter and Lahanier, 1987]

\[
\lambda(p) = \text{card} \{ i \mid p \notin \mathbb{P}_i \}
\]

\[
q^* = \min_p \lambda(p)
\]

\[
\mathbb{P} = \lambda^{-1}(q^*).
\]
2 Set formulation
q-relaxed intersection
OMNE corresponds to

\[P_i = f_i^{-1}([y_i]) \]
\[P\{q\} = \bigcap P_i \]
\[q^* = \min\{q \mid P\{q\} \neq \emptyset\} \]
\[P = P\{q^*\}. \]

Outer GOMNE solves the problem with intervals and a local search.
3 Illustrative example
Range only localization with 3 landmarks using interval analysis.
\(\mathcal{P}_0, \mathcal{P}_1, \mathcal{P}_2 \)
4 \hspace{1em} \textbf{DEM}

The map is described by $M = (x_i, y_i, z_i), i \geq 1$.
Example of digital map
Aerial orthoimage built from UAV
Velodyne Lidar
Original range data
Down sampling
Extraction of vertical shapes
5 Localization
\[\mathbf{p} = (x, y, \psi) \]
\[\mathbb{P}_i = f_i^{-1}(M) \]
\[\mathbb{P}\{q\} = \bigcap \mathbb{P}_i \]
\[q^* = \min \{q \mid \mathbb{P}\{q\} \neq \emptyset\} \]
\[\mathbb{P} = \mathbb{P}\{q^*\}. \]
Contribution of the paper: We are able to compute the global minimum q^*. We used a Monte Carlo search to speed up the calculus.
Question?