Set-Membership Approach to the Kidnapped Robot Problem

Benoît Desrochers, Simon Lacroix and Luc Jaulin IROS 2015, Hamburg.

Presentation available at https://youtu.be/oFvl0_NQpuc

1 OMNE

We consider the bounded-error estimation problem

$$f_i(\mathbf{p}) \in [y_i]$$

where

 $[y_i] \subset \mathbb{R}$ is the *i*th collected interval data, $\mathbf{p} \in \mathbb{R}^n$ is the parameter vector to be estimated, \mathbf{p}^* is the true value for \mathbf{p} . The set of all ${f p}$ consistent with the ith measurement y_i is

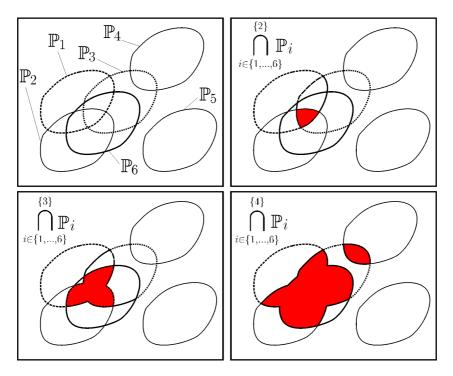
$$\mathbb{P}_i = f_i^{-1}\left([y_i]\right).$$

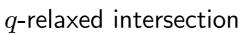
Inlier or outlier ?

[y_i] is an inlier if $\mathbf{p}^* \in \mathbb{P}_i$. It is an outlier if $\mathbf{p}^* \notin \mathbb{P}_i$. **OMNE** (Outlier Minimal Number Estimator) [Walter and Lahanier, 1987]

$$\lambda (\mathbf{p}) = \operatorname{card} \{i \mid \mathbf{p} \notin \mathbb{P}_i\}$$
$$q^* = \min_{\mathbf{p}} \lambda (\mathbf{p})$$
$$\mathbb{P} = \lambda^{-1} (q^*).$$

2 Set formulation





OMNE corresponds to

$$\mathbb{P}_{i} = f_{i}^{-1}([y_{i}])$$

$$\overset{\{q\}}{\prod} = \bigcap^{\{q\}} \mathbb{P}_{i}$$

$$q^{*} = \min \left\{ q \mid \mathbb{P}^{\{q\}} \neq \emptyset \right\}$$

$$\mathbb{P} = \mathbb{P}^{\{q^{*}\}}.$$

Outer GOMNE solves the problem with intervals and a local search.

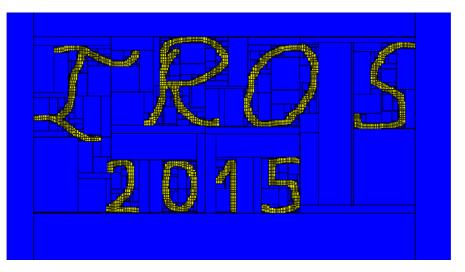
Illustrative example

Range only localization with 3 landmarks using interval analysis.

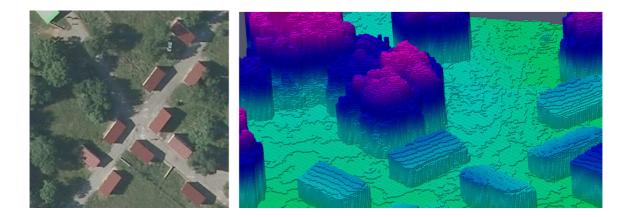
$\mathbb{P}^{\{0\}}, \mathbb{P}^{\{1\}}, \mathbb{P}^{\{2\}}$

4 DEM

The map is described by $\mathbb{M} = (x_i, y_i, z_i), i \geq 1$.



Example of digital map

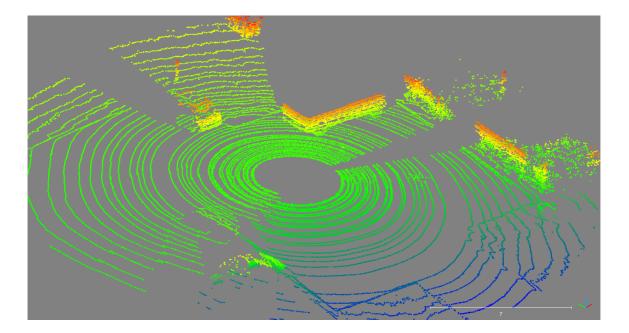


Aerial orthoimage built from UAV

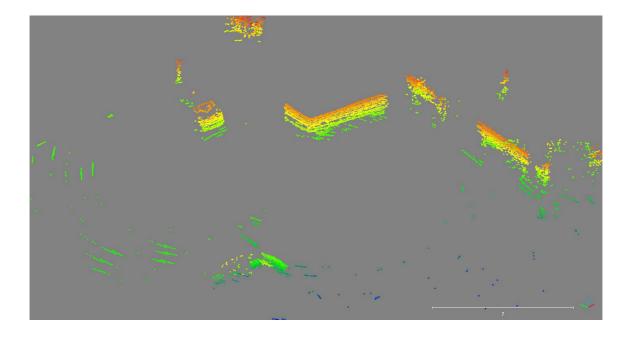
Velodyne Lidar



Original range data



Down sampling



Extraction of vertical shapes

Localization

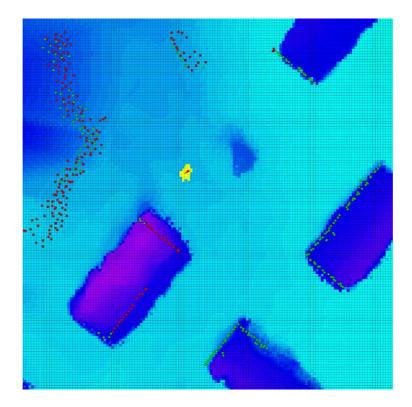
$$\mathbf{p} = (x, y, \psi)$$

$$\mathbb{P}_{i} = f_{i}^{-1} (\mathbb{M})$$

$$\stackrel{\{q\}}{=} \bigcap \mathbb{P}_{i}$$

$$q^{*} = \min \left\{ q \mid \mathbb{P}^{\{q\}} \neq \emptyset \right\}$$

$$\mathbb{P} = \mathbb{P}^{\{q^{*}\}}.$$



Contribution of the paper: We are able to compute the global minimum q^* .

We used a MonteCarlo search to speed up the calculus.

