> Chain of set inversion problems; Application to reachability analysis IFAC 2017, Toulouse, July 2017

> > B. Desrochers, L. Jaulin

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

Backward reach set

Thick set inversion Links and chains Test-cases for the backward reach set

Backward reach set

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

∃ ► < ∃ ►</p>

Given
$$\mathbf{x}(k+1) = \mathbf{f}(\mathbf{x}(k))$$
 and \mathbb{Y} . Set

$$\varphi^k = \underbrace{\mathbf{f} \circ \mathbf{f} \circ \cdots \circ \mathbf{f}}_{k \text{ times}},$$

For a given \bar{k} , compute

$$\mathbb{X}_0=(arphi^{ar k})^{-1}(\mathbb{Y}).$$

Equivalently, solve the chain

$$\mathbb{X}_0 = \mathbf{f}^{-1}(\mathbb{X}_1), \mathbb{X}_1 = \mathbf{f}^{-1}(\mathbb{X}_2), \dots, \mathbb{X}_{\bar{k}} = \mathbb{Y}$$

< ∃ >

Backward reach set

Thick set inversion Links and chains Test-cases for the backward reach set

Robust case

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

< 一型

문▶ ★ 문▶

æ

With an input vector $\mathbf{u}(k) \in [\mathbf{u}]$:

$$\mathbf{x}(k+1) = \mathbf{f}(\mathbf{x}(k), \mathbf{u}(k)).$$

The initial feasible set X_0 becomes also uncertain: it depends on $\mathbf{u}(k)$.

3.5

Define φ^k as:

$$\begin{array}{lll} \varphi^1({\sf x}(0),{\sf u}(0)) &=& {\sf f}({\sf x}(0),{\sf u}(0)) \\ \varphi^{k+1}({\sf x}(0),{\sf u}(0:k)) &=& {\sf f}(\varphi^k\left({\sf x}(0),{\sf u}(0:k-1)\right),{\sf u}(k)) \end{array}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Define

$$egin{aligned} \mathbb{X}_0^{\subset} &= & \{\mathbf{x}_0|orall \mathbf{u}(0:ar{k}-1)\in [\mathbf{u}]^{ar{k}}, oldsymbol{\phi}^{ar{k}}(\mathbf{x}(0),\mathbf{u}(0:ar{k}-1))\in \mathbb{Y}\}\ \mathbb{X}_0^{\supset} &= & \{\mathbf{x}_0|\exists \mathbf{u}(0:ar{k}-1)\in [\mathbf{u}]^{ar{k}}, oldsymbol{\phi}^{ar{k}}(\mathbf{x}(0),\mathbf{u}(0:ar{k}-1))\in \mathbb{Y}\}, \end{aligned}$$

we have

$$\mathbb{X}_0^{\subset} \subset \mathbb{X}_0 \subset \mathbb{X}_0^{\supset}.$$

The sets \mathbb{X}_0^{\subset} and \mathbb{X}_0^{\supset} are the minimal and the maximal backward reach set.

∃ ▶

Thick set inversion

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

Set inversion problem

$$\mathbb{X} = \mathbf{f}^{-1}(\mathbb{Y})$$

If $\mathbf{f_p}$ depends on a parameter vector $\mathbf{p} \in \mathbb{R}^q$.

$$\mathbb{X}^{\subset} \subset \mathbb{X}(\mathbf{p}) \subset \mathbb{X}^{\supset},$$

where

$$\begin{split} \mathbb{X}^{\subset} &= & \bigcap_{p \in [p]} f_p^{-1}(\mathbb{Y}) = \{ x | \forall p \in [p], f_p(x) \in \mathbb{Y} \} \\ \mathbb{X}^{\supset} &= & \bigcup_{p \in [p]} f_p^{-1}(\mathbb{Y}) = \{ x | \exists p \in [p], f_p(x) \in \mathbb{Y} \} \,. \end{split}$$

A B M A B M

The pair $[X] = [X^{\subset}, X^{\supset}]$ is a *thick set*. It partitions \mathbb{R}^n into three zones: the clear zone X^{\subset} , the penumbra $X^{\partial} = X^{\supset} \setminus X^{\subset}$ and the dark zone $\mathbb{R}^n \setminus X^{\supset}$.

Notation. The thick set inversion problem is denoted by

$$\llbracket \mathbb{X} \rrbracket = \mathsf{f}_{[\mathsf{p}]}^{-1}(\mathbb{Y}).$$

One box in the penumbra. Consider the thick set inversion problem $[\![\mathbb{X}]\!]=f_{[p]}^{-1}([y])$ where

$$\mathbf{f}_{\mathbf{p}}(\mathbf{x}) = \begin{pmatrix} p_1 & p_2 \\ p_3 & p_4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

∃ → < ∃ →</p>

Take $[\mathbf{p}] = [2,3] \times [2,5] \times [4,5] \times [-6,-1]$, $[\mathbf{y}] = [5,19] \times [-7,11]$ and $\mathbf{x} \in [\mathbf{x}] = [0,1] \times [2,3]$.

$$f^{-}(x,[p]) \in \left[f^{-}_{[p]}\right]([x]) = \begin{pmatrix} 2 \cdot [0,1] + 2 \cdot [2,3] \\ 4 \cdot [0,1] - 6 \cdot [2,3] \end{pmatrix} = \begin{pmatrix} [4,8] \\ [-18,-8] \end{pmatrix}$$

and

$$f^+(x,[p]) \in \left[f^+_{[p]}\right]([x]) = \begin{pmatrix} 3 \cdot [0,1] + 5 \cdot [2,3] \\ 5 \cdot [0,1] - 1 \cdot [2,3] \end{pmatrix} = \begin{pmatrix} [10,18] \\ [-3,3] \end{pmatrix}.$$

• = • • = •

We conclude that [x] is inside the penumbra

(日) (部) (E) (E) (E)

Links and chains

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

∃ ► < ∃ ►</p>

Links

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

æ

If, for a box $[\mathbf{p}] \subset \mathbb{R}^q$, the set

$$\mathbf{f}_{[\mathbf{p}]}(\mathbf{x}) = \mathbf{f}(\mathbf{x}, [\mathbf{p}]) = \{\mathbf{y} \in \mathbb{R}^{p} \, | \, \exists \mathbf{p} \in [\mathbf{p}] \, , \, \mathbf{y} = \mathbf{f}_{\mathbf{p}}(\mathbf{x}) \}$$

is a box, then f is said to be a *link*. Links will be composed later to build a *chain*.

Due to their specific box-shaped structure, link can be inverted with respect to x without bisections on the **p**-space.

Example. The function

$$f(\mathbf{x}, p) = 20e^{-x_1p} - 8e^{-x_2p}$$

is a scalar link function.

()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 (
 ()
 (
 ()
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (

Proposition. Consider ℓ scalar link functions, $f_i(\mathbf{x}, \mathbf{p}_i)$, where vectors $\{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_\ell\}$ are vector components of the vector \mathbf{p} . The function

$$\mathbf{f}(\mathbf{x},\mathbf{p}) = \begin{pmatrix} f_1(\mathbf{x},\mathbf{p}_1) \\ \vdots \\ f_{\ell}(\mathbf{x},\mathbf{p}_{\ell}) \end{pmatrix}$$

is a link.

Example. The function

$$\mathbf{f}(\mathbf{x},\mathbf{p}) = \begin{pmatrix} p_1 x_1 x_2 + p_1 p_2 \sin(x_2) \\ p_3 x_1 + p_3 p_4 \cos(x_1) x_2 \end{pmatrix}$$

is a link.

< 一型

• = • • = •

3

Consequence.

If $f_p(x)$ is a link, for all x, the set $f_{[p]}(x)$ is a box. If $x \in [x]$, the two bounds of the box $f_{[p]}(x)$ are included inside the boxes $\left[f_{[p]}^{-}\right]([x])$ and $\left[f_{[p]}^{+}\right]([x])$.

< ∃ → <

Parameter estimation with uncertain time measurement

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

Example. Let us estimate the parameters q_1 and q_2 of the model

$$y(\mathbf{q},t) = 20e^{-q_1t} - 8e^{-q_2t}.$$

We assume that 10 measurements y_i have been collected at time t_i .

i	$[t_i]$	$[y_i]$
1	[0.25, 1.25]	[2.7,12.1]
2	[1, 2]	[1.04,7.14]
3	[1.75, 2.75]	[-0.13,3.61]
4	[2.5, 3.5]	[-0.95,1.15]
5	[5.5, 6.5]	[-4.85,-0.29]
6	[8.5, 9.5]	[-5.06,-0.36]
7	[12.5, 13.5]	[-4.1,-0.04]
8	[16.5, 17.5]	[-3.16,0.3]
9	[20.5, 21.5]	[-2.5,0.51]
10	[24.5, 25.5]	[-2,0.6]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Data $([t_i], [y_i])$

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

< 一型

< ∃→

We are interested by the thick set

$$\mathbb{Q} = \left\{ \mathbf{q} \in \mathbb{R}^2 | \forall i, y(\mathbf{q}, t_i) \in [y_i] \right\}.$$

If we set

$$\begin{aligned} \mathbf{f}_{[\mathbf{t}]}(\mathbf{q}) &= \begin{pmatrix} y(\mathbf{q},[t_1]) \\ \vdots \\ y(\mathbf{q},[t_{10}]) \end{pmatrix} \\ [\mathbf{y}] &= [y_{10}] \times \cdots \times [y_{10}] \\ [\mathbf{t}] &= [t_1] \times \cdots \times [t_{10}] \end{aligned}$$

then, we have

$$[\![\mathbb{Q}]\!] = f_{[t]}^{-1}([y]).$$

Thick set $\llbracket \mathbb{Q} \rrbracket$

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

æ

Chain

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

æ

Chain. The function $\varphi_{\mathbf{p}}(\mathbf{x})$ is a *chain* if it can be written as

$$\varphi_{\mathbf{p}}(\mathbf{x}) = \mathbf{f}_{\mathbf{p}_{\ell}}^{\ell} \circ \cdots \circ \mathbf{f}_{\mathbf{p}_{2}}^{2} \circ \mathbf{f}_{\mathbf{p}_{1}}^{1}(\mathbf{x})$$

where $\{p_1,p_2,\ldots,p_\ell\}$ are vector components of p and the $f_{p_k}^k$ are links.

Consequence: No dependency effect and no wrapping effect.

Example. The function

is not a link. Now, if we define

$$\mathbf{f}_{\mathbf{p}_1}^1(\mathbf{x}) = \begin{pmatrix} p_1 e^{x_2} + p_1 p_2 x_1 x_2 \\ p_3 x_1^2 \end{pmatrix}$$
$$\mathbf{f}_{\mathbf{p}_2}^2(\mathbf{z}) = \begin{pmatrix} sin(z_2) + p_4 \\ \frac{p_5 z_1}{z_2} \end{pmatrix}$$

with $\mathbf{p}_1=(p_1,p_2,p_3)$ and $\mathbf{p}_2=(p_4,p_5)$ then, we have

$$\varphi_{\mathbf{p}}(\mathbf{x}) = \mathbf{f}_{\mathbf{p}_2}^2 \circ \mathbf{f}_{\mathbf{p}_1}^1(\mathbf{x}).$$

Since both $f_{p_2}^2, f_{p_1}^1$ are links, $\varphi_p(x)$ is a chain.

Test-cases for the backward reach set

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

-

Test-case 1: linear system

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

Consider the linear system

$$\mathsf{x}(k+1) = \mathsf{A} \cdot \mathsf{x}(k)$$

where

$$\mathbf{A}(k) \in \left(\begin{array}{cc} [2.5,3] & [2,3] \\ [4,4.5] & [-3,-2] \end{array}\right)$$

plays the role of **p**.

We want to reach the target

$$\mathbb{Y} = [4, 20] \times [-8, 12]$$

at time $\bar{k} = 3$.

∃ ▶

 $[\![\mathbb{X}]\!](3) = \mathbb{Y}$ is thin.

・ロン ・部と ・ヨン ・ヨン

Ξ.

 $[\![\mathbb{X}]\!](2) = \mathbf{f}_{[\mathbf{A}]}^{-1}([\![\mathbb{X}]\!](3))$

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

< 注 → < 注 →

æ

 $[\![\mathbb{X}]\!](1) = \mathsf{f}_{[\mathsf{A}]}^{-1}([\![\mathbb{X}]\!](2))$

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

э

< ∃ >

 $[\![\mathbb{X}]\!](0) = \mathsf{f}_{[\mathsf{A}]}^{-1}([\![\mathbb{X}]\!](1))$

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

< ∃→

Test-case 2: nonlinear system

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

Nonlinear system

$$\left(\begin{array}{c} x_1(k+1)\\ x_2(k+1) \end{array}\right) = \left(\begin{array}{c} x_1(k) + x_2^2(k) \cdot u_1(k)\\ \frac{1}{2} \cdot x_1(k) \cdot x_2(k) + u_2(k) \end{array}\right)$$

with $u_1 \in [1,2]$ and $u_2 \in [-2,-1]$. The set \mathbb{Y} is assumed to be a centred disk which has to be reached at time $\overline{k} = 3$.

 $[\![\mathbb{X}]\!](3) = \mathbb{Y}$ is thin.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $[\![\mathbb{X}]\!](2) = \mathbf{f}_{[\mathbf{A}]}^{-1}([\![\mathbb{X}]\!](3))$

• = • • = •

 $[\![\mathbb{X}]\!](1) = \mathsf{f}_{[\mathsf{A}]}^{-1}([\![\mathbb{X}]\!](2))$

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

э

• = • • = •

 $[\![\mathbb{X}]\!](0) = \mathsf{f}_{[\mathsf{A}]}^{-1}([\![\mathbb{X}]\!](1))$

B. Desrochers, L. Jaulin Chain of set inversion problems; Application to reachabilit

< ∃ → <