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1 Probabilistic-set approach



Bounded-error estimation

y = ψ (p) + e,

where

e ∈ E ⊂ Rm is the error vector,

y ∈ Rm is the collected data vector,

p ∈ Rn is the parameter vector to be estimated.



Or equivalently

e = y −ψ (p) = fy (p) ,



The posterior feasible set for the parameters is

P = f−1y (E) .



Probabilistic set approach. We decompose the error

space into two subsets: E on which we bet e will belong

and E. We set

π = Pr (e ∈ E)
The event e ∈ E is considered as rare, i.e., π ≃ 1.



Once y is collected, we compute

P = f−1y (E) .

If P �= ∅, we conclude that p ∈ P with a prior probability
of π.

If P = ∅, than we conclude the rare event e ∈ E occurred.









Example. The model is described by y = p2 + e, i.e.,

e = y − p2 = fy (p) .
Assume that Πe : N (0, 1) . If E = [−6, 6] then,
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de ≃ 1.97×10−9.



If we collect y = 10, we have

P = f−1y (E) = f−1y ([−6, 6])
=

�
10− [−6, 6] =

�
[4, 16] = [−4,−2] ∪ [2, 4],

with a prior probability of 1− 1.97× 10−9.



If we collect y = −10, we get P = ∅. We conclude that
the rare event e ∈ E occurred.



2 Robust regression



Consider the error model
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The data yi is an inlier if ei ∈ [ei] and an outlier otherwise.
We assume that

∀i, Pr (ei ∈ [ei]) = π
and that all ei’s are independent.



Equivalently,






y1 − ψ1 (p) ∈ [e1] with a probability π
... ...

ym − ψm (p) ∈ [em] with a probability π



The probability of having k inliers is

m!

k! (m− k)!π
k. (1− π)m−k .



The probability of having strictly more than q outliers is

thus

γ (q,m, π)
def
=
m−q−1�

k=0

m!

k! (m− k)!π
k. (1− π)m−k .



Denote by E{q} the set of all e ∈ Rm consistent with at

least m− q error intervals [ei].

For m = 3, we have

E{0} = [e1]× [e2]× [e3]
E{1} = ([e1] ∩ [e2]) ∪ ([e2] ∩ [e3]) ∪ ([e1] ∩ [e3])
E{2} = [e1] ∪ [e2] ∪ [e3]
E{3} = R3.



Define

P
{q} = f−1y

�
E
{q}� .

We have

prob
�
p ∈ P{q}

�
= 1− γ (q,m, π)

prob
�
p ∈ P{q}

�
= γ (q,m, π) .

Thus P{q} is the inverse of E{q} and inner/outer approxi-
mations can thus be found.



3 Relaxed intersection



q-relaxed intersection



P
{q} = f−1y

�
E
{q}� =

{q}�

i∈{1,...,m}
f−1yi ([ei]) .



Proposition (new). We have

P{q} =
{m−q−1}�

f−1yi
�
[ei]

�
.

This proposition allows to obtain an inner approximation

of P{q}.



4 Application to localization



A robot measures distances to three beacons.

beacon xi yi [di]
1 1 3 [1, 2]
2 3 1 [2, 3]
3 −1 −1 [3, 4]

The intervals [di] contain the true distance with a proba-

bility of π = 0.9.



The feasible sets associated to each data is

Pi =
�
p ∈ R2 |

�
(p1 − xi)2 + (p2 − yi)2 − di ∈ [−0.5, 0.5]

�
,

where d1 = 1.5, d2 = 2.5, d3 = 3.5.



prob
�
p ∈ P{0}

�
= 0.729

prob
�
p ∈ P{1}

�
= 0.972

prob
�
p ∈ P{2}

�
= 0.999



Probabilistic sets P{0},P{1},P{2}.



5 With real data



Robot equipped with a laser

rangefinder and a compass.



143 distances collected by the rangefinder ±10cm



For q = 16,m = 143, π = 0.95, the probability of being

wrong is

α = γ (q,m, π) = 8.46× 10−4.



P{16} contains p∗ with a probability 1− α = 0.99915.


