Inner and Outer Approximations of Probabilistic Sets

L. Jaulin, A. Stancu, B. Desrochers ENSTA-Bretagne, Lab-STICC, IHSEV, OSM, Brest

July 15 tuesday, 2014

ICVRAM'14, Liverpool, UK.

1 Probabilistic-set approach

Bounded-error estimation

$$\mathbf{y} = \boldsymbol{\psi}\left(\mathbf{p}\right) + \mathbf{e},$$

where

 $\mathbf{e} \in \mathbb{E} \subset \mathbb{R}^m$ is the error vector,

 $\mathbf{y} \in \mathbb{R}^m$ is the collected data vector,

 $\mathbf{p} \in \mathbb{R}^n$ is the parameter vector to be estimated.

Or equivalently

$$\mathbf{e}=\mathbf{y}-\mathbf{\psi}\left(\mathbf{p}
ight)=\mathbf{f_{y}}\left(\mathbf{p}
ight),$$

The posterior feasible set for the parameters is

$$\mathbb{P}=\mathrm{f}_{\mathrm{y}}^{-1}\left(\mathbb{E}
ight).$$

Probabilistic set approach. We decompose the error space into two subsets: \mathbb{E} on which we bet e will belong and $\overline{\mathbb{E}}$. We set

$$\pi = \mathsf{Pr} \, (\mathbf{e} \in \mathbb{E})$$

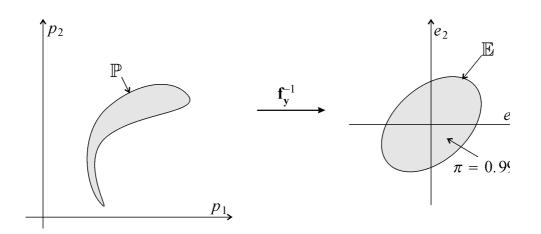
The event $\mathbf{e} \in \overline{\mathbb{E}}$ is considered as *rare*, i.e., $\pi \simeq 1$.

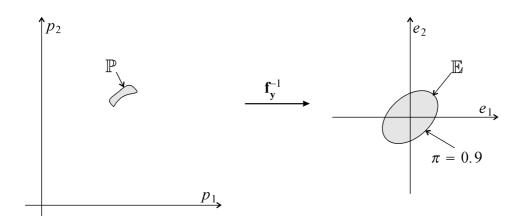
Once ${\bf y}$ is collected, we compute

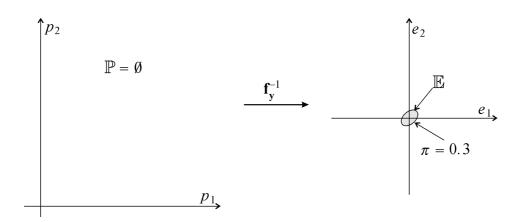
$$\mathbb{P}=\mathrm{f}_{\mathrm{y}}^{-1}\left(\mathbb{E}
ight).$$

If $\mathbb{P} \neq \emptyset$, we conclude that $\mathbf{p} \in \mathbb{P}$ with a prior probability of π .

If $\mathbb{P} = \emptyset$, than we conclude the rare event $\mathbf{e} \in \overline{\mathbb{E}}$ occurred.







Example. The model is described by $y = p^2 + e$, *i.e.*,

$$e = y - p^2 = f_y(p).$$

Assume that $\Pi_e: \mathcal{N}(0,1)$. If $\mathbb{E} = [-6,6]$ then,

$$\Pr\left(e \in \overline{\mathbb{E}}\right) = -\frac{1}{\sqrt{2\pi}} \int_{-6}^{6} \exp\left(-\frac{e^2}{2}\right) de \simeq 1.97 \times 10^{-9}$$

If we collect y = 10, we have

$$\mathbb{P} = f_y^{-1}(\mathbb{E}) = f_y^{-1}([-6, 6]) \\ = \sqrt{10 - [-6, 6]} = \sqrt{[4, 16]} = [-4, -2] \cup [2, 4],$$

with a prior probability of $1-1.97 imes10^{-9}.$

If we collect y = -10, we get $\mathbb{P} = \emptyset$. We conclude that the rare event $\mathbf{e} \in \overline{\mathbb{E}}$ occurred.

2 Robust regression

Consider the error model

$$\underbrace{\begin{pmatrix} e_{1} \\ \vdots \\ e_{m} \end{pmatrix}}_{=\mathbf{e}} = \underbrace{\begin{pmatrix} y_{1} - \psi_{1}(\mathbf{p}) \\ \vdots \\ y_{m} - \psi_{m}(\mathbf{p}) \end{pmatrix}}_{=\mathbf{f}_{\mathbf{y}}(\mathbf{p})}$$

The data y_i is an *inlier* if $e_i \in [e_i]$ and an *outlier* otherwise. We assume that

$$orall i, \; \mathsf{Pr}\left(e_{i} \in \llbracket e_{i}
ight]
ight) = \pi$$

and that all e_i 's are independent.

Equivalently,

$$\begin{cases} y_1 - \psi_1(\mathbf{p}) \in [e_1] & \text{with a probability } \pi \\ \vdots & \vdots \\ y_m - \psi_m(\mathbf{p}) \in [e_m] & \text{with a probability } \pi \end{cases}$$

The probability of having k inliers is

$$rac{m!}{k!\,(m-k)!}\pi^k.\,(1-\pi)^{m-k}\,.$$

The probability of having strictly more than \boldsymbol{q} outliers is thus

$$\gamma(q, m, \pi) \stackrel{\text{def}}{=} \sum_{k=0}^{m-q-1} \frac{m!}{k! (m-k)!} \pi^k (1-\pi)^{m-k}.$$

Denote by $\mathbb{E}^{\{q\}}$ the set of all $\mathbf{e} \in \mathbb{R}^m$ consistent with at least m-q error intervals $[e_i]$.

```
For m = 3, we have
```

```
 \mathbb{E}^{\{0\}} = [e_1] \times [e_2] \times [e_3] 

 \mathbb{E}^{\{1\}} = ([e_1] \cap [e_2]) \cup ([e_2] \cap [e_3]) \cup ([e_1] \cap [e_3]) 

 \mathbb{E}^{\{2\}} = [e_1] \cup [e_2] \cup [e_3] 

 \mathbb{E}^{\{3\}} = \mathbb{R}^3.
```

Define

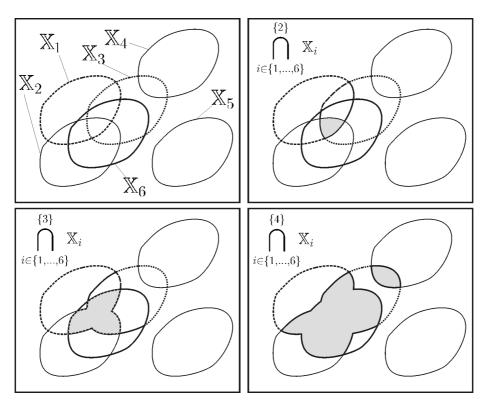
$$\mathbb{P}^{\{q\}} = \mathbf{f}_{\mathbf{y}}^{-1}\left(\mathbb{E}^{\{q\}}
ight).$$

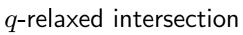
We have

$$\begin{array}{l} \operatorname{prob}\left(\mathbf{p}\in\mathbb{P}^{\{q\}}\right)=\mathbf{1}-\gamma\left(q,m,\pi\right)\\ \operatorname{prob}\left(\mathbf{p}\in\overline{\mathbb{P}^{\{q\}}}\right)=\gamma\left(q,m,\pi\right). \end{array}$$

Thus $\mathbb{P}^{\{q\}}$ is the inverse of $\mathbb{E}^{\{q\}}$ and inner/outer approximations can thus be found.

Relaxed intersection





$$\mathbb{P}^{\{q\}} = \mathbf{f}_{\mathbf{y}}^{-1} \left(\mathbb{E}^{\{q\}} \right) = \bigcap_{i \in \{1, \dots, m\}}^{\{q\}} f_{y_i}^{-1} \left([e_i] \right).$$

Proposition (new). We have

$$\overline{\mathbb{P}^{\{q\}}} = \bigcap^{\{m-q-1\}} f_{y_i}^{-1}\left(\overline{[e_i]}\right).$$

This proposition allows to obtain an inner approximation of $\mathbb{P}^{\{q\}}.$

4 Application to localization

A robot measures distances to three beacons.

beacon	x_i	y_i	$[d_i]$
1	1	3	[1,2]
2	3	1	[2, 3]
3	-1	-1	[3, 4]

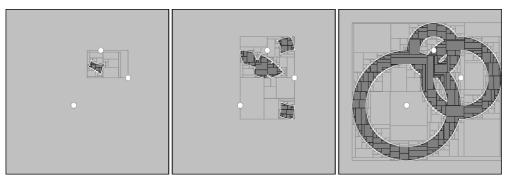
The intervals $[d_i]$ contain the true distance with a probability of $\pi = 0.9$.

The feasible sets associated to each data is

$$\mathbb{P}_i = \left\{ \mathbf{p} \in \mathbb{R}^2 \mid \sqrt{(p_1 - x_i)^2 + (p_2 - y_i)^2} - d_i \in [-0.5, 0.5] \right\},$$

where $d_1 = 1.5, d_2 = 2.5, d_3 = 3.5.$

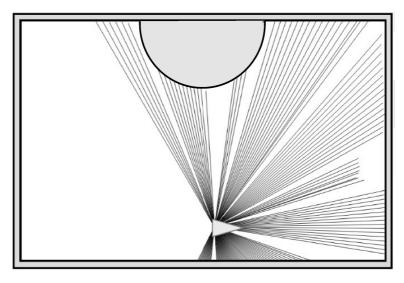
$$egin{aligned} \mathsf{prob}\left(\mathbf{p}\in\mathbb{P}^{\{0\}}
ight)&=&0.729\ \mathsf{prob}\left(\mathbf{p}\in\mathbb{P}^{\{1\}}
ight)&=&0.972\ \mathsf{prob}\left(\mathbf{p}\in\mathbb{P}^{\{2\}}
ight)&=&0.999 \end{aligned}$$



Probabilistic sets $\mathbb{P}^{\{0\}}, \mathbb{P}^{\{1\}}, \mathbb{P}^{\{2\}}$.

5 With real data

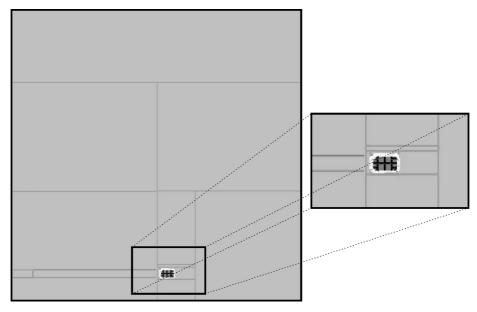
Robot equipped with a laser rangefinder and a compass.



143 distances collected by the rangefinder $\pm 10 cm$

For q= 16, m= 143, $\pi=$ 0.95, the probability of being wrong is

$$\alpha = \gamma (q, m, \pi) = 8.46 \times 10^{-4}.$$



 $\mathbb{P}^{\{16\}}$ contains \mathbf{p}^* with a probability $1 - \alpha = 0.99915$.