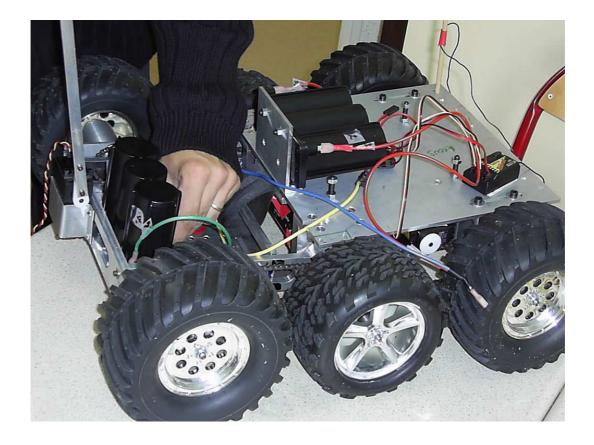
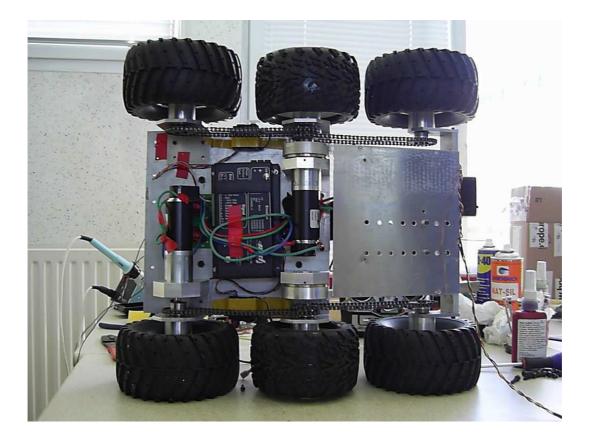
Control of a wheeled stair-climbing robot using linear programming

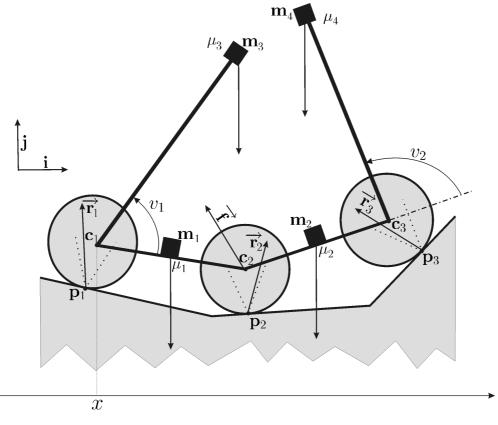
L. Jaulin, ENSIETA, E3I2, Brest April 12, 2007.

1 ETAS competition

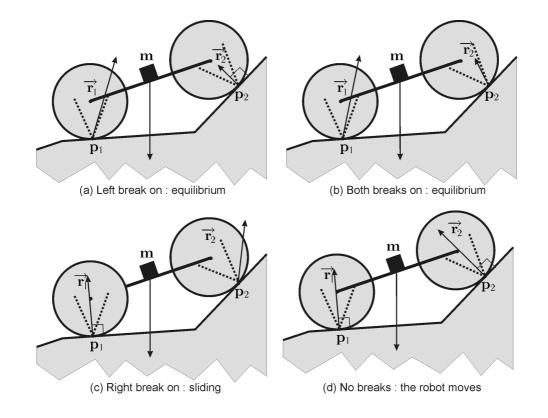




2 Idea



Mass transfer system to avoid any sliding



For (a), (b), (c) the fundamental principle of static is satisfied

3 Formalization

Consider the class of constrained dynamic robots

 $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$ $\mathbf{g}(\mathbf{x}(t), \mathbf{v}(t)) \leq \mathbf{0}.$

 $\mathbf{u}(t)$ is the evolution input vector, $\mathbf{x}(t)$ is the state vector, $\mathbf{v}(t)$ is the viable input vector.

- If $g(x, v) = A(x).v + b(x) \le 0$ then a simplex method can find a feasible v.
- Otherwise, interval methods can be used to find a feasible **v**.

4 Interval constraint propagation

4.1 Constraint contraction

Let x, y, z be 3 variables such that

 $x\in [-\infty,5], \ y\in [-\infty,4], \ z\in [6,\infty], \quad z=x+y.$ We have

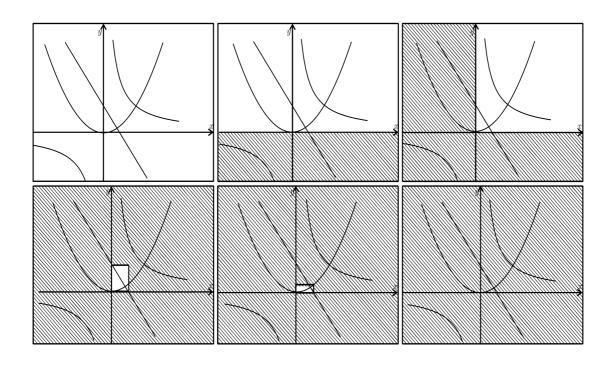
$$\begin{array}{lll} z = x + y \Rightarrow & z \in & [6, \infty] \cap ([-\infty, 5] + [-\infty, 4]) \\ & = [6, \infty] \cap [-\infty, 9] = [6, 9]. \\ x = z - y \Rightarrow & x \in & [-\infty, 5] \cap ([6, \infty] - [-\infty, 4]) \\ & = [-\infty, 5] \cap [2, \infty] = [2, 5]. \\ y = z - x \Rightarrow & y \in & [-\infty, 4] \cap ([6, \infty] - [-\infty, 5]) \\ & = [-\infty, 4] \cap [1, \infty] = [1, 4]. \end{array}$$

4.2 Constraint propagation

Consider the three constraints

$$\begin{cases} (C_1): & y = x^2 \\ (C_2): & xy = 1 \\ (C_3): & y = -2x + 1 \end{cases}$$

To each variable we assign the domain $[-\infty,\infty]$. Then, we contract all constraints until equilibrium.



4.3 Decomposition

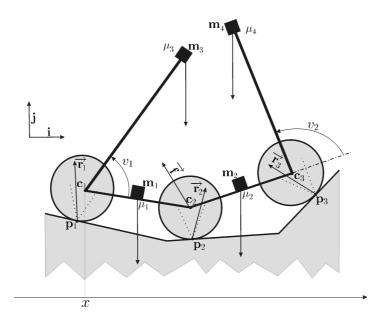
For more complex constraints, we have to perform a decomposition. For instance

$$egin{aligned} x+\sin(y)-xz &\leq 0, \ x\in [-1,1], y\in [-1,1], z\in [-1,1] \end{aligned}$$

can be decomposed into

$$\left\{ egin{array}{ll} a= {
m sin}(y) & x\in [-1,1] & a\in [-\infty,\infty] \ b=x+a & y\in [-1,1] & b\in [-\infty,\infty] \ c=xz & , & z\in [-1,1] & c\in [-\infty,\infty] \ b-c=d & & d\in [-\infty,0] \end{array}
ight.$$

5 Resolution of the mass transfer problem



 $\dot{x} = u,$ $\mathbf{g}(x, v_1, v_2) \leq \mathbf{0}.$

5.1 Fundamental principle of static

When the robot does not move,

$$\begin{cases} -\overrightarrow{\mathbf{p}_{1}\mathbf{m}_{1}} \wedge \mu_{1}\mathbf{j} + \overrightarrow{\mathbf{p}_{1}\mathbf{c}_{2}} \wedge \overrightarrow{\mathbf{f}} - \overrightarrow{\mathbf{p}_{1}\mathbf{m}_{3}} \wedge \mu_{3}\mathbf{j} = 0 \\ \overrightarrow{\mathbf{p}_{2}\mathbf{m}_{2}} \wedge \mu_{2}\mathbf{j} + \overrightarrow{\mathbf{p}_{2}\mathbf{c}_{2}} \wedge \overrightarrow{\mathbf{f}} - \overrightarrow{\mathbf{p}_{2}\mathbf{p}_{3}} \wedge \overrightarrow{\mathbf{r}}_{3} \\ \overrightarrow{\mathbf{p}_{2}\mathbf{m}_{4}} \wedge \mu_{4}\mathbf{j} = 0 \\ \overrightarrow{\mathbf{r}_{1}} - (\mu_{1} + \mu_{3})\mathbf{j} + \overrightarrow{\mathbf{f}} = 0 \\ \overrightarrow{\mathbf{r}_{2}} - \overrightarrow{\mathbf{f}} - (\mu_{2} + \mu_{4})\mathbf{j} + \overrightarrow{\mathbf{r}}_{3} = 0 \end{cases}$$

A scalar decomposition yields

$$-\mu_{1}(m_{1x} - p_{1x}) + (c_{2x} - p_{1x})f_{y} - (c_{2y} - p_{1y})f_{x} - \mu_{3}(m_{3x} - p_{1x}) = 0 \mu_{2}(m_{2x} - p_{2x}) + (c_{2x} - p_{2x})f_{y} - (c_{2y} - p_{2y})f_{x} - (p_{3x} - p_{2x})r_{3y} + (p_{3y} - p_{2y})r_{3x} + \mu_{4}(m_{4x} - p_{2x}) = 0 r_{1x} + f_{x} = 0 r_{1y} - \mu_{1} - \mu_{3} + f_{y} = 0 r_{2x} - f_{x} + r_{3x} = 0 r_{2y} - f_{y} - \mu_{2} - \mu_{4} + r_{3y} = 0$$

This system can be written into a matrix form as

$$\mathbf{A}_1(x).\mathbf{y} = \mathbf{b}_1(x),$$

where

$$\mathbf{A}_{1}(x) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & p_{2y} - p_{3y} & p_{3x} - p_{2x} \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ p_{1y} - c_{2y} & c_{2x} - p_{1x} & -\mu_{3} & 0 \\ c_{2y} - p_{2y} & p_{2x} - c_{2x} & 0 & -\mu_{4} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

$$\mathbf{b}_{1}(x) = \begin{pmatrix} \mu_{1} (m_{1x} - p_{1x}) - \mu_{3} p_{1x} \\ \mu_{2} (m_{2x} - p_{2x}) - \mu_{4} p_{2x} \\ 0 \\ \mu_{1} + \mu_{3} \\ 0 \\ \mu_{2} + \mu_{4} \end{pmatrix}$$

 $\quad \text{and} \quad$

$$\mathbf{y} = (r_{1x}, r_{1y}, r_{2x}, r_{2y}, r_{3x}, r_{3y}, f_x, f_y, m_{3x}, m_{4x})^{\mathsf{T}}.$$

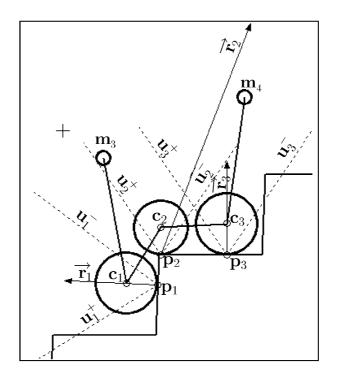
We have 10 unknowns for 6 equations: our robot has a second order hyperstatic equilibrium.

5.2 Non-sliding conditions

None of the wheels will slide if all $\overrightarrow{\mathbf{r}}_i$ belong to their Coulomb cone:

 $\mathbf{A}_{2}(x).\mathbf{y}\leq\mathbf{0},$

where $A_2(x)$ is given by



A configuration where the middle wheel is almost sliding.

5.3 Collision avoidance

The pendulums should not intersect the ground or the robot itself

5.4 Recapitulation of the constraints

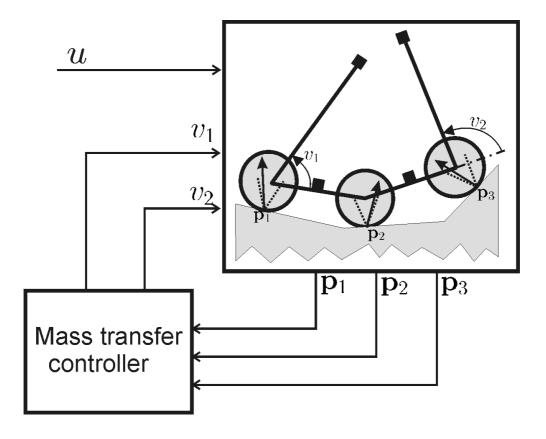
Our robot can be described by

(i)
$$\dot{x} = u$$

(ii) $g(x,v_1,v_2) \leq 0$

where (ii) is equivalent to

$$\exists \mathbf{y} = \begin{pmatrix} r_{1x}, r_{1y} \\ r_{2x}, r_{2y} \\ r_{3x}, r_{3y} \\ f_x, f_y \\ m_{3x}, m_{4x} \end{pmatrix}, \begin{cases} \mathbf{A}_1(x) \cdot \mathbf{y} = \mathbf{b}_1(x) \\ \mathbf{A}_2(x) \cdot \mathbf{y} \leq \mathbf{0} \\ \mathbf{A}_3(x) \cdot \mathbf{y} \leq \mathbf{0}_3(x) \end{cases}$$



6 Simulation

Angle friction coefficient: $\phi = 0.54$ Radius of the wheels: $\rho_1 = 85$ mm, $\rho_2 = 75$ mm, $\rho_3 = 85$ mm Lengths of the pendulums: $\ell_1 = \ell_2 = 350$ mm

Weights of the platforms: $\mu_1 = \mu_2 = 70$ N

Weights and the pendulum masses: $\mu_3 = \mu_4 = 20$ N.

Height and the width of the stairs: 220mm and 280mm

