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1 ETAS competition

















2 Idea



Mass transfer system to avoid any sliding



For (a), (b), (c) the fundamental principle of static is satisfied



3 Formalization

Consider the class of constrained dynamic robots

ẋ(t) = f(x(t),u(t))
g(x(t),v(t)) ≤ 0.

u(t) is the evolution input vector,

x(t) is the state vector,

v(t) is the viable input vector.



• If g(x,v) = A(x).v + b(x) ≤ 0 then a simplex method

can find a feasible v.

• Otherwise, interval methods can be used to find a fea-

sible v.



4 Interval constraint propagation



4.1 Constraint contraction

Let x, y, z be 3 variables such that

x ∈ [−∞, 5], y ∈ [−∞, 4], z ∈ [6,∞], z = x+ y.

We have

z = x+ y ⇒ z ∈ [6,∞] ∩ ([−∞, 5] + [−∞, 4])
= [6,∞] ∩ [−∞, 9] = [6, 9].

x = z − y ⇒ x ∈ [−∞, 5] ∩ ([6,∞]− [−∞, 4])
= [−∞, 5] ∩ [2,∞] = [2, 5].

y = z − x⇒ y ∈ [−∞, 4] ∩ ([6,∞]− [−∞, 5])
= [−∞, 4] ∩ [1,∞] = [1, 4].



4.2 Constraint propagation

Consider the three constraints





(C1) : y = x2

(C2) : xy = 1
(C3) : y = −2x+ 1

To each variable we assign the domain [−∞,∞]. Then,

we contract all constraints until equilibrium.





(C1)⇒ y ∈ [−∞,∞]2 = [0,∞]
(C2)⇒ x ∈ 1/[0,∞] = [0,∞]
(C3)⇒ y ∈ [0,∞] ∩ ((−2) .[0,∞] + 1)

= [0,∞] ∩ ([−∞, 1]) = [0, 1]

x ∈ [0,∞] ∩ (−[0, 1]/2 + 1/2) = [0, 12]

(C1)⇒ y ∈ [0, 1] ∩ [0, 1/2]2 = [0, 1/4]
(C2)⇒ x ∈ [0, 1/2] ∩ 1/[0, 1/4] = ∅

y ∈ [0, 1/4] ∩ 1/∅ = ∅



4.3 Decomposition

For more complex constraints, we have to perform a de-

composition. For instance

x+ sin(y)− xz ≤ 0,
x ∈ [−1, 1], y ∈ [−1, 1], z ∈ [−1, 1]

can be decomposed into





a = sin(y)
b = x+ a
c = xz
b− c = d

,

x ∈ [−1, 1] a ∈ [−∞,∞]
y ∈ [−1, 1] b ∈ [−∞,∞]
z ∈ [−1, 1] c ∈ [−∞,∞]

d ∈ [−∞, 0]



5 Resolution of the mass transfer

problem



ẋ = u,
g(x, v1, v2) ≤ 0.



5.1 Fundamental principle of static

When the robot does not move,





−−−−→p1m1 ∧ µ1j+
−−→p1c2 ∧

−→
f −−−−→p1m3 ∧ µ3j = 0

−−−→p2m2 ∧ µ2j+
−−→p2c2 ∧

−→
f −−−→p2p3 ∧

−→r 3
−−−→p2m4 ∧ µ4j = 0

−→r 1 − (µ1 + µ3)j+
−→
f = 0

−→r 2 −
−→
f − (µ2 + µ4)j+

−→r 3 = 0



A scalar decomposition yields





−µ1 (m1x − p1x) + (c2x − p1x) fy
−
(
c2y − p1y

)
fx − µ3 (m3x − p1x) = 0

µ2 (m2x − p2x) + (c2x − p2x) fy
−
(
c2y − p2y

)
fx− (p3x − p2x) r3y

+
(
p3y − p2y

)
r3x + µ4 (m4x − p2x) = 0

r1x + fx = 0
r1y − µ1 − µ3 + fy = 0
r2x − fx + r3x = 0

r2y − fy − µ2 − µ4 + r3y = 0



This system can be written into a matrix form as

A1(x).y = b1(x),

where

A1(x) =






0 0 0 0 0 0
0 0 0 0 p2y−p3y p3x−p2x
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1
p1y−c2y c2x−p1x −µ3 0
c2y−p2y p2x−c2x 0 −µ4

1 0 0 0
0 1 0 0
−1 0 0 0
0 −1 0 0








b1(x) =






µ1 (m1x − p1x)− µ3p1x
µ2 (m2x − p2x)− µ4p2x

0
µ1 + µ3
0

µ2 + µ4






and

y =
(
r1x, r1y, r2x, r2y, r3x, r3y, fx, fy,m3x,m4x

)T
.



We have 10 unknowns for 6 equations: our robot has a

second order hyperstatic equilibrium.



5.2 Non-sliding conditions

None of the wheels will slide if all −→r i belong to their

Coulomb cone:

A2(x).y ≤ 0,

where A2(x) is given by





u−1y −u−1x 0 0

−u+1y u+1x 0 0

0 0 u−2y −u−2x
0 0 −u+2y u+2x
0 0 0 0
0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

u−3y −u−3x 0 0 0 0

−u+3y u+3x 0 0 0 0








A configuration where the middle wheel is almost sliding.



5.3 Collision avoidance

The pendulums should not intersect the ground or the robot

itself
(
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

)

.y ∈

(
[mmin3x ,m

max
3x ]

[mmin4x ,m
max
4x ]

)

.



5.4 Recapitulation of the constraints



Our robot can be described by

(i) ẋ = u
(ii) g(x,v1, v2) ≤ 0

where (ii) is equivalent to

∃y =






r1x, r1y
r2x, r2y
r3x, r3y
fx, fy

m3x,m4x





,






A1(x).y = b1(x)
A2(x).y ≤ 0

A3(x).y ≤ b3(x)





6 Simulation

Angle friction coefficient: φ = 0.54

Radius of the wheels: ρ1 = 85mm, ρ2 = 75mm, ρ3 =

85mm

Lengths of the pendulums: ℓ1 = ℓ2 = 350mm

Weights of the platforms: µ1 = µ2 = 70N

Weights and the pendulum masses: µ3 = µ4 = 20N.

Height and the width of the stairs: 220mm and 280mm




