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1 Contractors



The operator C : IR"™ — IR" is a contractor for the
equation f (x) =0, if

{ C([x]) C [x] (contractance)
x € [x] and f(x) =0=x € C([x]) (consistence)



Building contractors for equations

Consider the primitive equation

Tr1+ T2 =3

with 1 € [z1], 2 € [x2], 3 € [23].



We have

3 =x1+x2= z3€ [z3]N([x1]+[z2]) // forward
r1 =23 —x2 = x1 € [z1]N([x3] —[z2]) // backward
rp =23 —x1 = x2 € [z2] N ([x3] —[z1]) // backward



The contractor associated with x1 + x5 = x3 is thus

[1] [z1] M ([3] — [22])
Cl [z2] | = [z2] N([23] —[x1])
[3] [23] N ([z1] + [22])



2 Interval trajectories



A trajectory is a function f : R — R™. For instance

(= ( )

Is a trajectory.



Order relation

£ < g VY, fi (1) < g (t).



We have

h =f Ag & Vi, Vi, h; (t) = min(f;(t),g: (%)),
h =f vg<& Vi, Vi, h;(t) = max(f;(t),g;(t))-



The set of trajectories is a lattice. Interval of trajectories
(tubes) can be defined.
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Example.

cost + [O,tz] )

() = (sint—|— [—1, 1]

is an interval trajectory (or tube).



3 Tube arithmetics



If [x] and [y] are two scalar tubes, we have

2] = [z] + [y] = [2] (t) = [#] () + [] (?) (sum)

z] = shiftq ([z]) = [2] (t) = [2] (¢ + a) (shift)
z] = [z] o [y] = [2] (¢) = [=] ([y] (¢)) (compositi
2] = [[2] = [2](t) = |J§ &~ (r)dr, [§at (7)dr| (integral)



4 Tube contractors

Tube arithmetic allows us to build contractors.



Consider for instance the differential constraint

z(t) = x(t+1) u(l),
z(t) € [=](2),x(t) € [2](2),u(t) € [u] ()

We decompose as follows

z(t) = 2(0)+ gy (r)dr
y(t) = a(t)-u(t).
a(t) = x(t+1)



Possible contractors are
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() N ([2] (0) + f§ [v] (v) dr)
() N {a] (£) - [u] (¢)
Ok

1(5) N i)
(t) N [] (t + 1)
(t) N [a] (t — 1)



Example. Consider x (t) € [z] (¢) with the constraint
Vt, x(t) = x(t + 1)

Contract the tube [x] (%) .



We first decompose into primitive trajectory constraints

z(t) = a(t+1)
z(t) = al(t).



Contractors

z] () = =[=](¥)N]a] (t+1)
a] () =l[a] (¥) N ]z](t 1)
z] () =[=](t) Na] (2)
a] (¢) : = la] () N [2] (2)

























b Time-space estimation



Classical state estimation

{)’((t) f(x(t),u(t)) teR
0 = g(x(t),t) teTCR.

Space constraint g (x(t),t) = 0.



Example.

(1 = x3CO0S XY

x:2 = X3 COS T4

r3 = uj

T4 = UD

(z1(5) —1)* + (22(5) —2)* —4 =0
| (@1 (7) —1)° + (22(7) —2)° = 9=0




With time-space constraints

{)’((t) f(x(t),u(t)) teR
0 g(x(t),x{t),t,t) (t,t)eTCRxR.



Example. An ultrasonic underwater robot with state

X = (x1,x2,...) = (x,y,0,v,...)

At time t the robot emits an onmidirectional sound. At
time t’ it receives it

(21—21) "+ (w2 —ap) —c(t—t)* =o.



6 Mass spring problem



The mass spring satisfies

i+i+z—a>=0

L1 = X2
Ty = —582—331—|—£E%

The initial state is unknown.
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T1 = T2
x'2:—x2—x1—|—:c%
L—xzy(t1)+L—z(t2) =c(ta—1t1).
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7 Swarm localization



Consider n robots R1, ..., Ry described by

x; = £ (x5, u;),9; € [ug].



Omnidirectional sounds are emitted and received.

A ping is a 4-uple (a, b, i, j) where a is the emission time,
b is the reception time, ¢ is the emitting robot and 7 the

receiver.



V%



With the time space constraint

x; = f(x;,1;),0; € [w].

9 (xi(k) (a (k) xj1) (b (K)) ,a (), b (k)) = O

where

g (X’iaxjaa’a b> — ||$1 - 'CCZH _ C(b o CL) :



Clocks are uncertain. We only have measurements @ (k) , b (k)
of a (k),b (k) thanks to clocks h;. Thus

x; = f (x4, ;) ,9; € [w].

g (xi(k) (a (), %0y (b(K)) , a (k) ,b(K)) =0
i (k) = Ry (a (k)

b (k) = hj(ry (b(K))



The drift of the clocks is bounded
x; = f(x;,1;),0; € [w].
g (xi(k) (a (), %0y (b(K)) , a (k) ,b(K)) =0
i (k) = higry (a ()
b (k) = ) (b (k)
h, =1 + ny, np € [nh]
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