Cooperative Exploration and Mapping

L. Jaulin ENSTA Bretagne, Robex, LabSTICC 2019, June 10, Brest

Polynesian navigation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 のへで

Find the route without GPS, compass and clocks with *wa'a kaulua[2]*

Pair of stars technique

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Pair of stars technique

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Prove that islands will be reached by one boat

Prove that islands will be reached by the n boats

Alignment to keep the heading in case of clouds

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Find a control to reach the geo-localized islands

Explore a given area entirely to find new islands

Polynesian exploration problem

<□> <@> < E> < E> E のQC

• Given a set of unmapped islands \mathbf{m}_i , $i \ge 0$ with coastal area:

 $\mathbb{C}_i = \left\{ \mathbf{x} \, | \, c_i \left(\mathbf{x} \right) \leq \mathbf{0} \right\}.$

• A robot has to map this environment without being lost.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Follow isobaths

E 990

Bind Exploration

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Visible area

The robot has a state x. The visible area is $\mathbb{V}(x)$ Example. The robot is able to see all up to 3 meters

$$\mathbb{V}(\mathbf{x}) = \left\{ (z_1, z_2) | (z_1 - x_1)^2 + (z_2 - x_2)^2 \le 9 \right\}.$$

Blind exploration

The explored zone $\mathbb Z$ is defined by [1]

$$\begin{pmatrix} \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}), \ \mathbf{u}(t) \in [\mathbf{u}](t) \\ \mathbb{Z} = \bigcup_{t \ge 0} \ \mathbb{V}(\mathbf{x}(t)) \\ \mathbf{x}(0) = \mathbf{x}_0 \end{cases}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

We have

$$\underbrace{\bigcap_{\mathbf{x}(\cdot)\in\mathscr{X}(\cdot)}\bigcup_{t\geq 0}\mathbb{V}(\mathbf{x}(t))}_{\mathbb{Z}^{-}}\subset \mathbb{Z}\subset \underbrace{\bigcup_{\mathbf{x}(\cdot)\in\mathscr{X}(\cdot)}\bigcup_{t\geq 0}\mathbb{V}(\mathbf{x}(t))}_{\mathbb{Z}^{+}}$$

 \mathbb{Z}^- is the certainly explored zone. \mathbb{Z}^+ is the maybe explored zone. $\mathbb{Z}^+ \backslash \mathbb{Z}^-$ is the penumbra.

.

Boustrophedon

Which pattern is the best for exploration?

Reach an island

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The robot is described by

$$\begin{pmatrix} \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}), & \mathbf{u}(\cdot) \in [\mathbf{u}](t) \\ \mathbf{x}(0) = \mathbf{x}_0 \end{cases}$$

・ロト ・御ト ・ヨト ・ヨト - ヨ

Offshore, the robot is blind and an open loop strategy.

Backward reach set

Given the set \mathbb{A} , the backward reach set is defined by

$$\mathsf{Back}(\mathbb{A}) \ = \ \{\mathbf{x} \, | \, \forall \varphi \in \mathbf{\Phi}, \exists t \ge 0, \varphi(t, \mathbf{x}) \in \mathbb{A}\}.$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへの

・ロト ・四ト ・ヨト ・ヨト

æ

Archipelagic effect

We have

$\mathsf{Back}(\mathbb{A} \cup \mathbb{B}) \supset \mathsf{Back}(\mathbb{A}) \cup \mathsf{Back}(\mathbb{B})$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

No-lost zone

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへの

Moving between coastal zones

- We have m coastal sets $\mathbb{C}_1, \mathbb{C}_2, \dots, i \in \{1, 2, \dots\}$
- We have open loop control strategies $\mathbf{u}_j, j \in \{1, 2, \dots\}$,
- Equivalently, we have set flows $\Phi_j(t, \mathbf{x}_0)$.
- The control strategy cannot change offshore.

From \mathbb{C}_1 we can reach \mathbb{C}_2 with the *j*th control strategy if

$\mathbb{C}_1 \cap \mathsf{Back}(j, \mathbb{C}_2) \neq \emptyset.$

From \mathbb{C}_1 we can reach \mathbb{C}_2 with at least one control strategy if

 $\mathbb{C}_1 \cap \bigcup_j \mathsf{Back}(j, \mathbb{C}_2) \neq \emptyset.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

From \mathbb{C}_1 we can reach $\mathbb{C}_2\cup\mathbb{C}_3$ with at least one control strategy if

 $\mathbb{C}_1 \cap \bigcup_j \mathsf{Back}(j, \mathbb{C}_2 \cup \mathbb{C}_3) \neq \emptyset.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We define \hookrightarrow as:

- $\mathbb{C}_a \hookrightarrow \mathbb{C}_b$ if from \mathbb{C}_a we can reach \mathbb{C}_b with at least one control strategy j.
- ullet \hookrightarrow is the smallest transitive relation such that

$$\left\{\begin{array}{cc} \forall k \in \mathbb{K}, \mathbb{C}_{i_k} \hookrightarrow \mathbb{C}_b \\ \exists j, \mathbb{C}_a \cap \mathsf{Back}(j, \bigcup_{k \in \mathbb{K}} \mathbb{C}_{i_k}) \neq \emptyset \end{array} \right. \Rightarrow \qquad \mathbb{C}_a \hookrightarrow \mathbb{C}_b$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\mathbb{C}_1 \cap \mathsf{Back}(1, \mathbb{C}_3 \cup \mathbb{C}_4) \neq \emptyset \Rightarrow \mathbb{C}_1 \rightarrow (\mathbb{C}_3, \mathbb{C}_4)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\mathsf{Graph} \ \mathsf{of} \hookrightarrow$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Secure a zone

・ロ> < 回> < 回> < 回> < 回> < 回

Secure a zone

INFO OBS. Un sous-marin nucléaire russe repéré dans le Golfe de Gascogne

Le navire a été repéré en janvier. Ce serait la première fois depuis la fin de la Guerre Froide qu'un tel sous-marin, doté de missiles nucléaires, se serait aventuré dans cette zone au large des côtes françaises.

Bay of Biscay 220 000 km²

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへの

An intruder

- Several robots $\mathscr{R}_1, \ldots, \mathscr{R}_n$ at positions $\mathbf{a}_1, \ldots, \mathbf{a}_n$ are moving in the ocean.
- If the intruder is in the visibility zone of one robot, it is detected.[3]

Complementary approach

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖|| のQの

- ullet We assume that a virtual intruder exists inside ${\mathbb G}.$
- We localize it with a set-membership observer inside $\mathbb{X}(t)$.
- The secure zone corresponds to the complementary of $\mathbb{X}(t)$.

Assumptions

• The intruder satisfies

 $\dot{\mathbf{x}} \in \mathbb{F}(\mathbf{x}(t)).$

< □ > < @ > < 注 > < 注 > ... 注

• Each robot \mathscr{R}_i has the visibility zone $g_{\mathbf{a}_i}^{-1}([0, d_i])$ where d_i is the scope.

Theorem. An (undetected) intruder has a state vector $\mathbf{x}(t)$ inside the set

$$\mathbb{X}(t) = \mathbb{G} \cap (\mathbb{X}(t-dt) + dt \cdot \mathbb{F}(\mathbb{X}(t-dt))) \cap \bigcap_{i} g_{\mathbf{a}_{i}(t)}^{-1}([d_{i}(t),\infty]),$$

where $\mathbb{X}(0) = \mathbb{G}$. The secure zone is

$$\mathbb{S}(t) = \overline{\mathbb{X}(t)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

 $\mathsf{Set}\ \mathbb{G}\ \mathsf{in}\ \mathsf{blue}$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ●

Magenta: $\mathbb{G} \cap \bigcup_i g_{\mathbf{a}_i(t)}^{-1}([0, d_i(t)])$ Blue: $\mathbb{G} \cap \bigcap_i g_{\mathbf{a}_i(t)}^{-1}([d_i(t), \infty])$

Blue: $\mathbb{X}(t) = \mathbb{G} \cap (\mathbb{X}(t-dt) + dt \cdot \mathbb{F}(\mathbb{X}(t-dt))) \cap \bigcap_{i} g_{\mathbf{a}_{i}(t)}^{-1}([d_{i}(t),\infty]).$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ●

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ●

Video : https://youtu.be/rNcDW6npLfE

Smoother

Idea: Take into account the future.

The feasible set can be obtained by the following contractions

$$egin{array}{rcl} \overrightarrow{\mathbb{X}}(t) &= & \overrightarrow{\mathbb{X}}(t) \cap (\mathbb{X}(t-dt)+dt \cdot \mathbb{F}(\mathbb{X}(t-dt))) \ \overrightarrow{\mathbb{X}}(t) &= & \overline{\mathbb{X}}(t) \cap (\mathbb{X}(t+dt)-dt \cdot \mathbb{F}(\mathbb{X}(t+dt))) \ \mathbb{X}(t) &= & \overline{\mathbb{X}}(t) \cap \overleftarrow{\mathbb{X}}(t) \end{array}$$

with the initialization

$$\mathbb{X}(t) = \overrightarrow{\mathbb{X}}(t) = \overleftarrow{\mathbb{X}}(t) = \mathbb{G}.$$

B. Desrochers and L. Jaulin.

Computing a guaranteed approximation the zone explored by a robot.

IEEE Transaction on Automatic Control, 62(1):425-430, 2017.

T. Nico, L. Jaulin, and B. Zerr. Guaranteed polynesian navigation.

In SWIM'19, Paris, France, 2019.

K. Vencatasamy, L. Jaulin, and B. Zerr. Secure the zone from intruders with a group robots. Special Issue on Ocean Engineering and Oceanography, Springer, 2018.