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Problem. Given f : Rn→ R and a box [x]⊂ Rn, prove that

∀x ∈ [x] , f (x)≥ 0.

Interval arithmetic can solve efficiently this problem.
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Example. Is the function

f (x) = x1x2− (x1+ x2)cosx2+ sinx1 · sinx2+2

always positive for x1,x2 ∈ [−1,1] ?
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Interval arithmetic

[−1,3]+ [2,5] =?,
[−1,3] · [2,5] =?,
abs([−7,1]) =?
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Interval arithmetic

[−1,3]+ [2,5] = [1,8],
[−1,3] · [2,5] = [−5,15],
abs([−7,1]) = [0,7]
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The interval extension of

f (x1,x2) = x1 ·x2− (x1+ x2) · cosx2+ sinx1 · sinx2+2

is

[f ] ([x1] , [x2]) = [x1] · [x2]− ([x1]+ [x2]) · cos [x2]

+sin [x1] · sin [x2]+2.
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Theorem (Moore, 1970)

[f ] ([x])⊂ R+⇒∀x ∈ [x] , f (x)≥ 0.
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Set Inversion
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A subpaving of Rn is a set of non-overlapping boxes of Rn.
Compact sets X can be bracketed between inner and outer
subpavings:

X− ⊂ X⊂ X+.
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Example.
X= {(x1,x2)

∣∣ x2
1 + x2

2 ∈ [1,2]}.
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Let f : Rn→ Rm and let Y be a subset of Rm. Set inversion is the
characterization of

X= {x ∈ Rn | f(x) ∈ Y}= f−1(Y).
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We shall use the following tests.

(i) [f]([x])⊂ Y ⇒ [x]⊂ X
(ii) [f]([x])∩Y= /0 ⇒ [x]∩X= /0.

Boxes for which these tests failed, will be bisected, except if they
are too small.
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Set estimation
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y = ψ (p)+e,

where
e ∈ E⊂ Rm is the error vector,
y ∈ Rm is the collected data vector,
p ∈ Rn is the parameter vector to be estimated.
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Or equivalently
e = y−ψ (p) = fy (p) ,
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The posterior feasible set for the parameters is

P= f−1
y (E) .
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Relaxed intersection
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Probabilistic-set approach
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We decompose the error space into two subsets: E on which we bet
e will belong and E. We set

π = Pr (e ∈ E)

The event e ∈ E is considered as rare, i.e., π ' 1.
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Once y is collected, we compute

P= f−1
y (E) .

If P 6= /0, we conclude that p ∈ P with a prior probability of π.
If P= /0, than we conclude the rare event e ∈ E occurred.
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Application to localization
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A robot measures distances to three beacons.

i xi yi [di ]

1 1 3 [1,2]
2 3 1 [2,3]
3 −1 −1 [3,4]

The intervals [di ] contain the true distance with a probability of
π = 0.9.
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The feasible sets associated to each data is

Pi =

{
p ∈ R2 |

√
(p1−xi )

2+(p2−yi )
2−di ∈ [−0.5,0.5]

}
,

where d1 = 1.5,d2 = 2.5,d3 = 3.5.
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prob
(
p ∈ P{0}

)
= 0.729

prob
(
p ∈ P{1}

)
= 0.972

prob
(
p ∈ P{2}

)
= 0.999
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The operator C : IRn→ IRn is a contractor [4] for the equation
f (x) = 0, if{

C ([x])⊂ [x] (contractance)
x ∈ [x] and f (x) = 0⇒ x ∈ C ([x]) (consistence)
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Building contractors
Consider the primitive equation

x1+ x2 = x3

with x1 ∈ [x1], x2 ∈ [x2], x3 ∈ [x3] .

Intervals analysis for guaranteed localization



Interval analysis
Set estimation

Dynamical localization

We have

x3 = x1+ x2⇒ x3 ∈ [x3]∩ ([x1]+ [x2])
x1 = x3−x2⇒ x1 ∈ [x1]∩ ([x3]− [x2])
x2 = x3−x1⇒ x2 ∈ [x2]∩ ([x3]− [x1])
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The contractor associated with x1+ x2 = x3 is thus

C

 [x1]
[x2]
[x3]

=

 [x1]∩ ([x3]− [x2])
[x2]∩ ([x3]− [x1])
[x3]∩ ([x1]+ [x2])


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Tubes
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A trajectory is a function f : R→ Rn. For instance

f (t) =
(

cos t
sin t

)
is a trajectory.
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Order relation

f ≤ g⇔∀t,∀i , fi (t)≤ gi (t) .
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We have

h = f ∧g⇔∀t,∀i ,hi (t) =min(fi (t) ,gi (t)) ,
h = f ∨g⇔∀t,∀i ,hi (t) =max(fi (t) ,gi (t)) .
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The set of trajectories is a lattice. Interval of trajectories (tubes)
can be defined.
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Example.

[f] (t) =
(

cos t+
[
0, t2

]
sin t+[−1,1]

)
is an interval trajectory (or tube).
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Tube arithmetics
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If [x ] and [y ] are two scalar tubes [1], we have

[z ] = [x ]+ [y ]⇒ [z ] (t) = [x ] (t)+ [y ] (t) (sum)
[z ] = shifta ([x ])⇒ [z ] (t) = [x ] (t+a) (shift)
[z ] = [x ]◦ [y ]⇒ [z ] (t) = [x ] ([y ] (t)) (composition)
[z ] =

∫
[x ]⇒ [z ] (t) =

[∫ t
0 x
− (τ)dτ,

∫ t
0 x

+ (τ)dτ
]

(integral)
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Tube Contractors
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Tube arithmetic allows us to build contractors [3].
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Consider for instance the differential constraint

ẋ (t) = x (t+1) ·u (t) ,
x (t) ∈ [x ] (t) , ẋ (t) ∈ [ẋ ] (t) ,u (t) ∈ [u] (t)

We decompose as follows
x (t) = x (0)+

∫ t
0 y (τ)dτ

y (t) = a (t) ·u (t) .
a (t) = x (t+1)
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Possible contractors are

[x ] (t) = [x ] (t)∩
(
[x ] (0)+

∫ t
0 [y ] (τ)dτ

)
[y ] (t) = [y ] (t)∩ [a] (t) · [u] (t)
[u] (t) = [u] (t)∩ [y ](t)

[a](t)

[a] (t) = [a] (t)∩ [y ](t)
[u](t)

[a] (t) = [a] (t)∩ [x ] (t+1)
[x ] (t) = [x ] (t)∩ [a] (t−1)
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Example. Consider x (t) ∈ [x ] (t) with the constraint

∀t, x (t) = x (t+1)

Contract the tube [x ] (t) .
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We first decompose into primitive trajectory constraints

x (t) = a (t+1)
x (t) = a (t) .
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Contractors

[x ] (t) : = [x ] (t)∩ [a] (t+1)
[a] (t) : = [a] (t)∩ [x ] (t−1)
[x ] (t) : = [x ] (t)∩ [a] (t)
[a] (t) : = [a] (t)∩ [x ] (t)
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http://www.simon-rohou.fr/research/tubex-lib/ [5]
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Classical state estimation{
ẋ(t) = f (x(t) ,u(t)) t ∈ R
0 = g (x(t) , t) t ∈ T⊂ R.

Space constraint g (x(t) , t) = 0.
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Example. 

ẋ1 = x3 cosx4
ẋ2 = x3 cosx4
ẋ3 = u1
ẋ4 = u2

(x1 (5)−1)2+(x2 (5)−2)2−4= 0
(x1 (7)−1)2+(x2 (7)−2)2−9= 0

Intervals analysis for guaranteed localization



Interval analysis
Set estimation

Dynamical localization

With time-space constraints{
ẋ(t) = f (x(t) ,u(t)) t ∈ R
0 = g (x(t) ,x(t ′) , t, t ′) (t, t ′) ∈ T⊂ R×R.
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Example. An ultrasonic underwater robot with state

x = (x1,x2, . . .) = (x ,y ,θ ,v , . . .)

At time t the robot emits an onmidirectional sound. At time t ′ it
receives it (

x1−x
′
1

)2
+
(
x2−x

′
2

)2
− c
(
t− t ′

)2
= 0.
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Mass spring problem
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The mass spring satisfies

ẍ+ ẋ+ x−x3 = 0

i.e. {
ẋ1 = x2
ẋ2 = −x2−x1+ x3

1

The initial state is unknown.
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
ẋ1 = x2
ẋ2 =−x2−x1+ x3

1
L−x1 (t1)+L−x1 (t2) = c (t2− t1) .
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Swarm localization
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Consider n robots R1, . . . ,Rn described by

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
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Omnidirectional sounds are emitted and received.
A ping is a 4-uple (a,b, i , j) where a is the emission time, b is the
reception time, i is the emitting robot and j the receiver.

Intervals analysis for guaranteed localization



Interval analysis
Set estimation

Dynamical localization

Intervals analysis for guaranteed localization



Interval analysis
Set estimation

Dynamical localization

With the time space constraint

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
g
(
xi(k) (a (k)) ,xj(k) (b (k)) ,a (k) ,b (k)

)
= 0

where
g (xi ,xj ,a,b) = ‖x1−x2‖− c (b−a) .
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Clocks are uncertain. We only have measurements ã (k) , b̃ (k) of
a (k) ,b (k) thanks to clocks hi . Thus

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
g
(
xi(k) (a (k)) ,xj(k) (b (k)) ,a (k) ,b (k)

)
= 0

ã (k) = hi(k) (a (k))

b̃ (k) = hj(k) (b (k))
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The drift of the clocks is bounded

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
g
(
xi(k) (a (k)) ,xj(k) (b (k)) ,a (k) ,b (k)

)
= 0

ã (k) = hi(k) (a (k))

b̃ (k) = hj(k) (b (k))

ḣi = 1+nh, nh ∈ [nh]
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https://youtu.be/j-ERcoXF1Ks [2]
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https://youtu.be/jr8xKIe0Nds
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https://youtu.be/GycJxGFvYE8
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