L. Jaulin ENSTA Bretagne, LabSTICC 2018, February 20 , Hannover, Germany

《曰》 《聞》 《臣》 《臣》

Interval analysis

Intervals analysis for guaranteed localization

・ロト ・回ト ・ヨト ・ヨ

Problem. Given $f : \mathbb{R}^n \to \mathbb{R}$ and a box $[\mathbf{x}] \subset \mathbb{R}^n$, prove that

 $\forall \mathbf{x} \in [\mathbf{x}], f(\mathbf{x}) \geq 0.$

Interval arithmetic can solve efficiently this problem.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example. Is the function

$$f(\mathbf{x}) = x_1 x_2 - (x_1 + x_2) \cos x_2 + \sin x_1 \cdot \sin x_2 + 2$$

always positive for $x_1, x_2 \in [-1, 1]$?

→ < Ξ → <</p>

э

Interval arithmetic

$$\begin{array}{ll} [-1,3] + [2,5] & =?, \\ [-1,3] \cdot [2,5] & =?, \\ \mathsf{abs}([-7,1]) & =? \end{array}$$

Interval arithmetic

$$\begin{array}{ll} [-1,3]+[2,5] &= [1,8], \\ [-1,3]\cdot [2,5] &= [-5,15], \\ abs([-7,1]) &= [0,7] \end{array}$$

Intervals analysis for guaranteed localization

The interval extension of

$$f(x_1, x_2) = x_1 \cdot x_2 - (x_1 + x_2) \cdot \cos x_2 + \sin x_1 \cdot \sin x_2 + 2$$

is

$$[f]([x_1], [x_2]) = [x_1] \cdot [x_2] - ([x_1] + [x_2]) \cdot \cos[x_2] + \sin[x_1] \cdot \sin[x_2] + 2.$$

Theorem (Moore, 1970)

$$[f]([\mathbf{x}]) \subset \mathbb{R}^+ \Rightarrow \forall \mathbf{x} \in [\mathbf{x}], f(\mathbf{x}) \ge 0.$$

◆□ > ◆□ > ◆豆 > ◆豆 >

Set Inversion

Intervals analysis for guaranteed localization

(日) (日) (日) (日) (日)

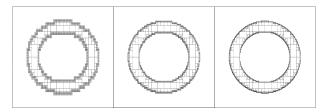
A subpaving of \mathbb{R}^n is a set of non-overlapping boxes of \mathbb{R}^n . Compact sets \mathbb{X} can be bracketed between inner and outer subpavings:

 $\mathbb{X}^{-}\subset\mathbb{X}\subset\mathbb{X}^{+}.$

• = • •

Example.

 $\mathbb{X} = \{(x_1, x_2) \mid x_1^2 + x_2^2 \in [1, 2]\}.$



Intervals analysis for guaranteed localization

・ 同 ト ・ 三 ト ・

-

Let $f:\mathbb{R}^n\to\mathbb{R}^m$ and let $\mathbb Y$ be a subset of $\mathbb R^m.$ Set inversion is the characterization of

$$\mathbb{X} = \{ \mathsf{x} \in \mathbb{R}^n \mid \mathsf{f}(\mathsf{x}) \in \mathbb{Y} \} = \mathsf{f}^{-1}(\mathbb{Y}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

We shall use the following tests.

$$\begin{array}{lll} (i) & [f]([x]) \subset \mathbb{Y} & \Rightarrow & [x] \subset \mathbb{X} \\ (ii) & [f]([x]) \cap \mathbb{Y} = \emptyset & \Rightarrow & [x] \cap \mathbb{X} = \emptyset. \end{array}$$

Boxes for which these tests failed, will be bisected, except if they are too small.

→ < Ξ → <</p>

Set estimation

Intervals analysis for guaranteed localization

$$\mathbf{y} = \boldsymbol{\psi}(\mathbf{p}) + \mathbf{e},$$

where

 $\mathbf{e} \in \mathbb{E} \subset \mathbb{R}^m$ is the error vector,

 $\mathbf{y} \in \mathbb{R}^m$ is the collected data vector,

 $\mathbf{p} \in \mathbb{R}^n$ is the parameter vector to be estimated.

• • = • • =

Or equivalently

$$\mathbf{e} = \mathbf{y} - \psi(\mathbf{p}) = \mathbf{f}_{\mathbf{y}}(\mathbf{p}),$$

Intervals analysis for guaranteed localization

The posterior feasible set for the parameters is

$$\mathbb{P} = \mathbf{f}_{\mathbf{y}}^{-1}(\mathbb{E}).$$

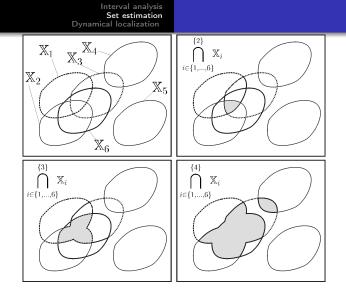
► < Ξ > <</p>

-

Relaxed intersection

Intervals analysis for guaranteed localization

イロト イポト イヨト イヨト



◆□▶ ◆舂▶ ◆注▶ ◆注▶ ─注。

Set estimation Dynamical localization

Probabilistic-set approach

< 一型 Intervals analysis for guaranteed localization

→ ★ 문 → ★ 문

We decompose the error space into two subsets: \mathbb{E} on which we bet e will belong and $\overline{\mathbb{E}}$. We set

$$\pi = \Pr\left(\mathbf{e} \in \mathbb{E}\right)$$

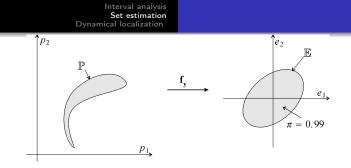
The event $\mathbf{e} \in \overline{\mathbb{E}}$ is considered as *rare*, i.e., $\pi \simeq 1$.

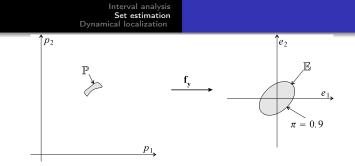
Once \mathbf{y} is collected, we compute

$$\mathbb{P}=f_y^{-1}(\mathbb{E}).$$

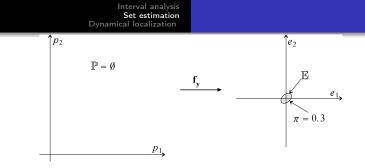
If $\mathbb{P} \neq \emptyset$, we conclude that $\mathbf{p} \in \mathbb{P}$ with a prior probability of π . If $\mathbb{P} = \emptyset$, than we conclude the rare event $\mathbf{e} \in \overline{\mathbb{E}}$ occurred.

3 N





▲□▶ ▲圖▶ ▲圖▶ ▲圖▶



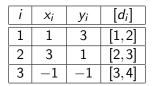
・ロト ・御ト ・ヨト ・ヨト

Application to localization

Intervals analysis for guaranteed localization

◆□ > ◆□ > ◆豆 > ◆豆 >

A robot measures distances to three beacons.



The intervals $[d_i]$ contain the true distance with a probability of $\pi = 0.9$.

3 A .

The feasible sets associated to each data is

$$\mathbb{P}_{i} = \left\{ \mathbf{p} \in \mathbb{R}^{2} \mid \sqrt{(p_{1} - x_{i})^{2} + (p_{2} - y_{i})^{2}} - d_{i} \in [-0.5, 0.5] \right\},\$$

where $d_1 = 1.5, d_2 = 2.5, d_3 = 3.5$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$$\begin{array}{ll} \mbox{prob} \left({{\bf{p}} \in {\mathbb{P}^{\{0\}}}} \right) = & 0.729 \\ \mbox{prob} \left({{\bf{p}} \in {\mathbb{P}^{\{1\}}}} \right) = & 0.972 \\ \mbox{prob} \left({{\bf{p}} \in {\mathbb{P}^{\{2\}}}} \right) = & 0.999 \end{array}$$

Intervals analysis for guaranteed localization

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ─ 注。

Dynamical localization

Intervals analysis for guaranteed localization

◆□ > ◆□ > ◆豆 > ◆豆 >

Contractors

Intervals analysis for guaranteed localization

The operator $\mathscr{C} : \mathbb{IR}^n \to \mathbb{IR}^n$ is a *contractor* [4] for the equation $f(\mathbf{x}) = 0$, if

$$\begin{cases} \mathscr{C}([\mathbf{x}]) \subset [\mathbf{x}] & (\text{contractance}) \\ \mathbf{x} \in [\mathbf{x}] \text{ and } f(\mathbf{x}) = 0 \Rightarrow \mathbf{x} \in \mathscr{C}([\mathbf{x}]) & (\text{consistence}) \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Building contractors Consider the primitive equation

$$x_1 + x_2 = x_3$$

with $x_1 \in [x_1]$, $x_2 \in [x_2]$, $x_3 \in [x_3]$.

We have

$$\begin{array}{rcl} x_3 = x_1 + x_2 \Rightarrow & x_3 \in & [x_3] \cap ([x_1] + [x_2]) \\ x_1 = x_3 - x_2 \Rightarrow & x_1 \in & [x_1] \cap ([x_3] - [x_2]) \\ x_2 = x_3 - x_1 \Rightarrow & x_2 \in & [x_2] \cap ([x_3] - [x_1]) \end{array}$$

The contractor associated with $x_1 + x_2 = x_3$ is thus

$$\mathscr{C}\left(\begin{array}{c} [x_1]\\ [x_2]\\ [x_3] \end{array}\right) = \left(\begin{array}{c} [x_1] \cap ([x_3] - [x_2])\\ [x_2] \cap ([x_3] - [x_1])\\ [x_3] \cap ([x_1] + [x_2]) \end{array}\right)$$

◆□ > ◆□ > ◆豆 > ◆豆 >

Tubes

Intervals analysis for guaranteed localization

A trajectory is a function $\mathbf{f} : \mathbb{R} \to \mathbb{R}^n$. For instance

$$\mathbf{f}(t) = \left(\begin{array}{c} \cos t \\ \sin t \end{array}\right)$$

is a trajectory.

・ 同 ト ・ ヨ ト ・ ヨ

Order relation

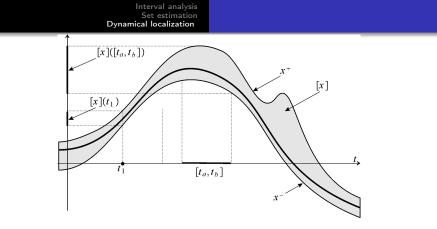
$$\mathbf{f} \leq \mathbf{g} \Leftrightarrow \forall t, \forall i, f_i(t) \leq g_i(t).$$

Intervals analysis for guaranteed localization

We have

$$\mathbf{h} = \mathbf{f} \quad \wedge \mathbf{g} \Leftrightarrow \forall t, \forall i, h_i(t) = \min(f_i(t), g_i(t)),$$

$$\mathbf{h} = \mathbf{f} \quad \forall \mathbf{g} \Leftrightarrow \forall t, \forall i, h_i(t) = \max(f_i(t), g_i(t)).$$



The set of trajectories is a lattice. Interval of trajectories (tubes) can be defined.

Example.

$$[\mathbf{f}](t) = \begin{pmatrix} \cos t + [0, t^2] \\ \sin t + [-1, 1] \end{pmatrix}$$

is an interval trajectory (or tube).

イロト イポト イヨト イヨト

Tube arithmetics

Intervals analysis for guaranteed localization

◆□ > ◆□ > ◆豆 > ◆豆 >

If [x] and [y] are two scalar tubes [1], we have

$$\begin{split} &[z] = [x] + [y] \Rightarrow [z](t) = [x](t) + [y](t) & (sum) \\ &[z] = shift_a([x]) \Rightarrow [z](t) = [x](t+a) & (shift) \\ &[z] = [x] \circ [y] \Rightarrow [z](t) = [x]([y](t)) & (composition) \\ &[z] = \int [x] \Rightarrow [z](t) = \left[\int_0^t x^-(\tau) d\tau, \int_0^t x^+(\tau) d\tau\right] & (integral) \end{split}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Tube Contractors

Intervals analysis for guaranteed localization

・ロト ・部ト ・ヨト ・ヨト

Tube arithmetic allows us to build contractors [3].

Intervals analysis for guaranteed localization

(4月) (1日) (日)

Consider for instance the differential constraint

$$egin{array}{rll} \dot{x}(t) &=& x(t+1) \cdot u(t), \ x(t) &\in& [x](t), \dot{x}(t) \in [\dot{x}](t), u(t) \in [u](t) \end{array}$$

We decompose as follows

$$\begin{cases} x(t) = x(0) + \int_0^t y(\tau) d\tau \\ y(t) = a(t) \cdot u(t). \\ a(t) = x(t+1) \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Possible contractors are

$$\begin{cases} [x](t) = [x](t) \cap ([x](0) + \int_0^t [y](\tau) d\tau) \\ [y](t) = [y](t) \cap [a](t) \cdot [u](t) \\ [u](t) = [u](t) \cap \frac{[y](t)}{[a](t)} \\ [a](t) = [a](t) \cap \frac{[y](t)}{[u](t)} \\ [a](t) = [a](t) \cap [x](t+1) \\ [x](t) = [x](t) \cap [a](t-1) \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Example. Consider $x(t) \in [x](t)$ with the constraint

$$\forall t, x(t) = x(t+1)$$

Contract the tube [x](t).

()

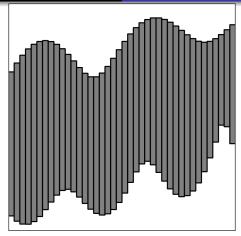
We first decompose into primitive trajectory constraints

$$egin{array}{rcl} x(t)&=&a(t+1)\ x(t)&=&a(t). \end{array}$$

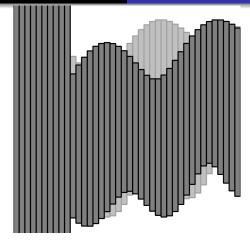
A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Contractors

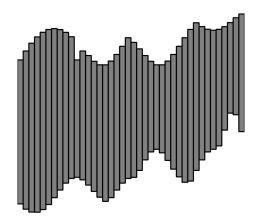
$$\begin{aligned} & [x](t) & : & = [x](t) \cap [a](t+1) \\ & [a](t) & : & = [a](t) \cap [x](t-1) \\ & [x](t) & : & = [x](t) \cap [a](t) \\ & [a](t) & : & = [a](t) \cap [x](t) \end{aligned}$$



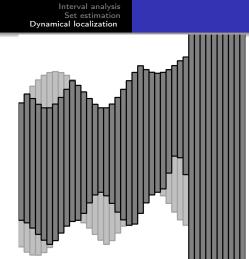
◆□▶ ◆圖▶ ◆厘▶ ◆厘▶



Intervals analysis for guaranteed localization

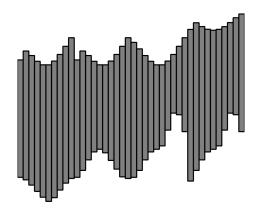


Intervals analysis for guaranteed localization



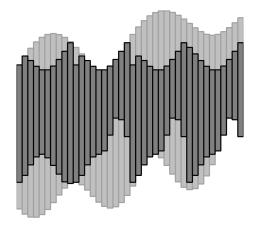
Intervals analysis for guaranteed localization

・ロト ・四ト ・ヨト ・ヨト



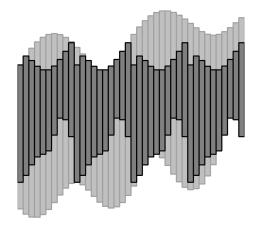
Intervals analysis for guaranteed localization

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・



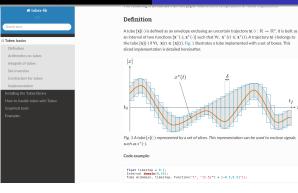
Intervals analysis for guaranteed localization

イロト イヨト イヨト イヨト



Intervals analysis for guaranteed localization

イロト イヨト イヨト イヨト



http://www.simon-rohou.fr/research/tubex-lib/ [5]

Intervals analysis for guaranteed localization

・ロン ・部 と ・ ヨ と ・ ヨ と …

Time-space estimation

Intervals analysis for guaranteed localization

◆□ > ◆□ > ◆豆 > ◆豆 >

Classical state estimation

$$\left\{ egin{array}{ll} \dot{\mathbf{x}}(t) &=& \mathbf{f}(\mathbf{x}(t),\mathbf{u}(t)) & t\in\mathbb{R} \ \mathbf{0} &=& \mathbf{g}(\mathbf{x}(t),t) & t\in\mathbb{T}\subset\mathbb{R}. \end{array}
ight.$$

Space constraint $\mathbf{g}(\mathbf{x}(t), t) = 0$.

э

∃ → ∢

Example.

$$\begin{cases} \dot{x}_1 = x_3 \cos x_4 \\ \dot{x}_2 = x_3 \cos x_4 \\ \dot{x}_3 = u_1 \\ \dot{x}_4 = u_2 \\ (x_1 (5) - 1)^2 + (x_2 (5) - 2)^2 - 4 = 0 \\ (x_1 (7) - 1)^2 + (x_2 (7) - 2)^2 - 9 = 0 \end{cases}$$

With time-space constraints

$$\left\{ \begin{array}{ll} \dot{\mathsf{x}}(t) &=& \mathsf{f}(\mathsf{x}(t),\mathsf{u}(t)) & t \in \mathbb{R} \\ \mathsf{0} &=& \mathsf{g}(\mathsf{x}(t),\mathsf{x}(t'),t,t') & (t,t') \in \mathbb{T} \subset \mathbb{R} \times \mathbb{R}. \end{array} \right.$$

Intervals analysis for guaranteed localization

◆□ > ◆□ > ◆豆 > ◆豆 >

Example. An ultrasonic underwater robot with state

$$\mathbf{x} = (x_1, x_2, \dots) = (x, y, \theta, v, \dots)$$

At time t the robot emits an onmidirectional sound. At time t' it receives it

$$(x_1 - x_1')^2 + (x_2 - x_2')^2 - c(t - t')^2 = 0.$$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Mass spring problem

Intervals analysis for guaranteed localization

◆□ > ◆□ > ◆豆 > ◆豆 >

The mass spring satisfies

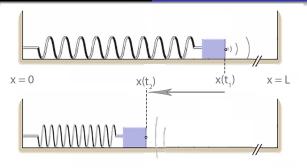
$$\ddot{x} + \dot{x} + x - x^3 = 0$$

i.e.

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_2 - x_1 + x_1^3 \end{cases}$$

The initial state is unknown.

・ 同 ト ・ ヨ ト ・ ヨ

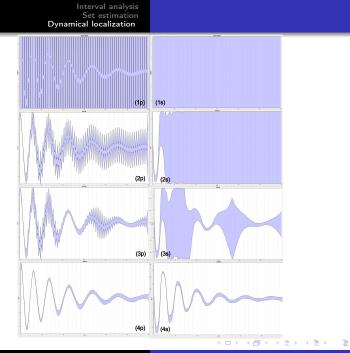


Intervals analysis for guaranteed localization

◆□ > ◆□ > ◆豆 > ◆豆 >

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_2 - x_1 + x_1^3 \\ L - x_1(t_1) + L - x_1(t_2) = c(t_2 - t_1). \end{cases}$$

◆□> ◆□> ◆□> ◆□> ● □



Intervals analysis for guaranteed localization

Swarm localization

Intervals analysis for guaranteed localization

Consider *n* robots $\mathscr{R}_1, \ldots, \mathscr{R}_n$ described by

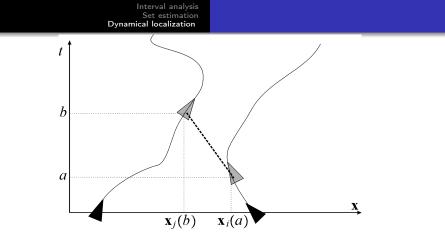
$$\dot{\mathbf{x}}_i = \mathbf{f}(\mathbf{x}_i, \mathbf{u}_i), \mathbf{u}_i \in [\mathbf{u}_i].$$

イロト イポト イヨト イヨト

Omnidirectional sounds are emitted and received.

A ping is a 4-uple (a, b, i, j) where a is the emission time, b is the reception time, i is the emitting robot and j the receiver.

3 b 4



Intervals analysis for guaranteed localization

With the time space constraint

$$\begin{aligned} \dot{\mathbf{x}}_i &= \mathbf{f}(\mathbf{x}_i, \mathbf{u}_i), \mathbf{u}_i \in [\mathbf{u}_i].\\ g\left(\mathbf{x}_{i(k)}(a(k)), \mathbf{x}_{j(k)}(b(k)), a(k), b(k)\right) = \mathbf{0} \end{aligned}$$

where

$$g(\mathbf{x}_i, \mathbf{x}_j, a, b) = ||x_1 - x_2|| - c(b - a).$$

★御≯ ★理≯ ★理≯

Clocks are uncertain. We only have measurements $\tilde{a}(k), \tilde{b}(k)$ of a(k), b(k) thanks to clocks h_i . Thus

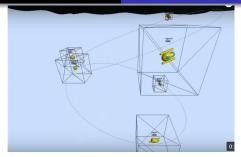
$$\begin{aligned} \dot{\mathbf{x}}_{i} &= \mathbf{f}(\mathbf{x}_{i}, \mathbf{u}_{i}), \mathbf{u}_{i} \in [\mathbf{u}_{i}].\\ g\left(\mathbf{x}_{i(k)}(a(k)), \mathbf{x}_{j(k)}(b(k)), a(k), b(k)\right) = 0\\ \tilde{a}(k) &= h_{i(k)}(a(k))\\ \tilde{b}(k) &= h_{j(k)}(b(k)) \end{aligned}$$

• • = • • = •

The drift of the clocks is bounded

$$\begin{aligned} \dot{\mathbf{x}}_{i} &= \mathbf{f}(\mathbf{x}_{i}, \mathbf{u}_{i}), \mathbf{u}_{i} \in [\mathbf{u}_{i}].\\ g\left(\mathbf{x}_{i(k)}(a(k)), \mathbf{x}_{j(k)}(b(k)), a(k), b(k)\right) = 0\\ \tilde{a}(k) &= h_{i(k)}(a(k))\\ \tilde{b}(k) &= h_{j(k)}(b(k))\\ \dot{h}_{i} &= 1 + n_{h}, \ n_{h} \in [n_{h}] \end{aligned}$$

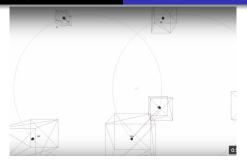
イロト イポト イヨト イヨト



https://youtu.be/j-ERcoXF1Ks [2]

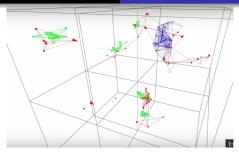
Intervals analysis for guaranteed localization

◆□ > ◆□ > ◆豆 > ◆豆 >



https://youtu.be/jr8xKIe0Nds

Intervals analysis for guaranteed localization



https://youtu.be/GycJxGFvYE8

Intervals analysis for guaranteed localization

イロト イヨト イヨト イヨト

Interval analysis Dynamical localization

F. Le Bars, J. Sliwka, O. Reynet, and L. Jaulin. State estimation with fleeting data. Automatica, 48(2):381-387, 2012.

A. Bethencourt and L. Jaulin.

Cooperative localization of underwater robots with unsynchronized clocks.

Journal of Behavioral Robotics, 4(4):233–244, 2013.

A. Bethencourt and L. Jaulin.

Solving non-linear constraint satisfaction problems involving time-dependant functions.

Mathematics in Computer Science, 8(3), 2014.

G. Chabert and L. Jaulin. Contractor Programming.

Artificial Intelligence, 173:1079–1100, 2009.

S. Rohou, L. Jaulin, M. Mihaylova, F. Le Bars, and S. Veres.

Guaranteed Computation of Robots Trajectories. *Robotics and Autonomous Systems*, 93:76–84, 2017.

∃ → < ∃</p>