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1 Problem

{ x(t) =f(x(t),t) + b(t) (state equations)
h(x(t)) =0=g(x(t)) € W(t) (visibility conditions)

The function W (¢) C R is the waterfall.



A fleeting data is a pair (t,g(x(t))) with h(x(t)) = 0.
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Part of the waterfall collected by the portside
lateral sonar of the Redermor, GESMA



2 Tubes

Our state estimation problem is a CSP



e Variables are the trajectories

x (t),x(t),b(t).

e Domains are interval trajectories ot tubes

[x] (?), [x] (2) , [b] (¢)-

e Constraints

{)‘((t):f(x(t),t)+b(t)
h(x(t)=0= g(x(t)) € W(t).



Decomposition

([ x(t) =f(x(t),t) + b(t)
{ x(t) = f(x(t),t) + b(t) v(t) =h(x(t))

N\

h(x(t)) =0 = < g (t) = 94 (x (1)) x(t)
= g(x(t)) € W (¢) y () = g (x (1))
v (t) =0=y(t) € W(t)




The set of functions from R — R" is a lattice. Interval
methods can thus be used.



A machine tube [x](t), with a sampling time § > 0, is
a box-valued function which is constant inside intervals
[kd, kS + 9], k € N.



A tube encloses an uncertain trajectory



Define the index correspondence function  as follows

k ([ta, tp]) = {k € N, 3t € [ta, ty],t € [kS, kS + 6]} .



Integral.

[MEar= Y s=p).
0

ker([to,t])

We have
t t
x () € [x] (t);»/tox(f)dfe/to[x](f)df

and that the quantity ftto [x] (7) d7 is a tube.



The derivative of a tube cannot be defined. Now, since

x(t) = f(x(t),t)+ b(¢)
y(t) % (x (£)) X(t)
u(t) B (x (1)) .x(t).

tubes enclosing the x (t), ¥ (t) and v (t) are

() =[] (2),6) + [b] (¢)
91(0) = [92] (Ix] () .[%1(2)
51(0) = |92 (Ix] (8)) [X](0).




Propagation.

[x](0)

x*(1)

x(7)

e e

Left: a tube [x] (t) = [x~(t),xT(t)| 2 x*(¢).
Right: propagation.



3 \Visibility contractor



Contract tubes [v] (t), [y] (£) with respect to

v(t) =0= y(t) € W(t).



3.1 Contraction of [y] (%)

v(t) = 0= y(t) € W().



Theorem 1. If 0 € v ([t]) then for all ¢,

v e U (WOl m)+ [ 1) da).

TE[t]
Proof. If 0 € v ([t]), then 37 € [t],v (7) = 0. Now,

y (1) € W(r) N [y](7)

Since y (t) = y (7) + [L 9 (a) .da, we get

y(t) € (WA )+ [ [§](a) dom



Corollary. If 0 € v ([t]) then for all ¢,

y(t) € U (W) Nyl () + [wol (t) — [yol (7)) -

TE([t]
t
wol = [ [i(c).do.

Proof. yq is the primitive of ¢ such that yg (0) = 0.1



Contraction of [y] (¢).
e Compute the tube [yo] = [ [J] (@) .da.

e Perform the contraction

[l (t) = [wl() N
J AW () Nl (7)) + [wol () — ol (7)}

TE(t]
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Contraction of [y]



3.2 Contraction of [v] (%)

v(t) = 0= y(t) € W().



Theorem 2. We have

vte[t], [yl () NW () =0=0¢& v ([t]).

Proof. If 0 € v ([t]), then 37 € [t],v(7) = 0 and thus
y(7) € W(7). Now y (7) € [y] (7) which is in contradic-
tion with the assumption.li



Contraction of [v] (¢):

e Find alonginterval [t] of R such that Vt € [t], [y] (¢)N
W (t) = 0.

e Find, if any, t1 € [t] such that [v] (¢1) # O

if [v](¢1) >0 ,then [v]([t]) := [v] (¢t) N[0, 0]
if [v](¢1) <O  then [v]([¢]) := [v] ([¢]) N [—o0,0].



4 Test-case



Consider a robot moving on a plane and equipped with a
directive laser rotating telemeter

(1 = cosx3 + by
To = sinx3 —+ by
< r3 = u-+ b3
g = 2+ bg.




X |----
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The robot with a rotating telemeter.
The location of m is known.

v



e A mark m is located at coordinates (0, 0).

e T he distance to the mark is measured with an accuracy
of £0.01.

e The scope of the telemeter corresponds to the interval
[s] = [s7,s7] =[1,10].



We have
{ h (x)
g (x)

Note that both A (x) and g (x) are differentiable.

x1sin (x3 + x4) — xocos(x3 + x4)  (visibility)
—x1cos (x3 + x4) — xosin (x3 + x4) (distance)



We have
h(x) = 0 and g (x) € [s] N [-o0,d] = d = g (x).
Since
(ANB=C)< (A= -BVvC(C),
we get

h(x)=0 = g(x) ¢ ([s]N[-o0,d]) ord=g(x).
& g(x(t)) €[—o0,s7]U[sT, 0] U[d, 0]
= g(x(t)) € [-oo,s7]U [Si’ ool U [d™, o]
W(t)




Robot for different ¢ during the mission



The robot only knows that the fleeting points (%, g(x(t))
lie inside W (¢)



Envelope of the trajectory.

(left) envelope without using the telemeter;
(right) envelope using the telemeter



Constructing the map.
M = { (z1,22),3¢ € [0,40], 3x € [x] (¢)

z1 = 21 (t) + d(¢). cos (z3 (¢) + 4 (1)) ;
zp = x2 (1) + d().sin (z3 () + z4(t)) }



(left) set of boxes enclosing the map;
(right) approximation of the map




