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1 V-stability



Vaimos (IFREMER and ENSTA)







ẋ = f (x)

X1: outside the corridor.

X2: inside the corridor.



Definition. Consider a differentiable function V (x) : Rn→

R. The system is V -stable if
�
V (x) ≥ 0 ⇒ V̇ (x) < 0

�
.

Since

V̇ (x) =
∂f

∂x
(x) · f (x)

Checking the V -stability can be done using using interval

analysis.





Non-holonomic system



2 Tubes

A tube is a function which associates to any t ∈ R a subset

of Rn.



In the machine a tube can be represented by two

stair functions



Example of tubes

[f ] (t) = [1, 2] · t+ sin ([1, 3] · t)

[g] (t) = [a0] + [a1] t+ [a2] t
2 + [a3] t

3

� t

0
[g] (τ) dτ = [a0] t+ [a1]

t2

2
+ [a2]

t3

3
+ [a3]

t4

4
.



3 Positibe invariant tubes



Consider the time dependant system

S : ẋ = f (x, t)

and a tube

G(t) ⊂ Rn, t ∈ R.



The tube G(t) is said to be a positive invariant if

x(t) ∈ G(t), τ > 0⇒ x(t+ τ) ∈ G(t+ τ).



Theorem. Consider the tube

G (t) = {x,g (x, t) ≤ 0}

where g : Rn ×R→ Rm. If the cross out condition





∂gi
∂x

(x, t) .f(x, t) +
∂gi
∂t
(x, t)

� 	
 �
ġi(x,t)

≥ 0

gi (x, t) = 0
g (x, t) ≤ 0

is inconsistent for all (x, t, i), then G (t) is a capture tube

for S : ẋ = f (x, t) .



A software Bubbibex (using Ibex) made by students from

ENSTA Bretagne for MBDA uses interval analysis to prove

the inconsistency.



4 Lattice and capture tubes



Consider S : ẋ = f (x, t).

If T is the set of tubes and Tc is the set of all capture tubes

of S then (Tc,⊂) is a sublattice of (T,⊂).



We have indeed
�
G1(t) ∈ Tc

G2(t) ∈ Tc
⇒

�
G1(t) ∩G2(t) ∈ Tc

G1(t) ∪G2(t) ∈ Tc



5 Computing capture tubes



If G(t) ∈ T, define

capt (G(t)) =

�

G(t) ∈ Tc | G(t) ⊂ G(t)
�
.

This set is the smallest capture tube enclosing G(t).



Problem. GivenG(t) ∈ T, compute an interval
�
G−(t),G+(t)

�
∈

IT such that

capt (G(t)) ∈
�
G
−(t),G+(t)

�
.





Flow. The flow associated with Sf : ẋ = f (x, t) is a

function φt0,t1 : R
n→ Rn such that

ẋ = f (x, t)⇒ φt0,t1 (x (t0)) = x (t1) .



Proposition. For the system Sf : ẋ = f (x, t) and the

tube G(t), we have

capt (G(t)) = G(t) ∪∆G(t),

with

∆G(t) = {(x, t) | ∃ (x0, t0) satisfying the cross out condition
t ≥ t0, φt0,t (x0) /∈ G(t) }

Recall the cross out condition:





∂gi
∂x (x, t) .f(x, t) +

∂gi
∂t (x, t) ≥ 0

gi (x, t) = 0
g (x, t) ≤ 0





6 Pendulum



Pendulum:
�
ẋ1 = x2
ẋ2 = − sinx1 − 0.15 · x2



The energy

E (x) =
1

2
ẋ21 − cosx1 + 1 =

1

2
x22 − cosx1 + 1

allows us to find candidate for the positive invariant tube:

g (x, t) = E (x)− 1 =
1

2
x22 − cosx1.



The cross-out conditions





(i)
�
sinx1 x2

�� x2
− sinx1 − 0.15 · x2

�

= −0.15 · x22 ≥ 0,

(ii) 1
2x
2
2 − cosx1 = 0.

has two solutions: x =
�
±π2 , 0

�
.



Without considering the energy, we consider, as an candi-

date tube:

g (x, t) = x21 + x
2
2 − 1.



(a) boxes which enclose the points satisfying the cross-out condition

guaranteed integration ∆G of these boxes; (c) inner approximation C

Capt(G); (d) outer approximation C+ of Capt(G)



7 Dubin’s car



Consider the Dubin’s car





ẋ = cos θ
ẏ = sin θ

θ̇ = u

where u ∈ [−2, 2].



To move toward the target (xd, yd), we take the controller:





n = 1�
(xd−x)

2+(yd−y)
2

�
xd − x
yd − y

�

+ 2�
ẋ2d+ẏ

2
d

�
ẋd
ẏd

�

θd = atan2 (n)
u = −2 · sin (θ − θd) .



Target
�
xd (t) = ρx cos t
yd (t) = ρy sin t.

For the derivative, we get
�
ẋd (t) = −ρx sin t
ẏd (t) = ρy cos t.



Target tube. We want the robot to stay inside the set

G (t) = {x | g (x, t) ≤ 0} ,

with





g1 (x, t) = (x− xd)
2 + (y − yd)

2 − ρ2

g2 (x, t) =
�
cos θ − nx

�n�

�2
+
�
sin θ −

ny
�n�

�2
− α2.



Resolution. We used the solver Bubbibex.

The tube is proved to be unsafe.

Bubbibex is able to compute the margin (i.e., width
��
G−(t),G+(t)

��
).
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