Explore and return with underwater robots in a minimalist environment

Luc Jaulin, Quentin Brateau and Fabrice Le Bars

July 08, 2025, Goa-Brest (Virtual)

1. Underwater navigation

Explore and return in a minimalist environment

Map-based navigation

Modern navigation: high cost (computation, infrastructure)

Route-based navigation

Submeeting 2018

Follow a route

Given a function $h: \mathbb{R}^2 \mapsto \mathbb{R}$, a route in defined by $h(\mathbf{p}) = 0$. h could be the temperature, the radiation, the pressure, the altitude, the time shift between two periodic events.

2. Stable bouncing (phd of Quentin Brateau)

No route exists

Contraction of the distance

Contraction if $\frac{\sin\beta}{\sin\alpha} < 1$

Experiment (phd of Quentin Brateau)

Stability of cycles

The Poincaré first recurrence map is defined by

$$\mathbf{a}(k+1) = \mathbf{p}(\mathbf{a}(k))$$

References

- Interval and stability [2][7]
- Route following [4][5]
- Navigation with stable cycles [3]
- Tubes [6][1]

Analyse par intervalles pour la localisation et la cartographie simultanées ; Application à la robotique sous-marine. PhD dissertation, Université de Bretagne Occidentale, Brest, France, 2011.

🔋 A. Bourgois and L. Jaulin.

Interval centred form for proving stability of non-linear discrete-time systems.

Electronic Proceedings in Theoretical Computer Science, 331:1–17, jan 2021.

Q. Brateau, F. L. Bars, and L. Jaulin.

Navigation without localization using stable cycles.

In ICRA 2025, Submitted, 2025.

🔒 L. Jaulin.

Naviguer comme les polynésiens. ADDA (STATE DE DE 1908) 33 / 34 Interstices, 2019.

T. Nico, L. Jaulin, and B. Zerr. Guaranteed Polynesian Navigation. In *SWIM'19, Paris, France*, 2019.

S. Rohou, B. Desrochers, and F. L. Bars. The codac library.

Acta Cybernetica, 26(4):871-887, 2024.

W. Tucker.

A Rigorous ODE Solver and Smale's 14th Problem.

Foundations of Computational Mathematics, 2(1):53–117, 2002.