Secure a zone with robots

L. Jaulin and B. Zerr

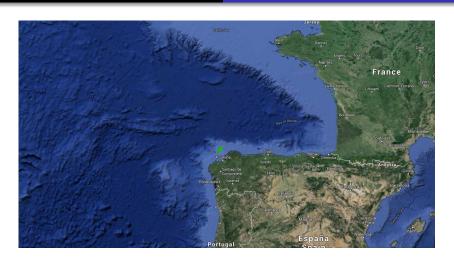
ENSTA-Bretagne, UBO, Lab-STICC

SCAN 2016, Uppsala, 2016

Secure a zone

INFO OBS. Un sous-marin nucléaire russe repéré dans le Golfe de Gascogne

Le navire a été repéré en janvier. Ce serait la première fois depuis la fin de la Guerre Froide qu'un tel sous-marin, doté de missiles nucléaires, se serait aventuré dans cette zone au large des côtes françaises.



Bay of Biscay 220 000 km²

An intruder

- Several robots $\mathcal{R}_1, \dots, \mathcal{R}_n$ at positions $\mathbf{a}_1, \dots, \mathbf{a}_n$ are moving in the ocean.
- If the intruder is in the visibility zone of one robot, it is detected.

Complementary approach

- We assume that a virtual intruder exists inside G.
- We localize it with a set-membership observer inside $\mathbb{X}(t)$.
- The secure zone corresponds to the complementary of $\mathbb{X}(t)$.

Assumptions

The intruder satisfies

$$\dot{\mathsf{x}} \in \mathbb{F}(\mathsf{x}(t)).$$

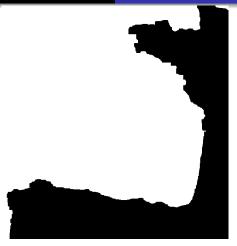
• Each robot \mathcal{R}_i has the visibility zone $g_{\mathbf{a}_i}^{-1}([0,d_i])$ where d_i is the scope.

Theorem. An (undetected) intruder has a state vector $\mathbf{x}(t)$ inside the set

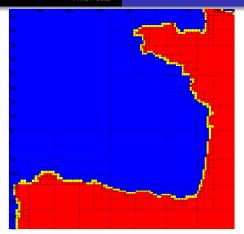
$$\mathbb{X}(t) = \mathbb{G} \cap (\mathbb{X}(t-dt) + dt \cdot \mathbb{F}(\mathbb{X}(t-dt)) \cap \bigcap_{i} g_{\mathbf{a}_{i}(t)}^{-1}([d_{i}(t), \infty]),$$

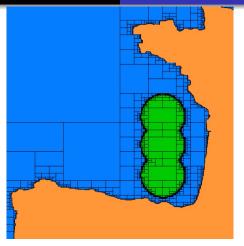
where $\mathbb{X}(0) = \mathbb{G}$. The secure zone is

$$\mathbb{S}(t) = \overline{proj_{world}(\mathbb{X}(t))}.$$

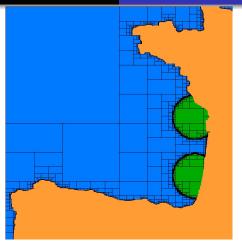


Set \mathbb{G} in white

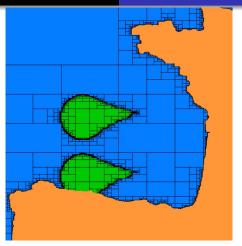




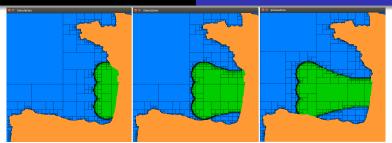
green: $\bigcup_i g_{\mathbf{a}_i(t)}^{-1}([0,d_i(t)])$



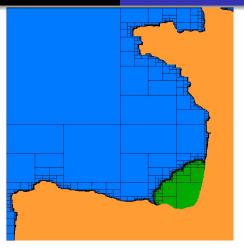
Blue: $\mathbb{G} \cap \bigcap_i g_{\mathbf{a}_i(t)}^{-1}([d_i(t), \infty])$



$$\mathbb{X}(t) = \mathbb{G} \cap (\mathbb{X}(t-dt) + dt \cdot \mathbb{F}(\mathbb{X}(t-dt))) \cap \bigcap_i g_{\mathbf{a}_i(t)}^{-1}([d_i(t), \infty]).$$

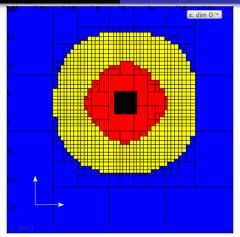


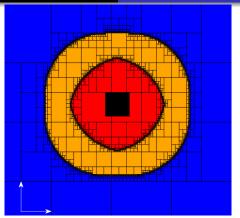
Strategy of the ellipse

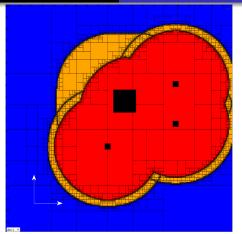


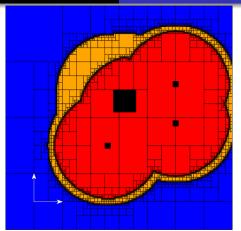
Video: https://youtu.be/rNcDW6npLfE

Thick sets









If $\mathbf{a}_i(t) \in [\mathbf{a}_i](t)$, the thick observer is

$$\llbracket \mathbb{X} \rrbracket (t) = \mathbb{G} \cap (\llbracket \mathbb{X} \rrbracket (t - dt) + dt \cdot \mathbb{F}(\llbracket \mathbb{X} \rrbracket (t - dt))) \cap \bigcap_{i} g_{[\mathbf{a}_{i}](t)}^{-1}(\llbracket [d_{i}(t)], \infty \rrbracket).$$

Non causal secure zone

Idea: Take into account the future. If $\mathbb H$ is the set-membership flow, we have

$$\mathbb{X}(t) = \mathbb{G} \cap (\mathbb{X}(t-dt) + dt \cdot \mathbb{F}(\mathbb{X}(t-dt)))
\cap \bigcap_{t_1 \geq t} \mathbb{H}_{t-t_1} \left(\bigcap_i g_{\mathbf{a}_i(t_1)}^{-1}([d_i(t_1), \infty]) \right).$$