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Control with Lie brackets

1. Control with Lie brackets



Control with Lie brackets

To park, the blue car needs to move sideway



Control with Lie brackets

X] = U1COSX3
Xy = U sinx3
X3 = u



Control with Lie brackets
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Control with Lie brackets

The Lie bracket between the two vector fields f and g is

dg df
fogl="2.f_—".g
f, g o Bt



Control with Lie brackets

The set of vector fields equipped with the Lie bracket is a Lie
algebra. For instance

[f’ [g’h“ + [h7 [fv gH + [g’ [hvf]] =0



Control with Lie brackets

Example. For f(x) = A-x, g(x) =B-x, we have
fel(x) = F -5 8x
= B-A-x—A-B-x

= (BA—AB)-x.



Control with Lie brackets

Consider the system
x =f(x) -u; +g(x) - us.
Apply the following cyclic sequence:

t€10,9] r€[0,28] te€[268,30] t€[30,48] t€[40,50]
u= (1,00 u=(0,1) wu=(-1,00 u=(0,-1) u=(1,0)

where 6 = o(1). We have

x(t+28) = x (1 —28) + [f,g] (x()) 8% +0 (8?).
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Control with Lie brackets

Uy

Uy

f(x) - uy
+ g(x) - u

x = f(x)-a

+ g(x) - a
+ [f,g](x) - a3




Control with Lie brackets

First order Dubins car:
X1
X2
X3
or equivalently

COS X3
X = sinxs

U+

U1 CoSxs3
up sinx3
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Control with Lie brackets

We have
dg df

L) = B - M - S0 e
ax — X <~
00 0 cOs.x3 0 0 —sinxs 0
00 0 sinx; 0 0 cosxs 0
00 0 0 00 0 1
sinx;

= — COSX3
0

We can now move the car laterally.



Control with Lie brackets

If we apply the cyclic sequence, we get

CoS X3 0 sinxs
X = sinxs -ay + 0 -dy + —COSXx3 -as
0 1 0

f(x) g(x) [t.g] (x)



Control with Lie brackets




Control with Lie brackets

We have

X = f(x)-a1+g(x) a+[f,g](x) a3
= A(x)-a

We take a=A"!(x)-w to get x=w, where w = (i4,34,6,).



Control with Lie brackets




Control with Lie brackets

4 N
— @ Wlx = f(x)wu
] + g(x) - up

)

L,,‘ = sign(ag)|—]

coswy 0 sinxg
a= | sinzg 0 —cosxy | - W 5 X

0 1 0

v

wy =K - (p1 — 1)
wy =K - (py — x2)
wy = K - (p3 — x3)
P e E— J

P(f)‘

Right inverse of the first order Dubins car



With drift

2. With drift



With drift

Second order Dubins car

X1 = x4 COS X3
Xy = x4sinxs
X3 = X5
X4 = wu

X5 = up



With drift

X4 COSX3
X4 Sinx3

X = X5 + “up
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With drift

To use a backstepping technique we decompose the system as a
chain of right invertible systems.



With drift
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The system .#, | is the right inverse of .7

y=S ()= 0S (v) =



With drift

u S y 851_ V. &ou v

The system .7, ! is the left inverse of .7: v=.,"0.%(u) ~u



With drift

i i " Ly T = T4C08T3
1 — J_ . .
Uy ; Ts Ty = X480 T3
Ty = U9 .
I3 = Iy




With drift

£ = COS I3
T4 S = o !
: ro = @y 8N T3
.L) Uy T4 = U X5 3?2 o
’ “z | ‘ = fg = 3
m w = K(n ) Uso = i -
Ch Uy = K(’Ug 5
¥ = 208 T3
U ) = W (- .
To = vy STy
U9 . )
T3 = U2




With drift

] = v cosTy

Ty = vysinaxg
T3 = Uy

cosxy 0 sinxg
x=| sinazz 0 —coszz | -a
0 1 0




With drift

—1
cosxy 0 sinxg cosxzz 0 sinxg
a=| sinzg 0 —coszy | -wl—2 x=| sinzg 0 —cosxz | -a
0 1 0 0 1 0
Ty [




With drift

-

P wy = K- (pl — :El) :l::l = wp

P2 wy=K - (pp—mp)——| %2 = W

P3 w3y = K - (p3 — z3) T3 = w3
X




With drift
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With drift




3. Swim disk
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The state equations are

X1 = —Xx1- ‘X1 ’ +u
Xy = —u
S )
X3 = X1
X4 = X

Can we control the two angles x3,x4 independently?
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Consider

a2
B = —u

Note that the small-time local controllability can only be obtained
for driftless states.

For .7, the driftless states have the form X = (0,X2).

We want to control both x; and x,.



Linearization approach
The linearized system around X

A\ _ (00N (m\ (1),

sz - 0 0 X2 —1
does not satisfy the controllability criterion. Indeed, the rank of the
controllability matrix is one.



With Lie brackets
Our system .#] has the form

(2)- () ()

If at a driftless state X, the Lie ideal Lie(f,g) spans all directions of
R", then we can generally conclude that the system is locally
accessible.



For our system, we generate Lie(f,g) as follows

et ngf_O b —x1 - |xq —2[x1] 0 1
(HINREERIE
_ X1
- 0









We observe that any element of Lie(f,g) cancels at any driftless
state X = (0,X,)
The criterion based on the Lie brackets fails.



A feasible path y(s) for 7] fromato b



Proposition. Any state of the system .} is accessible from any
initial state.




Average stability



The function x(¢) : RT™ — R converges to zero on average, we will

write x = 0 if .
lim | x(7)dt€R

t—o0 ()



Example. The function x(z) = (t%l)t2 satisfies x 5 0.
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The system x = f(x) is stable on average if,

a

v¥x(0),x:(1) % 0



A system x = f(x,u) is stabilizable on average if there exists a
control u() such that the system is stable on average.



A system x = f(x,u) is right invertible on average if for all ® € R",
there exists u(z) such that z=f(z+ w,u) is stabilizable on average.
It means that z=x—® > 0.



Speed control of the swim

disk



We want a controller for

(5,1:{ o= x| 4w

X = —u

which stabilizes x at a given (®;,®;) on average.



A swim cycle with parameters ¢, a, b, ®



Proposition. The system:

X] - —X1 ‘X1 ’ 1 )
—_——— ——— — N——
X f(x) g(x)

can follow any swim cycle. Moreover, along the swim cycle, the

period is
T 2e 2e
a2 b
and the average is
Zb b2
0 = ; fO xi(1) = aazibza
1 (T (0—a)b*+(w—b)d*

o = 7fyx(t) = o)



Proposition. The parameters (a,®,e) of the swim cycle
corresponding to @y, w,,T,b are

0=+ 0
= —b\/b2—4(w;—b) @y
- 2(b—w
_ ( T 1)
€=z, 7
a2 b2
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The blue controller is the right inverse of .} in average
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The controller leads (x;,x;) to the desired speeds (o, @) = (—2,1)



Position control of the swim

disk



Swim disk
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(1,2)

the desired position

(X3 y X4

ller leads the output
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A damping is added at time t =3



Experiment



https://youtu.be/IB_A 1ePN34



Swim disk




Swim disk
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Swim disk
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