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Introduction



Overview

Interval analysis [Sun58, MY59, KK96, JKDW01]: numerical tool to solve nonlinear
problems encountered in engineering

Computing all global minimizers of a non-convex cost function [Han92],

Computing all solutions of a set of nonlinear equations [Neu90],

Characterizing sets defined by nonlinear inequalities [Moo92, JW93a],

Solving ODEs [BM98, HBM01]

...

Results provided by interval analysis are guaranteed

Unlike classical numerical approaches (Monte-Carlo or local methods)

even when strong nonlinearities and discontinuities appear in the problem.

3 / 282



Overview

Interval analysis [Sun58, MY59, KK96, JKDW01]: numerical tool to solve nonlinear
problems encountered in engineering

Computing all global minimizers of a non-convex cost function [Han92],

Computing all solutions of a set of nonlinear equations [Neu90],

Characterizing sets defined by nonlinear inequalities [Moo92, JW93a],

Solving ODEs [BM98, HBM01]

...

Results provided by interval analysis are guaranteed

Unlike classical numerical approaches (Monte-Carlo or local methods)

even when strong nonlinearities and discontinuities appear in the problem.

3 / 282



Overview

Guaranteed:

properties of results provided using interval analysis may be proved numerically.

limited precision of representation of numbers on computers taken into account.
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Overview

Characteristics led to the design of guaranteed parameter and state estimators for
non-linear models [Moo92, JW93a, KW06, KW11]

provide sets containing all values of the parameter or state vector that are consistent
with

considered model structure
bounds on modeling error.

Variants of parameter and state bounding can be made very robust to outliers due,
e.g., to defective sensors [KJWM00].

Well suited to distributed implementation within networks of wireless sensors [Kie09].

Guaranteed characterization of asymptotic and non-asymptotic confidence regions
[Jau06, KW14].
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Overview

Application domains

robotics,

chemistry,

communications,

celestial mechanics,

etc.
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Introduction - Motivation

Outline

1 Introduction - Motivation

2 Estimation problems revisited
Parameter bounding
Robust estimation
Confidence region characterization for Bayesian estimation
Non-asymptotic confidence region characterization

3 Main ideas and ressources
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Introduction - Motivation

Introduction - Motivation

Purpose of this tutorial

Reformulate various estimation problems as set inversion / constraint satisfaction
problems

Introduce interval methods and constraint propagation techniques

Show efficient solvers using these tools

Illustrate with examples taken from biology, robotics, and communication

Particular attention given to robust and distributed estimation problems
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Estimation problems revisited

Estimation problems revisited

Classical estimation problems such as

Parameter estimation

Robust estimation

Estimator confidence region characterization

are formulated as set inversion / constraint satisfaction problems
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Estimation problems revisited Parameter bounding

Parameter bounding I

Consider a typical (non-linear) estimation problem

System

Model
( )M p

y t( )

y tm( , )p

y = (y (t1) , . . . ,y (tn))T : vector of experimental data
p : vector of unknown, constant parameters
ym (p) = (ym (p,t1) , . . . ,ym (p,tn))T : vector of model outputs

Parameter estimation:

Determine p̂ from y.
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Estimation problems revisited Parameter bounding

Parameter bounding II

Classical problem formulation:

Minimisation of a cost function
p̂ = argmin

p
j (p)

for example
j (p) = (y−ym (p))T (y−ym (p))

Local techniques: Gauss-Newton, Levenberg-Marquardt. . .

Random search: simulated annealing, genetic algorithms. . .

Global guaranteed techniques: Hansen’s algorithm
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Estimation problems revisited Parameter bounding

Parameter bounding III

Alternative formulation:

Parameter bounding
[εi ] = [ε i ,ε i ], known acceptable errors around y (ti ) at time ti , i = 1, . . . ,n
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Estimation problems revisited Parameter bounding

Parameter bounding IV

p ∈P0 deemed acceptable if for all i = 1, . . . ,n,

ε i 6 y (ti )−ym (p,ti ) 6 ε i .

=⇒ Bounded-error parameter estimation:

Characterize S = {p ∈P0 | y (ti )−ym (p,ti ) ∈ [ε i ,ε i ] , i = 1, . . . ,n}
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Estimation problems revisited Parameter bounding

Parameter bounding V

S
1

S
2

S
3

S

S =
⋂

`=1...,n
S`,

with

S` = {p ∈P0 | ym` (p)−y` ∈ [ε`,ε`]}

= P0∩ (ym` )−1 ([y`− ε`,y`− ε`])

Set-inversion problem
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Estimation problems revisited Parameter bounding

Parameter bounding VI

When ym (p,ti ) is linear in p

exact description by polytopes ([WPL88],. . .)
outer approximation by ellipsoids, polytopes, ...([Sch68, FH82],...)

When ym (p,ti ) is non-linear in p

outer approximation by polytopes, ellipsoids. . . ([Nor87, CG90, Cer91, Cer96],...)
approximate but guaranteed enclosure of S by Set Inversion via Interval Analysis
([Moo92, JW93b][Moo92, JW93b],...)
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Estimation problems revisited Parameter bounding

Parameter bounding VII

S
1

S
2

S
3

S

S =
⋂

`=1...n
S`, with S`=

{
p ∈P0 | ym` (p)−y` ∈ [ε`,ε`]

}
ML estimate of p assuming independent noise samples bounded in [ε`,ε`].

Interval analysis allows to get
S⊂ S⊂ S

No consistent p is missed =⇒ guaranteed set estimate.
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Estimation problems revisited Robust estimation

Outline
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Estimation problems revisited Robust estimation

Robust estimation I

Assume now that sensor provides sometimes erroneous measurements

S
1

S
2

S
3

Solution set may be empty
S =

⋂
`=1...n

S` = /0.

Hypothesis on model or noise violated
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Estimation problems revisited Robust estimation

Robust estimation II

S
r

1

S
2

S
3

S
1

Estimator robust against q outliers

Srq =
⋃

16`1<···<`q6n

⋂
6̀=`1,..., 6̀=`q

S`

=

{q}⋂
S`

Union of all intersections of n−q sets among n
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Estimation problems revisited Robust estimation

Robust estimation III

S
r

1

S
2

S
3

S
1

Non-combinatorial alternative definition

Srq =

{
p ∈P0 |

q

∑
`=1

t` (p)≥ n−q

}
with

t` (p) = (ym` (p)−y` ∈ [ε`,ε`])

Interval analysis: enclosure of Sr
q evaluated with a complexity of the order of that of S
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Estimation problems revisited Confidence region characterization for Bayesian estimation
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Estimation problems revisited Confidence region characterization for Bayesian estimation

Confidence region characterization I

Assume that
y = ym(p) +n,

where

n is the noise vector with distribution πn (n),

y is the data vector

p is the parameter vector with prior distribution πprior(p)

ym(p) is the model function.
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Estimation problems revisited Confidence region characterization for Bayesian estimation

Confidence region characterization II

Using Bayes’ rule

πpost(p) =
πn(y−ym(p)).πprior(p)∫

p∈Rn πn(y−ym(p)).πprior(p)dp
.

To obtain the maximum a posteriori estimate p̂MAP, one maximizes

f (p) = πn(y−ym(p)).πprior(p),

since denominator is constant (...and difficult to evaluate).
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Estimation problems revisited Confidence region characterization for Bayesian estimation

Confidence region characterization III

But, some difficulties may be encountered

Parameters of model may not be identifiable uniquely
↪→ different values of p̂MAP may yield the same ym (p̂MAP)

Numerical algorithm to compute p̂MAP may get trapped at local minimizer

Even if single p̂MAP is obtained and if y ' ym (p̂MAP), p̂MAP cannot be considered
as final answer to the estimation problem
↪→ quality tag is missing.

p̂i = 1.2345±10−4 is quite different of p̂i = 1.2345±103.
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Estimation problems revisited Confidence region characterization for Bayesian estimation

Confidence region characterization IV

Classical approaches are based on

Level-set [WP97].-

Monte-Carlo techniques [WP97].

Evaluation of the density of the estimator [Kay93].

Bounded-error estimation [MNPLW96, JKDW01].
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Estimation problems revisited Confidence region characterization for Bayesian estimation

Confidence region characterization V

The set Sα defined by
(i) Sα = f −1 ([sα ,+∞[) ,

(ii)
∫
Sα

f (p)dp∫
Rn f (p)dp = α.

is the α% confidence region associated with the unnormalized pdf f .
It corresponds to the smallest set which contains p with a probability equal to α.

Characterizing Sα is a parametric set-inversion problem
The parameter sα has to be determined
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Estimation problems revisited Confidence region characterization for Bayesian estimation

Confidence region characterization VI

Example:
Consider a random variable p, described by the unnormalized pdf:

f (p) = exp
(
−p2

2

)
.

Let us compute its confidence region S0.95. Since,∫
∞

−∞

exp
(
−p2

2

)
dp =

√
2π,

we should solve
(i) S0.95 = f −1([sα ,+∞]),

(ii) 1√
2π

∫
Sα

f (p)dp = 0.95.
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Estimation problems revisited Confidence region characterization for Bayesian estimation

Confidence region characterization VII

For this example, S0.95 = [−b,b]. Thus

(i) [−b,b] = f −1([sα ,+∞]),

(ii) 1√
2π

∫ b
−b exp

(
−p2

2

)
dp = 0.95.
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Estimation problems revisited Confidence region characterization for Bayesian estimation

Confidence region characterization VIII

After integration
(i) [−b,b] = f −1([sα ,+∞]),

(ii) erf
( 1
2b
√
2
)

= 0.95.

We get b = 1.96, which corresponds to the well-known result

S0.95 = [−1.96,1.96].

sα = f (b) = exp
(
−1.962

2

)
= 0.1465.
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Estimation problems revisited Confidence region characterization for Bayesian estimation

Confidence region characterization IX

Interval analysis allows to get
guaranteed inner and outer-approximations of Sα

when f (p) is not that nice (non-gaussian, multimodal...), see also [Jau06].
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Estimation problems revisited Non-asymptotic confidence region characterization
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Estimation problems revisited Non-asymptotic confidence region characterization

Non-asymptotic confidence region characterization I

Classical approaches for confidence region characterization, based on

Level-set [WP97].

Monte-Carlo techniques [WP97].

Evaluation of the density of the estimator [Kay93].

Bounded-error estimation [MNPLW96, JKDW01].

rely on hypotheses on noise corrupting data

difficult to check from residuals y−ym (p̂) when n is large,

impossible to check when only few data points.
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Estimation problems revisited Non-asymptotic confidence region characterization

Non-asymptotic confidence region characterization II

Campi et al. [CW05, DWC07, CCW12] propose two new approaches

Leave-out Sign-dominant Correlated Regions (LSCR)

Sign-Perturbed Sums (SPS)

providing

exact characterization of parameter uncertainty

in non-asymptotic conditions.

Hypotheses
1 System generating data must belong to model set (true value p∗ should be

meaningful)
2 Noise samples must be independently distributed with distributions symmetric with

respect to zero.
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Estimation problems revisited Non-asymptotic confidence region characterization

Non-asymptotic confidence region characterization III

With LSCR and SPS, obtaining a prescribed level confidence region aims at characterizing

Ψq =

{
p ∈ P such that

m

∑
i=1

τi (p) > q

}
,

where τi (p) is some indicator function

τi (p) =

{
1 if fi (p) > 0,
0 else,

and where fi (p) depends on the model structure, the measurements, and p.
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Estimation problems revisited Non-asymptotic confidence region characterization

Non-asymptotic confidence region characterization IV

In LSCR (and SPS), one has to characterize

Ψq =

{
p ∈ P such that

m

∑
i=1

τi (p) > q

}
,

¿1(p)=1

¿5(p)=1

q=1 (80 %) q=2 (60 %) q=3 (40 %)
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Estimation problems revisited Non-asymptotic confidence region characterization

Non-asymptotic confidence region characterization V

¿1(p)=1

¿5(p)=1

q=1 (80 %) q=2 (60 %) q=3 (40 %)

Characterization

approximate using gridding in [CW05, DWC07, CCW12].

guaranteed using interval analysis here, see also [KW14].

38 / 282



Main ideas and ressources
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Main ideas and ressources

Main ideas of interval analysis

Interval analysis:

tool to evaluate guaranteed outer-approximation
of the range of a function over intervals

Useful to perform numerical proofs

function is positive / negative over a given interval

range of a function is included in some interval

range of a function does not contain 0.

Results still valid on computers using limited-precision representation of numbers.
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Main ideas and ressources

Fathers of interval analysis

Introduced by Sunaga [Sun58] in Japan and by Moore [MY59, Moo66] in the USA

Introduce basics of interval analysis and inclusion functions

Provides efficient techniques to
perform guaranteed deterministic global optimization,
evaluate all solutions of a set of nonlinear equations,
compute inner and outer approximation of the set of vectors consistent with a set of
inequalities,
perfom guaranteed numerical integration of ODE...

Limited impact until beginning of the 90s
=⇒ various reasons, among which implementation issues
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Main ideas and ressources

Ressources

Many books, code libraries, lists

http://www.cs.utep.edu/interval-comp/main.html

Intlab: Matlab Interval analysis toolbox

http://www.ti3.tu-harburg.de/rump/intlab

IBEX: C++ library for constraint processing over real numbers

http://www.ibex-lib.org

Interval analysis: Ongoing standardization process IEEE P1788.
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Tools and algorithms



Interval analysis: Basic tools

Outline

4 Interval analysis: Basic tools
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Contractors
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Propagation
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Interval analysis: Basic tools Interval of real numbers

Intervals of real numbers I

Closed and bounded subset of R

[x ] = [x ,x ] = {x ∈ R|x ≤ x ≤ x} .

It is a set =⇒ notions such as
=,∈,⊂,∩

are well defined.

When considering ∪
[x ]∪ [y ] =

[
min(x ,y),max(x ,y)

]
.
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Interval analysis: Basic tools Interval of real numbers

Intervals of real numbers II

Width of an interval
w ([x ]) = x−x ,

Midpoint of an interval

m ([x ]) =
x +x
2

.

Lower and upper bounds of an interval

lb ([x ]) = x and ub ([x ]) = x .
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Interval analysis: Basic tools Interval arithmetic
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Interval analysis: Basic tools Interval arithmetic

Interval arithmetic

Intervals seen as sets of real numbers on which arithmetic operations may be performed

[x ]◦ [y ] = {x ◦y |x ∈ [x ] and y ∈ [y ]} , with ◦ ∈ {+,−,×,/}

For example

[3,6] + [4,7] =?[]

= []

= [−, ]
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Interval analysis: Basic tools Interval arithmetic

Interval arithmetic

More specifically
[x ] + [y ] =

[
x +y ,x +y

]
,

[x ]− [y ] =
[
x−y ,x−y

]
,

[x ]× [y ] =
[
min

(
x .y ,x .y ,x .y ,x .y

)
,max

(
x .y ,x .y ,x .y ,x .y

)]
,

[x ]/ [y ] = [x ]×
[
1/y ,1/y

]
, if 0 /∈ [y ] .
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Interval analysis: Basic tools Inclusion functions
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Interval analysis: Basic tools Inclusion functions

Inclusion function I

Consider the range of a function over an interval

f ([x ]) = {f (x) |x ∈ [x ]}

=⇒ difficult to obtain in general
=⇒ sometimes even not an interval.

An inclusion function [f ] (.) of f (.) satisfies

∀ [x ]⊂ R, f ([x ])⊂ [f ] ([x ]) .

Inclusion function is minimal if ⊂ may be replaced by =.
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Interval analysis: Basic tools Inclusion functions

Inclusion function II

Consider a sequence [x ]1 , [x ]2 , . . . such that

[x ]1 ⊃ [x ]2 ⊃ [x ]3 ⊃ . . .

and
lim
n→∞

w ([x ]n) = 0.

A convergent inclusion function satisfies

lim
n→∞

w ([f ] ([x ]n)) = 0.

An inclusion monotonic inclusion function is such that

[x ]⊂ [y ] =⇒ [f ] ([x ])⊂ [f ] ([y ])
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Interval analysis: Basic tools Inclusion functions

Inclusion function III

Minimal inclusion functions easy to build for monotone functions√
[x ] =

[√
x ,
√
x
]
, if x ≥ 0,

exp([x ]) = [exp(x) ,exp(x)] ,

tan([x ]) = [tan(x) ,tan(x)] , if [x ]⊆ [−π/2,π/2] .

More complicated for other elementary functions
=⇒ algorithm required for sin,cos, . . .
=⇒ natural inclusion function
=⇒ centred forms...
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Interval analysis: Basic tools Inclusion functions

Natural inclusion function I

Usually, an inclusion function is not minimal

f x( ) f x( )

x x

[ ]x [ ]x

[ ]([ ])f x [ ]([ ])f x

=⇒ some overestimation of the range (pessimism).

Natural inclusion function
⇓

Remplace each real variable by its interval counterpart
x −→ [x ]
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Interval analysis: Basic tools Inclusion functions

Natural inclusion function II

Example:

f1(x) = x(x +1), f3(x) = x2 +x ,
f2(x) = x×x +x , f4(x) = (x + 1

2 )2− 1
4 .

Results for [x ] = [−1,1]

[f1] ([x ]) = [x ] ([x ] +1) = [−2,2] ,

[f2] ([x ]) = [x ]× [x ] + [x ] = [−2,2] ,

[f3] ([x ]) = [x ]2 + [x ] = [−1,2] ,

[f4] ([x ]) =
(
[x ] + 1

2
)2− 1

4 =
[
− 1

4 ,2
]
.

Only [f4] (.) is minimal ⇐⇒ minimum number of occurences of the interval variable
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Interval analysis: Basic tools Inclusion functions

Natural inclusion function III

Example:

1

2

3

4

-1

-2

-1-2 1

0
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Interval analysis: Basic tools Inclusion functions

Centred forms

For f : D −→ R, differentiable over [x ]⊂D , one has ∀x ,m ∈ [x ] , ∃ξ ∈ [x ] such that

f (x) = f (m) + (x−m) f ′ (ξ ) .

Then
f (x) ∈ f (m) + (x−m) f ′ ([x ]) ,

and
f ([x ])⊆ f (m) + ([x ]−m)

[
f ′
]

([x ]) .

Centred form: inclusion function defined by

[f ]c ([x ]) = f (m) + ([x ]−m)
[
f ′
]

([x ])
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Interval analysis: Basic tools Inclusion functions

Centred forms I

Interpretation of the centred form
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Interval analysis: Basic tools Inclusion functions

Centred forms II

Example:
Consider

f (x) = x2 exp(x)−x exp
(
x2
)
.

Compare the natural inclusion fonction and the centred form

[x ] f ([x ]) [f ] ([x ]) [f ]c ([x ])

[0.5,1.5] [−4.148,0] [−13.82,9.44] [−25.07,25.07]
[0.9,1.1] [−0.05380,0] [−1.697,1.612] [−0.5050,0.5050]

[0.99,1.01] [−0.0004192,0] [−0.1636,0.1628] [−0.004656,0.004656]
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Extension to vectors of intervals

Vector of intervals or box
[x] = [x1]×·· ·× [xn] .

Vector inclusion function
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Subpavings I

A subpaving of Rn is a set of non-overlapping boxes of Rn.
Compact sets X can be bracketed between inner and outer subpavings:

X− ⊂ X⊂ X+.
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Subpavings II

For example, the set

X =
{

(x1,x2)
∣∣∣ x21 +x22 + sin(x1 +x2) ∈ [4,9]

}
can be approximated by the subpavings X− and X+.

67 / 282



Interval analysis: Basic tools Numerical proofs

Outline

4 Interval analysis: Basic tools
Interval of real numbers
Interval arithmetic
Inclusion functions
Interval vectors or boxes
Subpavings
Numerical proofs

5 Interval analysis: Basic algorithms
Set inversion
Simple illustration on bounded-error estimation
Contractors
Projection of constraints
Propagation
Contractor algebra
Relaxed intersection

68 / 282



Interval analysis: Basic tools Numerical proofs

Numerical proofs using interval analysis

Consider an inclusion function [f ] (.) of f (.). It satisfies

∀ [x ]⊂ R, f ([x ])⊂ [f ] ([x ]) .

Then

0 /∈ [f ] ([x ]) =⇒ 0 /∈ f ([x ])

[f ] ([x ])⊂ [0,∞[ =⇒ f (x) > 0, ∀x ∈ [x ]

But

0 ∈ [f ] ([x ]) does not necessarily imply 0 ∈ f ([x ])
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Interval analysis: Basic algorithms

Several basic algorithms will be considered

Set Inversion via Interval Analysis (SIVIA)

Contractors

Relaxed contractors
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Set Inversion I

Consider f : Rn→ Rm and Y⊂ Rm and define

X = {x ∈ Rn | f(x) ∈ Y}= f−1(Y).
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Set Inversion II

Example:
Characterizing the set

X = {x ∈ R2 | x1x2 + sinx2 ≤ 0 and x1−x2 = 1}.

is a set inversion problem. Indeed
X = f−1(Y)

with

f (x) =

(
x1x2 + sinx2

x1−x2

)
and Y = [−∞,0]×{1} .
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Set Inversion III

Basic tests

(i) [f]([x])⊂ Y ⇒ [x]⊂ X
(ii) [f]([x])∩Y = /0 ⇒ [x]∩X = /0.

Boxes for which these tests failed, will be bisected, except if they are too small.

?

x2

x1

ym

[ ]([ ])xym

([ ])x

Y

X
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Set Inversion IV

Basic tests

(i) [f]([x])⊂ Y ⇒ [x]⊂ X
(ii) [f]([x])∩Y = /0 ⇒ [x]∩X = /0.

Boxes for which these tests failed, will be bisected, except if they are too small.

?

Y

x2

x1

P ym

[ ]([ ])xym

([ ])x

76 / 282



Interval analysis: Basic algorithms Set inversion

Set Inversion V

Basic tests

(i) [f]([x])⊂ Y ⇒ [x]⊂ X
(ii) [f]([x])∩Y = /0 ⇒ [x]∩X = /0.

Boxes for which these tests failed, will be bisected, except if they are too small.

?

Y

x2

x1

ym

[ ]([ ])xym

X
([ ])x
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Set Inversion VI

Algorithm Sivia(in:[x]0, f,Y)
1 L := {[x]0} ;
2 pull [x]from L ;
3 if [f]([x])⊂ Y, draw([x], ’red’);
4 elseif [f]([x])∩Y = /0, draw([x], ’blue’);
5 elseif w([x]) < ε, {draw ([x], ’yellow’)};
6 else bisect [x]and push into L ;
7 if L 6= /0, go to 2
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Simple illustration on bounded-error estimation I

Example.
Model:

ym (p,t) = p1e−p2t

.
Prior feasible box for the parameters:

[p]⊂ Rnp

Measurement times:
t1,t2, . . . ,tn

Data bars:
[y−1 ,y+

1 ], [y−2 ,y+
2 ], . . . , [y−n ,y+

n ]

S = {p ∈ [p],ym (p,t1) ∈ [y−1 ,y+
1 ], . . . ,ym (p,tn) ∈ [y−n ,y+

n ]}.
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Simple illustration on bounded-error estimation II

If

ym (p) =

 ym (p,t1)
...

ym (p,tn)


and

[y] = [y−1 ,y+
1 ]×·· ·× [y−n ,y+

n ]

then
P = [p]∩y−1m ([y]) .
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Contractors

To characterize X⊂ Rn, bisection algorithms bisect all boxes in all directions and become
inefficient when n increase.

Interval methods can still be useful if

the solution set X is small (optimization problem, solving equations),

contraction procedures are used as much as possible,

bisections are used only as a last resort.

Contractors allow to fight the curse of dimensionality.
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Definitions I

The operator CX : IRn→ IRn is a contractor for the set X ⊂ Rn if

∀ [x] ∈ IRn,

{
CX([x])⊂ [x] (contractance),
CX([x])∩X = [x]∩X (completeness).
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Definitions II
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Definitions III
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Definitions IV

The operator C : IRn→ IRn is a contractor for the equation or constraint f (x) = 0, if

∀ [x] ∈ IRn,

{
C ([x])⊂ [x]
x ∈ [x] and f (x) = 0⇒ x ∈ C ([x])
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Projection of constraints I

Let x ,y ,z be 3 variables such that

x ∈ ]−∞,5],

y ∈ ]−∞,4],

z ∈ [6,∞[,

z = x +y .

The values < 2 for x , < 1 for y and > 9 for z are inconsistent.
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Projection of constraints II

To project a constraint (here, z = x +y), is to compute the smallest intervals which
contains all consistent values.

For our example, this amounts to project onto x ,y and z the set

S ={(x ,y ,z) ∈ ]−∞,5]× ]−∞,4]× [6,∞[ | z = x +y} .
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Numerical method for projection I

Since x ∈]−∞,5],y ∈]−∞,4],z ∈ [6,∞[ and z = x +y , we have

z = x +y ⇒ z ∈ [6,∞[∩(]−∞,5]+]−∞,4])
= [6,∞[∩]−∞,9]
= [6,9].

x = z−y ⇒ x ∈ ]−∞,5]∩ ([6,∞[−]−∞,4])
=]−∞,5]∩ [2,∞[
= [2,5].

y = z−x ⇒ y ∈ ]−∞,4]∩ ([6,∞[−]−∞,5])
=]−∞,4]∩ [1,∞[
= [1,4].
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Numerical method for projection II

The contractor associated with z = x +y is

Algorithm pplus(inout: [z], [x ], [y ])
1 [z] := [z]∩ (]x ] + [y ]) ;
2 [x ] := [x ]∩ (]z]− [y ]) ;
3 [y ] := [y ]∩ (]z]− [x ]) .
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Numerical method for projection III

Projection procedure developed for plus can be extended to other ternary constraints
such as mult: z = x ∗y , or equivalently

mult,
{

(x ,y ,z) ∈ R3 | z = x ∗y
}
.

Resulting projection procedure becomes

Algorithm pmult(inout: [z], [x ], [y ])
1 [z] := [z]∩ (]x ]∗ ]y ]) ;
2 [x ] := [x ]∩ (]z]∗1/[y ]) ;
3 [y ] := [y ]∩ (]z]∗1/[x ]) .
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Numerical method for projection IV

Consider the binary constraint

exp, {(x ,y) ∈ Rn|y = exp(x)} .

Associated contractor

Algorithm pexp(inout: [y ], [x ])
1 [y ] := [y ]∩ exp([x ]) ;
2 [x ] := [x ]∩ log ([y ]) .
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Numerical method for projection V

Any constraint for which such a projection procedure is available is a primitive constraint.

Consider for example the primitive equation:

x2 = sinx1.
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Numerical method for projection VI
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Numerical method for projection VII

Forward contraction
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Numerical method for projection VIII

Backward contraction
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Interval analysis: Basic algorithms Projection of constraints

Decomposition

The constraints

x + sin(xy) 6 0,
x ∈ [−1,1], y ∈ [−1,1]

can be decomposed into
a = xy
b = sin(a)
c = x +b

,
x ∈ [−1,1] a ∈]−∞,∞[
y ∈ [−1,1] b ∈]−∞,∞[

c ∈]−∞,0]
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Forward-backward contractor (HC4 revise)

For the equation
(x1 +x2) ·x3 ∈ [1,2] ,

we have the following contractor:

Algorthm C (inout[x1] , [x2] , [x3])
[a] = [x1] + [x2] // a = x1 +x2
[b] = [a] · [x3] // b = a ·x3
[b] = [b]∩ [1,2] // b ∈ [1,2]

[x3] = [x3] ∩ [b]
[a]

// x3 = b
a

[a] = [a] ∩ [b]
[x3]

// a = b
x3

[x1] = [x1] ∩ [a]− [x2] // x1 = a−x2
[x2] = [x2] ∩ [a]− [x1] // x2 = a−x1
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Contractor on images I

The robot with coordinates (x1,x2) is in the water.
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Contractor on images II

The robot with coordinates (x1,x2) is in the water.
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Propagation - first example I

Consider the system of two equations.

y = x2

y =
√
x .
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Propagation - first example II

We can build two contractors

C1 :

{
]y ] = [y ]∩ ]x ]2

]x ] = [x ]∩
√

]y ]
associated to y = x2

C2 :

{
]y ] = [y ]∩

√
]x ]

]x ] = [x ]∩ ]y ]2
associated to y =

√
x
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Propagation - first example III

Contractor graph
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Propagation - first example IV
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Propagation - first example V
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Propagation - first example VI

109 / 282



Interval analysis: Basic algorithms Propagation

Propagation - first example VII
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Propagation - first example VIII
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Propagation - first example IX
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Propagation - first example X
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Propagation - first example XI
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Propagation - first example XII
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Propagation - second example I

Consider the system {
y = 3sin(x)
y = x x ∈ R, y ∈ R.
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Propagation - second example II
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Propagation - second example III
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Propagation - second example IV
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Propagation - second example V
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Propagation - second example VI
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Propagation - second example VII
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Propagation - second example VIII
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Propagation - second example IX
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Propagation - second example X
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Propagation - second example XI

126 / 282



Interval analysis: Basic algorithms Contractor algebra

Outline

4 Interval analysis: Basic tools
Interval of real numbers
Interval arithmetic
Inclusion functions
Interval vectors or boxes
Subpavings
Numerical proofs

5 Interval analysis: Basic algorithms
Set inversion
Simple illustration on bounded-error estimation
Contractors
Projection of constraints
Propagation
Contractor algebra
Relaxed intersection

127 / 282



Interval analysis: Basic algorithms Contractor algebra

Contractor algebra

intersection (C1∩C2)([x])
def
= C1 ([x])∩C2 ([x])

union (C1∪C2)([x])
def
= [C1 ([x])∪C2 ([x])]

composition (C1 ◦C2)([x])
def
= C1 (C2 ([x]))

repetition C ∞ def
= C ◦C ◦C ◦ . . .

repeat intersection C1uC2 = (C1∩C2)∞

repeat union C1tC2 = (C1∪C2)∞
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Example I

Domains

E ∈ [23V ,26V ]; I ∈ [4A,8A];

U1 ∈ [10V ,11V ];U2 ∈ [14V ,17V ];

P ∈ [124W ,130W ];R1 ∈ [0,∞[ and R2 ∈ [0,∞[.
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Example II

Constraints
(i) P = EI , (ii) E = (R1 +R2) I , (iii) U1 = R1I ,
(iv) U2 = R2I , (v) E = U1 +U2.
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Example III

Before propagation, we have

E ∈ [23V ,26V ]; I ∈ [4A,8A];

U1 ∈ [10V ,11V ];U2 ∈ [14V ,17V ];

P ∈ [124W ,130W ];R1 ∈ [0,∞[ and R2 ∈ [0,∞[.

After propagation, we get

E ∈ [24V ,26V ]; I ∈ [4.769A;5.417A] ;

U1 ∈ [10V ,11V ];U2 ∈ [14V ,16V ];

P ∈ [124W ,130W ];R1 ∈ [1.846;2.307[ and R2 ∈ [2.584;3.355[.
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Relaxed intersection - motivation I

A robot located in a plane at (p1,p2) measures its own distance to three marks.
The distances and the coordinates of the marks are

beacon xi yi [di ]
1 1 3 [1,2]
2 3 1 [2,3]
3 −1 −1 [3,4]
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Relaxed intersection - motivation II

The set of all feasible feasible positions is

P =
⋂

i∈{1,2,3}

{
(p1,p2) | (p1−xi )

2 + (p2−yi )
2 ∈

[
d−i ,d+

i
]}

︸ ︷︷ ︸
Pi
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Relaxed intersection - motivation III

P =
⋂

i∈{1,2,3}
Pi =

⋃
i∈{1,2,3}

Pi

=
⋃

i∈{1,2,3}

{
(p1,p2) | (p1−xi )

2 + (p2−yi )
2 ∈

[
−∞,d−i

]}
∪
{

(p1,p2) | (p1−xi )
2 + (p2−yi )

2 ∈
[
d+
i ,∞

]}
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Relaxed intersection - dealing with outliers I

Consider m sets X1, . . . ,Xm of Rn.
The q-relaxed intersection

{q}⋂
Xi

is the set of all x ∈ Rn which belong to all Xi ’s, except q at most:

x ∈
{q}⋂

Xi ⇔ |{i |x ∈ Xi}| ≥m−q
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Relaxed intersection - dealing with outliers II

137 / 282



Interval analysis: Basic algorithms Relaxed intersection

Relaxed intersection - dealing with outliers III

The black box is the 2-intersection of 9 boxes
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Relaxed intersection - dealing with outliers IV
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Relaxed intersection - dealing with outliers V
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Relaxed intersection - dealing with outliers VI
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Relaxed intersection - dealing with outliers VII
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Relaxed intersection - dealing with outliers VIII
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Relaxed intersection - dealing with outliers IX
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Evaluating the q-relaxed intersection I

Consider a list L = {[p1] , . . . , [pm]} of m intervals.

p
2

p
1
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Evaluating the q-relaxed intersection II

Consider a list L = {[p1] , . . . , [pm]} of m intervals.

p
2

p
1

p
1

0

3

2

1
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Evaluating the q-relaxed intersection III

Consider a list L = {[p1] , . . . , [pm]} of m intervals.

p
2

p
1

p
1

0

3

2

1
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Evaluating the q-relaxed intersection IV

Consider a list L = {[p1] , . . . , [pm]} of m intervals.

p
2

p
1

p
1

0

3

2

1

p
2

148 / 282



Interval analysis: Basic algorithms Relaxed intersection

Evaluating the q-relaxed intersection V

Consider a list L = {[p1] , . . . , [pm]} of m intervals.

p
2

p
1

p
1

0

3

2

1

p
2
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Evaluating the q-relaxed intersection VI

Consider a list L = {[p1] , . . . , [pm]} of m intervals.

p
2

p
1

p
1

0

3

2

1

p
2
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Evaluating the q-relaxed intersection VII

Consider a list L = {[p1] , . . . , [pm]} of m intervals.

p
2

p
1

p
1

0

3

2

1

p
2
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Relaxed intersection - bounded-error estimation

Prq =

{q}⋂
i
{p ∈ Rn | fi (p) ∈ [yi ]}

De Morgan’s law

{q}⋂
Xi =

{m−q−1}⋂
Xi

allows to build the following contractors

Ci : fi (p) ∈ [yi ]

Ci : fi (p) /∈ [yi ]

C =

{q}⋂
i

Ci

C =

{q}⋂
i

Ci =

{n−q−1}⋂
Ci

Then we call a paver (e.g., IBEX) with C and C .
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Relaxed intersection - Illustration I

A robot measures distances to three beacons.

beacon xi yi [di ]
1 1 3 [1,2]
2 3 1 [2,3]
3 −1 −1 [3,4]

The intervals [di ] contain the true distance with a probability of π = 0.9.
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Interval analysis: Basic algorithms Relaxed intersection

Relaxed intersection - Illustration II

The feasible sets associated to each data is

Pi =

{
p ∈ R2 |

√
(p1−xi )

2 + (p2−yi )
2−di ∈ [−0.5,0.5]

}
,

where d1 = 1.5,d2 = 2.5,d3 = 3.5.
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Interval analysis: Basic algorithms Relaxed intersection

Relaxed intersection - Illustration III

Probabilistic sets P{0},P{1},P{2}.

155 / 282



Interval analysis: Basic algorithms Relaxed intersection

Relaxed intersection - Illustration with real data I

Robot equipped with a laser rangefinder and a compass.
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Interval analysis: Basic algorithms Relaxed intersection

Relaxed intersection - Illustration with real data II

143 distances collected by the rangefinder ±10cm.
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Interval analysis: Basic algorithms Relaxed intersection

Relaxed intersection - Illustration with real data III

P{16} contains the set all of p consistent with all data except 16.
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Characterization of non-asymptotic confidence region Approaches proposed by Campi et al.

LSCR and SPS

Campi et al. [CW05, DWC07, CCW12] propose two new approaches named LSCR and
SPS

exact characterization of parameter uncertainty

in non-asymptotic conditions.

Hypotheses
1 System generating data must belong to model set (true value p∗ should be

meaningful)
2 Noise samples must be independently distributed with distributions symmetric with

respect to zero.

162 / 282



Characterization of non-asymptotic confidence region LSCR
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Characterization of non-asymptotic confidence region LSCR

LSCR
Introduction - main idea

LSCR [CW05]: leave-out sign-dominant correlated regions

Independent estimates of the correlation of the prediction error

εt (p) = yt −ymt (p)

should have random signs.

Leave out subset of parameter space where sign does not appear random (i.e. is sign
dominant)

Defines, without any approximation,

region Θ to which p∗ belongs with specified probability.
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Characterization of non-asymptotic confidence region LSCR

LSCR
Example

Model ymt (p) = p, with 8 noisy data generated with p∗ = 3.

0 1 2 3 4 5 6

-4

-3

-2

-1

1

2

3

4
s pi,1( )

"

p

7 different empirical correlations of the prediction errors
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Characterization of non-asymptotic confidence region LSCR

LSCR
Description

Consider prediction error
εt (p) = yt −ymt (p)

such that εt(p∗) is realization of noise corrupting data at time t.
1 Select two integers r > 0 and q > 0.

2 For t = 1+ r , . . . ,k + r = n, compute

cε
t−r ,r (p) = εt−r (p)εt (p) .

3 Compute
sε
i ,r (p) = ∑

k∈Ii
cε
k,r (p) , i = 1, ...,m.

where Ii ⊂ I, set of indexes. Collection G of subsets Ii , i = 1, ...,m, forms a group
under the symmetric difference operation, i.e.,

(
Ii ∪ Ij

)
−
(
Ii ∩ Ij

)
∈G.

4 Find Θε
r ,q such that at least q of functions sε

i ,r (p) are larger than 0 and at least q
are smaller than 0.
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Characterization of non-asymptotic confidence region LSCR

LSCR
Description

Exemple of G st ∀Ii ∈G ,∀Ii ∈G one has
(
Ii ∪ Ij

)
−
(
Ii ∩ Ij

)
∈G

1 2 3 4 5 6 7

I1 • • • •

I2 • • • •

I3 • • • •

I4 • • • •

I5 • • • •

I6 • • • •

I7 • • • •

I8

sε
1,r=1 (p) = ε1 (p)ε2 (p) + ε2 (p)ε3 (p) + ε4 (p)ε5 (p) + ε5 (p)ε6 (p)

sε
2,r=1 (p) = ε1 (p)ε2 (p) + ε3 (p)ε4 (p) + ε4 (p)ε5 (p) + ε6 (p)ε7 (p)

sε
3,r=1 (p) = . . .
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Characterization of non-asymptotic confidence region LSCR

LSCR
Properties

The set Θε
r ,q is such that [CW05]

Pr
(
p∗ ∈Θε

r ,q
)

= 1−2q/m.

Shape and size of Θε
r ,q depend on

values given to q and r

group G and its number of elements m.

A procedure for generating G of appropriate size suggested in [Gor74].
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Characterization of non-asymptotic confidence region LSCR

LSCR
Example (continued)

Model ymt (p) = p, with 8 noisy data generated with p∗ = 3.

0 1 2 3 4 5 6
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-2

-1
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3

4
s pi,1( )

"

p

q=1

7 empirical correlations, and 71% confidence region
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Characterization of non-asymptotic confidence region LSCR

LSCR
More formal definition

The set Θε
r ,q may be defined more formally as

Θε
r ,q = Θε,−

r ,q ∩Θε,+
r ,q ,

with

Θε,−
r ,q =

{
p ∈ P such that

m

∑
i=1

τ
ε,−
i (p) > q

}
,

Θε,+
r ,q =

{
p ∈ P such that

m

∑
i=1

τ
ε,+
i (p) > q

}
,

where P is prior domain for p.
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Characterization of non-asymptotic confidence region LSCR

LSCR
More formal definition

Moreover

τ
ε,−
i (p) =

{
1 if − sε

i ,r (p) > 0,
0 else,

and

τ
ε,+
i (p) =

{
1 if sε

i ,r (p) > 0,
0 else.

Θε,−
r ,q contains all p ∈ P such that at least q of the functions sε

i ,r (p) are smaller than 0,

Θε,+
r ,q contains all p ∈ P such that at least q of the functions sε

i ,r (p) are larger than 0.
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Characterization of non-asymptotic confidence region SPS

Outline
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Characterization of non-asymptotic confidence region SPS

SPS
Introduction

SPS [CCW12]: sign-perturbed sums.

SPS is designed for linear regression, where

yt = ϕ
T
t p∗+wt ,t = 1, . . . ,n,

with ϕt known regression vector.

SPS computes an exact confidence region for p∗ around least-squares estimate p̂, which
is solution to normal equations

n

∑
t=1

ϕt

(
yt −ϕ

T
t p̂
)

= 0.
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Characterization of non-asymptotic confidence region SPS

SPS
Description

For a generic p, define

s0 (p) =
n

∑
t=1

ϕt

(
yt −ϕ

T
t p
)
,

and the sign-perturbed sums

si (p) =
n

∑
t=1

αi ,tϕt

(
yt −ϕ

T
t p
)
,

where i = 1, . . . ,m−1 and αi ,t =±1 with equal probability, and

zi (p) = ‖si (p)‖22 , i = 0, . . . ,m−1.
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Characterization of non-asymptotic confidence region SPS

SPS
Description

Confidence region Σq is set of all p such that z0 (p) is not among the q largest values of
(zi (p))m−1i=0 .

[CCW12] shows that p∗ ∈Σq with exact probability 1−q/m.
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Characterization of non-asymptotic confidence region SPS

SPS
More formal definition

Σq may be defined more formally as

Σq =

{
p ∈ P such that

m−1
∑
i=1

τi (p) > q

}

where

τi (p) =

{
1 if zi (p)− z0 (p) > 0,
0 else.
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Characterization of non-asymptotic confidence region SPS

SPS
Illustration

Model ymt (p) = p, with 20 noisy data generated for p∗ = 3. We choose m = 10.
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Characterization of non-asymptotic confidence region Guaranteed characterization via interval analysis
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Characterization of non-asymptotic confidence region Guaranteed characterization via interval analysis

Guaranteed characterization

In LSCR (and SPS), one has to characterize

Ψq =

{
p ∈ P such that

m

∑
i=1

τi (p) > q

}
,

where τi (p) is some indicator function

τi (p) =

{
1 if fi (p) > 0,
0 else,

and where fi (p) depends on the model structure, the measurements, and p.
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Characterization of non-asymptotic confidence region Guaranteed characterization via interval analysis

Guaranteed characterization using SIVIA

To characterize Ψq =
{
p ∈ P such that ∑

m
i=1 τi (p) > q

}
, one uses SIVIA and an inclusion

function [τ] ([p]) of

τ (p) =
m

∑
i=1

τi (p) .

?

p2

p1

P

[ ]¿ ([ ])p

¿([ ])p

q0
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Characterization of non-asymptotic confidence region Guaranteed characterization via interval analysis

Guaranteed characterization using SIVIA
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Characterization of non-asymptotic confidence region Guaranteed characterization via interval analysis

Guaranteed characterization using SIVIA

To characterize Ψq =
{
p ∈ P such that ∑

m
i=1 τi (p) > q

}
, one uses an inclusion function

[τ] ([p]) of

τ (p) =
m

∑
i=1

τi (p) .

p2

p1

P

[ ]¿ ([ ])p

¿([ ])p

q0

?
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Characterization of non-asymptotic confidence region Example (LSCR)
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Characterization of non-asymptotic confidence region Example (LSCR)

System and Model

Consider the two-compartment model

1

k
01

k
21

k
12

2

u
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Characterization of non-asymptotic confidence region Example (LSCR)

System and Model

System output obtained from

yt = α (p∗)(exp(λ1 (p∗)t)− exp(λ2 (p∗)t)) +wt ,

where p = (k01,k12,k21)T,

α (p) =
k21√

(k01−k12 +k21)2 +4k12k21
,

λ1,2 (p) =−1
2

(
(k01 +k12 +k21)±

(
(k01−k12 +k21)2 +4k12k21

)−1/2)
and wt ’s are realizations of iid N

(
0,σ2) variables, for t = 0,T , . . . ,(n−1)T .
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Characterization of non-asymptotic confidence region Example (LSCR)

System and Model

Data generated with p∗ = (1,0.25,0.5)T, σ2 = 10−4.

Sampling period is T = 0.02 s and n = 64.

Only k01 et k12 are estimated, value k∗21 of k21 assumed known.

Measurement noise is additive, LSCR method applies directly.
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Characterization of non-asymptotic confidence region Example (LSCR)

Confidence region obtained by LSCR

P = [0,5]× [0,5] and ε = 0.0025.

90 % confidence region
LSCR - SIVIA

k
01

k
12

k
01

k
12

90 % confidence region
LSCR - Gridding

0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

0.8 0.9 1 1.1 1.2
0.2

0.25

0.3

0.35
zoomzoom

k
01

k
12

0.8 0.9 1 1.1 1.2
0.2

0.25

0.3

0.35

k
12

0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

187 / 282



Characterization of non-asymptotic confidence region Example (SPS)
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Characterization of non-asymptotic confidence region Example (SPS)

System and Model

Consider the system
yt = ymt (p) +wt ,

with the FIR model

ymt (p) =
na−1
∑
i=0

aiut−i ,

where p = (a0, . . . ,ana−1)T and un = 0 for n 6 0.

For t = 1, . . . ,n, the wts are iid noise samples.

In linear regression form, one has

yt = ϕ
T
t p∗+wt

with ϕt = (ut , . . . ,ut−na+1)T and p∗ =
(
a∗0, . . . ,a

∗
na−1

)T
.
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Characterization of non-asymptotic confidence region Example (SPS)

Inclusion function (low-dim model)

When the dimension of p is small, Σq may be characterized using SIVIA and inclusion
functions for τi

[τi ] ([p]) =


1 if inf ([zi − z0] ([p])) > 0,
0 if sup([zi − z0] ([p])) < 0,
[0,1] else,

where [zi − z0] ([p]) is an inclusion function for the difference between zi (p) and z0 (p).
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Characterization of non-asymptotic confidence region Example (SPS)

Simulation conditions (low-dim model)

Data are generated for a∗0 = 0.2, a∗1 = 0.3, and a∗2 = 0.4 considering:
1 a filtered Gaussian input ut = αut−1 +vt , with α = 0.2 and vt ∼N (0,0.65)

2 a random iid sequence of ±1 (D-optimal input when input has to remain in [−1,1].

wt zero-mean Laplacian (SNR=15 dB).

We choose n = 1024, m = 255, and q = 13 (95 % confidence region), ε = 2.5×10−3.
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Characterization of non-asymptotic confidence region Example (SPS)

Results (low-dim model)
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Characterization of non-asymptotic confidence region Example (SPS)

Results (low-dim model)
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Characterization of non-asymptotic confidence region Example (SPS)

Simulation conditions (high-dim model)

FIR models with na = 20 random parameters in [−2,2]na are generated, then

n = 512, 1024, 2048, 4096, and 8192 noise-free data points are generated

white Laplacian noise is added to the data.

Standard deviation of noise set up to get an SNR of 5 dB to 40 dB.

We choose n = 1024, m = 255, and q = 13 (95 % confidence). Only outer
approximations may be obtained.

Initial search box P =
[
−104,104

]20.
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Characterization of non-asymptotic confidence region Example (SPS)

Results (high-dim model)
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Characterization of non-asymptotic confidence region Example (SPS)

Results (high-dim model)
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Slope is about −1/2, consistent with ML estimation with additive Gaussian noise
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Characterization of non-asymptotic confidence region Example (SPS)

Discussion

Interval analysis provides guaranteed outer- and inner-approximations of
non-asymptotic confidence regions defined by LSCR and SPS.

Illustrations provided for FIR and non-linear models.

Accurate inclusion functions are particularly difficult to obtain for the functions
involved in SPS,

Symbolic manipulations of the involved expression to reduce the number of
occurrences of the parameters are particularly useful to

improve the efficiency of SIVIA
to design better contractors

Code available at http://www.l2s.supelec.fr/perso/kieffer-0
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Bounded-error estimation
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Bounded-error estimation

Bounded-error estimation

More sophisticated examples are considered here

State estimation

Delayed measurements

...

Some additional notions are required
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Bounded-error estimation Interval trajectories

Interval trajectories

A trajectory is a function f : R→ Rn. For instance

f (t) =

(
cost
sint

)
is a trajectory.

Order relation

f ≤ g⇔∀t,∀i , fi (t)≤ gi (t) .

We have

h = f ∧g⇔∀t,∀i ,hi (t) = min(fi (t) ,gi (t)) ,

h = f ∨g⇔∀t,∀i ,hi (t) = max(fi (t) ,gi (t)) .
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Bounded-error estimation Interval trajectories

Interval trajectories I

The set of trajectories is a lattice. Interval of trajectories (tubes) can be defined.
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Bounded-error estimation Interval trajectories

Interval trajectories II

Example.

[f] (t) =

(
cost +

[
0,t2

]
sint + [−1,1]

)
is an interval trajectory (or tube).
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Bounded-error estimation Tube arithmetics

Tube arithmetics

If [x ] and [y ] are two scalar tubes, we have

[z] = [x ] + [y ]⇒ [z] (t) = [x ] (t) + [y ] (t) (sum)
[z] = shifta ([x ])⇒ [z] (t) = [x ] (t +a) (shift)
[z] = [x ]◦ [y ]⇒ [z] (t) = [x ] ([y ] (t)) (composition)
[z] =

∫
[x ]⇒ [z] (t) =

[∫ t
0 x
− (τ)dτ,

∫ t
0 x

+ (τ)dτ
]

(integral)
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Bounded-error estimation Tube contractors

Tube contractors I

Tube arithmetic allows us to build contractors.

Consider for instance the differential constraint

ẋ (t) = x (t +1) ·u (t) ,

x (t) ∈ [x ] (t) , ẋ (t) ∈ [ẋ ] (t) ,u (t) ∈ [u] (t)

We decompose as follows  x (t) = x (0) +
∫ t
0 y (τ)dτ

y (t) = a (t) ·u (t) .
a (t) = x (t +1)
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Bounded-error estimation Tube contractors

Tube contractors II

Possible contractors are

[x ] (t) = [x ] (t)∩
(
[x ] (0) +

∫ t
0 [y ] (τ)dτ

)
[y ] (t) = [y ] (t)∩ [a] (t) · [u] (t)

[u] (t) = [u] (t)∩ [y ](t)
[a](t)

[a] (t) = [a] (t)∩ [y ](t)
[u](t)

[a] (t) = [a] (t)∩ [x ] (t +1)
[x ] (t) = [x ] (t)∩ [a] (t−1)
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Bounded-error estimation Tube contractors

Tube contractors III

Example.
Consider x (t) ∈ [x ] (t) with the constraint

∀t, x (t) = x (t +1)

Contract the tube [x ] (t) .
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Bounded-error estimation Tube contractors

Tube contractors IV

We first decompose into primitive trajectory constraints

x (t) = a (t +1)

x (t) = a (t) .
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Bounded-error estimation Tube contractors

Tube contractors V

Contractors

[x ] (t) : = [x ] (t)∩ [a] (t +1)

[a] (t) : = [a] (t)∩ [x ] (t−1)

[x ] (t) : = [x ] (t)∩ [a] (t)

[a] (t) : = [a] (t)∩ [x ] (t)
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Bounded-error estimation Tube contractors

Tube contractors VI
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Bounded-error estimation Tube contractors

Tube contractors VII
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Bounded-error estimation Tube contractors

Tube contractors VIII
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Bounded-error estimation Tube contractors

Tube contractors IX
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Bounded-error estimation Tube contractors

Tube contractors X

216 / 282



Bounded-error estimation Tube contractors

Tube contractors XI
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Bounded-error estimation Tube contractors

Tube contractors XII
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Bounded-error estimation Time-space estimation

Time-space estimation I

Classical state estimation{
ẋ(t) = f (x(t) ,u(t)) t ∈ R
0 = g (x(t) ,t) t ∈ T⊂ R.

Space constraint g (x(t) ,t) = 0.
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Bounded-error estimation Time-space estimation

Time-space estimation II

Example. 

ẋ1 = x3 cosx4
ẋ2 = x3 cosx4
ẋ3 = u1
ẋ4 = u2
(x1 (5)−1)2 + (x2 (5)−2)2−4 = 0
(x1 (7)−1)2 + (x2 (7)−2)2−9 = 0
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Bounded-error estimation Time-space estimation

Time-space estimation III

With time-space constraints{ _x(t) = f (x(t) ,u(t)) t ∈ R
0 = g (x(t) ,x(t ′) ,t,t ′) (t,t ′) ∈ T⊂ R×R.
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Bounded-error estimation Time-space estimation

Time-space estimation IV

Example.
An ultrasonic underwater robot with state

x = (x1,x2, . . .) = (x ,y ,θ ,v , . . .)

At time t the robot emits an onmidirectional sound. At time t ′ it receives it(
x1−x

′

1

)2
+
(
x2−x

′

2

)2
− c
(
t− t ′

)2
= 0.
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Bounded-error estimation Mass spring problem

Mass spring problem I

The mass spring satisfies
ẍ + ẋ +x−x3 = 0

i.e. {
ẋ1 = x2
ẋ2 = −x2−x1 +x31

The initial state is unknown.
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Bounded-error estimation Mass spring problem

Mass spring problem II


ẋ1 = x2
ẋ2 =−x2−x1 +x31
L−x1 (t1) +L−x1 (t2) = c (t2− t1) .
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Bounded-error estimation Mass spring problem

Mass spring problem III
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Bounded-error estimation Swarm localization

Swarm localization

Consider n robots R1, . . . ,Rn described by

_xi = f (xi ,ui ) ,ui ∈ [ui ] .

Omnidirectional sounds are emitted and received.

A ping is a 4-uple (a,b, i , j) where a is the emission time, b is the reception time, i is the
emitting robot and j the receiver.
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Bounded-error estimation Swarm localization

Bounded-error swarm localization I

With the time-space constraints

_xi = f (xi ,ui ) ,ui ∈ [ui ] .

g
(
xi(k) (a (k)) ,xj(k) (b (k)) ,a (k) ,b (k)

)
= 0

where
g
(
xi ,xj ,a,b

)
= ‖x1−x2‖− c (b−a) .
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Bounded-error estimation Swarm localization

Bounded-error swarm localization II

Clocks are uncertain. We only have measurements ã (k) , b̃ (k) of a (k) ,b (k) thanks to
clocks hi . Thus

_xi = f (xi ,ui ) ,ui ∈ [ui ] .

g
(
xi(k) (a (k)) ,xj(k) (b (k)) ,a (k) ,b (k)

)
= 0

ã (k) = hi(k) (a (k))

b̃ (k) = hj(k) (b (k))
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Bounded-error estimation Swarm localization

Bounded-error swarm localization III

The drift of the clocks is bounded

_xi = f (xi ,ui ) ,ui ∈ [ui ] .

g
(
xi(k) (a (k)) ,xj(k) (b (k)) ,a (k) ,b (k)

)
= 0

ã (k) = hi(k) (a (k))

b̃ (k) = hj(k) (b (k))

ḣi = 1+nh, nh ∈ [nh]
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Bounded-error estimation Swarm localization

Bounded-error swarm localization IV
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Bounded-error estimation Swarm localization

Bounded-error swarm localization V
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Bounded-error estimation Swarm localization

Discussion

Interval techniques

useful in bounded-error state estimation

robustness to outliers

account for the drift in measurements
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Characterization of confidence regions in a Bayesian context

Confidence region characterization

Remind that one has to characterize the set Sα defined by

(i) Sα = f −1([sα ,+∞[),

(ii)
∫
Sα

f (p)dp∫
Rn f (p)dp = α.

corresponding to the smallest set which contains p with a probability equal to α.
Again, additional interval notions have to be introduced.
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Characterization of confidence regions in a Bayesian context Lattices and intervals

Lattices and intervals I

A lattice (E ,≤) is a partially ordered set, closed under least upper and greatest lower
bounds.

The least upper bound (join) of x and y is written x ∨y .
The greatest lower bound (meet) is written x ∧y .

A lattice E is complete if for all subsets A of E , ∨A and ∧A belong to E .
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Characterization of confidence regions in a Bayesian context Lattices and intervals

Lattices and intervals II

Example 1 : The set R is not a complete lattice whereas R = R∪{−∞,∞} is.
Example 2 : The set Rn is a lattice with respect to the partial order relation given by

x≤ y⇔∀i ∈ {1, . . . ,n} ,xi ≤ yi .

We have

x∧y = (min(x1,y1) , . . . ,min(xn,yn)) and

x∨y = (max(x1,y1) , . . . ,max(xn,yn)) .
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Characterization of confidence regions in a Bayesian context Lattices and intervals

Lattices and intervals III

An interval [x ] of a complete lattice E is a subset of E which satisfies

[x ] = {x ∈ E | ∧ [x ]≤ x ≤ ∨[x ]} .

Both /0 and E are intervals of E .

Examples

The sets [0,1]R̄ and [0,∞]R̄ are intervals of R̄.
The set {2,3,4,5}= [2,5]N̄ is an interval of N̄.
The set {4,6,8,10}= [4,10]2N̄ is an interval of 2N̄.
The set [1,2]× [3,4]) = [(1,3),(2,4)]R̄2 is an interval of R̄2.
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Characterization of confidence regions in a Bayesian context Interval subpavings - some additional concepts

Interval subpavings - some additional concepts I

A paving Q of Rn is a set of nonoverlapping boxes covering Rn.
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Characterization of confidence regions in a Bayesian context Interval subpavings - some additional concepts

Interval subpavings - some additional concepts II

A subpaving of Q is a subset of Q.
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Characterization of confidence regions in a Bayesian context Interval subpavings - some additional concepts

Interval subpavings - some additional concepts III

The support {K } ⊂ Rn of a subpaving K is the union of all boxes of K .
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Characterization of confidence regions in a Bayesian context Interval subpavings - some additional concepts

Interval subpavings - some additional concepts IV

If P (Q) denotes the set of all subpavings of Q then (P (Q),⊂) is a complete lattice.

The least upper bound (join) is the union

K1∨K2 = K1∪K2.

The greatest lower bound (meet) is the intersection

K1∧K2 = K1∩K2.

As a consequence intervals of (P (Q),⊂) can be defined.
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Characterization of confidence regions in a Bayesian context Interval subpavings - some additional concepts

Interval subpavings - some additional concepts V

An interval subpaving [K −,K +] of Q can be represented by pair of subpavings of Q
such that K − ⊂K +.

One has
S ∈ [K −,K +]⇔

{
K −}⊂ S⊂

{
K +

}
.
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Characterization of confidence regions in a Bayesian context Interval staircase functions
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Characterization of confidence regions in a Bayesian context Interval staircase functions

Interval staircase functions I

A staircase function f̂ associated with a paving Q is a function from Q to R̄
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Characterization of confidence regions in a Bayesian context Interval staircase functions

Interval staircase functions II

If [s] = [s−,s+] ∈ IR, the reciprocal image of [s] by f̂ is the subpaving of Q defined by

f̂ −1([s]) ,
{

[p] ∈Q | f̂ ([p]) ∈ [s−,s+]
}
.

For instance, f̂ −1([2,4]) is represented as
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Characterization of confidence regions in a Bayesian context Interval staircase functions

Interval staircase functions III

The set of all staircase functions (F̂ ,≤) is a complete lattice.
Interval staircase functions can thus be defined

An interval staircase function [f̂ ] = [f̂ −, f̂ +] can be represented a pair of staircase
functions such that

∀[p] ∈Q , f̂ −([p])≤ f̂ +([p]).
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Characterization of confidence regions in a Bayesian context Interval staircase functions

Interval staircase functions IV
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Characterization of confidence regions in a Bayesian context Interval staircase functions

Interval staircase functions V

A function f from Rn→ R is said to belong to the interval staircase function [f̂ ] if

∀[p] ∈Q,∀p ∈ [p], f (p) ∈
[
f̂ −([p]), f̂ +([p])

]
.

An interval staircase function for a function f : Rn→ R can easily be obtained by using
interval techniques.
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Characterization of confidence regions in a Bayesian context Interval staircase functions

Interval staircase functions VI

The reciprocal image of the interval [s−,s+] ∈ IR by the interval staircase function
[f̂ ] = [f̂ −, f̂ +] is the interval subpaving of Q defined by

[f̂ ]−1([s−,s+]) ,
[{

[p] ∈Q | [f̂ ]([p])⊂ [s−,s+]
}
.{

[p] ∈Q | [f̂ ]([p])∩ [s−,s+] 6= /0
}]
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Characterization of confidence regions in a Bayesian context Interval staircase functions

Interval staircase functions VII

Theorem
If f belongs to [f̂ ], then for all [s−,s+] ∈ IR ,

f −1([s−,s+]) ∈ [f̂ ]−1([s−,s+]).
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Characterization of confidence regions in a Bayesian context Interval staircase functions

Interval staircase functions VIII

Example
If [s−,s+] = [16,∞] and Q = {[i , i +1], i ∈ N}, then

{[p] ∈Q | [f̂ ]([p])⊂ [s−,s+] }
= {[−1,0], [0,1]} ≡ [−1,1],

{[p] ∈Q | [f̂ ]([p])∩ [s−,s+] 6= /0}
= {[−3,−2], [−2,−1], [−1,0], [0,1], [1,2], [2,3]}
≡ [−3,3].

We have
[−1,1]⊂ f −1([16,∞])⊂ [−3,3].
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Characterization of confidence regions in a Bayesian context Interval staircase functions

Interval staircase functions IX
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Characterization of confidence regions in a Bayesian context Interval staircase functions

Interval staircase functions X

If
[
K −,K +

]
is an interval subpaving of Q and if [f̂ ] is a positive interval staircase

function, the integral of [f̂ ] over
[
K −,K +

]
is

∫
[K −,K +]

[f̂ ](p)dp ,

[
∑

[p]∈K −
f̂ −([p]).volume([p]) .

∑
[p]∈K +

f̂ +([p]).volume([p])

]
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Characterization of confidence regions in a Bayesian context Interval staircase functions

Interval staircase functions XI

Theorem
If f ∈ [f̂ ] and if S ∈

[
K −,K +

]
, then∫

S
f (p)dp ∈

∫
[K −,K +]

[f̂ ](p)dp.
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Characterization of confidence regions in a Bayesian context Algorithm

Algorithm I

Equation in sα to be solved

α = h(sα ) ,

∫
f −1([sα ,∞[) f (p)dp∫

Rn f (p)dp

The function h(s) is decreasing. Moreover,

h(s) ∈ [h](s) ,

∫
[f̂ ]−1([s,∞[)

[f ](p)dp∫
Rn [f̂ ](p)dp

.
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Characterization of confidence regions in a Bayesian context Algorithm

Algorithm II

Thus
(a) α < lb([h](s−)) ⇒ s− < sα

(b) α > ub([h](s+)) ⇒ s+ > sα
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Characterization of confidence regions in a Bayesian context Algorithm

Algorithm III

1 Take a paving Q of Rn; s− := +∞; s+ := 0;

2 Compute an interval staircase function [f̂ ] enclosing f ;

3 Decrease s− until α < lb([h](s−))

4 Increase s+ until α > ub([h](s+));

5
[
K −

α ,K +
α

]
:= ([f̂ ]− [s−,s+])−1([0,∞[).
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Characterization of confidence regions in a Bayesian context Algorithm

Algorithm IV

Theorem : After completion of this algorithm, we have

Sα ∈
[
K −

α ,K +
α

]
and sα ∈ [s−,s+].
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Characterization of confidence regions in a Bayesian context Application to Bayesian estimation

Application to Bayesian estimation I

Model:
y(t) = p1 sin(p2t) +n(t)

where n(t) is a white normal random noise with

πn(n) =
1

σ
√
2π

exp
(
− n2

2σ2

)
,

where the standard deviation is σ = 1
2 .
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Characterization of confidence regions in a Bayesian context Application to Bayesian estimation

Application to Bayesian estimation II

Sampling times and data:

t = (1,2,3),

y = (0.8, 1.0, 0.2)T.

Therefore  y1
y2
y3


︸ ︷︷ ︸

y

=

 p1 sin(p2)
p1 sin(2p2)
p1 sin(3p2)


︸ ︷︷ ︸

ym(p)

+

 n1
n2
n3


︸ ︷︷ ︸

n
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Characterization of confidence regions in a Bayesian context Application to Bayesian estimation

Application to Bayesian estimation III

Since n(t) is white,

πn(n) = πn(n1).πn(n2).πn(n3)

=
1(√
2π
)3 exp(−2n21)exp(−2n22)exp(−2n23).

Considering

πprior(p) =
door[−2,2](p1).door[0,6](p2)

24
,

the posterior unnormalized pdf for p:

f (p) =

(
3

∏
k=1

exp(−2(yk −p1 sin(kp2))2)

)
.door[−2,2](p1).door[0,6](p2).
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Application to Bayesian estimation IV
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Application to Bayesian estimation V

[
K −

α ,K +
α

]
for α ∈ {0,0.2,0.4,0.6,0.8,1};
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Application to Bayesian estimation VI
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Outline

9 Conclusions and open research directions
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Summary

Interval analysis: numerical tool to solve in a guaranteed way nonlinear problems
encountered in engineering

Characterizing sets defined by nonlinear inequalities

Computing all global minimizers of a non-convex cost function,

Computing all solutions of a set of nonlinear equations,

Allows development of original solution in estimation problems

Bounded-error estimation.

Robust estimation.

Distributed estimation.

Guaranteed characterization of asymptotic and non-asymptotic confidence regions.
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Open research directions

Getting efficient contractors is always the key to success.

Estimation using interval analysis
very efficient when explicit expression of model output is available
efficient when model described by system of ODEs
not efficient when considering PDEs

Continue to develop tools to faciltate the use of such techniques.
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