Intervals for state estimation

Luc Jaulin, ENSTA Brest

ECA Brest, 23 Mai, 2015

1 Interval analysis

1.1 Basic notions on set theory

If f is defined as follows

$$f(A) = \{2,3,4\} = \operatorname{Im}(f).$$

$$f^{-1}(B) = \{a,b,c,e\} = \operatorname{dom}(f).$$

$$f^{-1}(f(A)) = \{a,b,c,e\} \subset A$$

$$f^{-1}(f(\{b,c\})) = \{a,b,c\}.$$

If
$$f(x) = x^2$$
, then

$$f([2,3]) = [4,9]$$

$$f^{-1}([4,9]) = [-3,-2] \cup [2,3].$$

This is consistent with the property

$$f\left(f^{-1}\left(\mathbb{Y}\right)
ight)\subset\mathbb{Y}.$$

1.2 Interval arithmetic

$$\begin{aligned} \mathsf{If} \diamond \in \{+,-,\cdot,/,\mathsf{max},\mathsf{min}\} \\ [x] \diamond [y] = \left[\{x \diamond y \mid x \in [x], y \in [y]\}\right]. \end{aligned}$$

For instance,

$$egin{array}{rl} [-1,3]+[2,5]&=[1,8]\ [-1,3]\cdot [2,5]&=[-5,15]\ [-1,3]/[2,5]&=[-rac{1}{2},rac{3}{2}]. \end{array}$$

$$\begin{aligned} [x^-, x^+] + [y^-, y^+] &= & [x^- + y^-, x^+ + y^+]. \\ [x^-, x^+] \cdot [y^-, y^+] &= & [x^- y^- \wedge x^+ y^- \wedge x^- y^+ \wedge x^+ y^+, \\ & & x^- y^- \vee x^+ y^- \vee x^- y^+ \vee x^+ y^+]. \end{aligned}$$

If $f \in \{\cos, \sin, \operatorname{sqrt}, \log, \exp, \dots\}$ $f([x]) = [\{f(x) \mid x \in [x]\}].$

For instance,

$$\begin{array}{rcl} \sin\left([0,\pi]\right) &=& [0,1],\\ \operatorname{sqr}\left([-1,3]\right) &=& [-1,3]^2 = [0,9],\\ \operatorname{abs}\left([-7,1]\right) &=& [0,7],\\ \operatorname{sqrt}\left([-10,4]\right) &=& \sqrt{[-10,4]} = [0,2],\\ \log\left([-2,-1]\right) &=& \emptyset. \end{array}$$

1.3 Boxes

A box, or interval vector $[\mathbf{x}]$ of \mathbb{R}^n is

 $[\mathbf{x}] = [x_1^-, x_1^+] \times \cdots \times [x_n^-, x_n^+] = [x_1] \times \cdots \times [x_n].$

The set of all boxes of \mathbb{R}^n will be denoted by \mathbb{IR}^n .

The *principal plane* of [x] is the symmetric plane [x] perpendicular to its largest side.

1.4 Inclusion function

The interval function [f] from \mathbb{IR}^n to \mathbb{IR}^m , is an *inclusion function* of f if

 $\forall [\mathbf{x}] \in \mathbb{IR}^n, \ \mathbf{f}([\mathbf{x}]) \subset [\mathbf{f}]([\mathbf{x}]).$

Inclusion functions [f] and $[f]^*$; here, $[f]^*$ is minimal.

The natural inclusion function for $f(x) = x^2 + 2x + 4$ is

$$[f]([x]) = [x]^2 + 2[x] + 4.$$

If [x] = [-3, 4], we have

$$[f]([-3,4]) = [-3,4]^2 + 2[-3,4] + 4$$

= [0,16] + [-6,8] + 4
= [-2,28].

Note that $f([-3, 4]) = [3, 28] \subset [f]([-3, 4]) = [-2, 28]$.

If ${\bf f}$ is given by the algorithm

Algorithm f(in: $\mathbf{x} = (x_1, x_2, x_3)$, out: $\mathbf{y} = (y_1, y_2)$) 1 $z := x_1$; 2 for k := 0 to 100 3 $z := x_2(z + kx_3)$; 4 next; 5 $y_1 := z$; 6 $y_2 := \sin(z \cdot x_1)$; Its natural inclusion function is

Algorithm [f](in: [x], out: [y])

 1

$$[z] := [x_1];$$

 2
 for $k := 0$ to 100

 3
 $[z] := [x_2] * ([z] + k * [x_3]);$

 4
 next;

 5
 $[y_1] := [z];$

 6
 $[y_2] := sin([z] \cdot [x_1]);$

Here, $[{\bf f}]$ is a convergent, thin and monotonic inclusion function for ${\bf f}.$

1.5 Subpavings

A subpaving of \mathbb{R}^n is a set of non-overlapping boxes of \mathbb{R}^n .

Compact sets $\mathbb X$ can be bracketed between inner and outer subpavings:

 $\mathbb{X}^{-}\subset\mathbb{X}\subset\mathbb{X}^{+}.$

Example.

 $\mathbb{X} = \{(x_1, x_2) \mid x_1^2 + x_2^2 \in [1, 2]\}.$

Set operations such as $\mathbb{Z} := \mathbb{X} + \mathbb{Y}, \ \mathbb{X} := \mathbf{f}^{-1}(\mathbb{Y}), \mathbb{Z} := \mathbb{X} \cap \mathbb{Y} \dots$ can be approximated by subpaving operations.

1.6 Set inversion

Let $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ and let \mathbb{Y} be a subset of \mathbb{R}^m . Set inversion is the characterization of

$$\mathbb{X} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{f}(\mathbf{x}) \in \mathbb{Y}\} = \mathbf{f}^{-1}(\mathbb{Y}).$$

We shall use the following tests.

$$\begin{array}{lll} (\mathsf{i}) & [\mathbf{f}]([\mathbf{x}]) \subset \mathbb{Y} & \Rightarrow & [\mathbf{x}] \subset \mathbb{X} \\ (\mathsf{ii}) & [\mathbf{f}]([\mathbf{x}]) \cap \mathbb{Y} = \emptyset & \Rightarrow & [\mathbf{x}] \cap \mathbb{X} = \emptyset. \end{array}$$

Boxes for which these tests failed, will be bisected, except if they are too small.

Algorithm Sivia(in: [x](0), f, Y) 1 $\mathcal{L} := \{[x](0)\};$ 2 pull [x] from $\mathcal{L};$ 3 if $[f]([x]) \subset Y$, draw([x], 'red'); 4 elseif $[f]([x]) \cap Y = \emptyset$, draw([x], 'blue'); 5 elseif $w([x]) < \varepsilon$, {draw ([x], 'yellow')}; 6 else bisect [x] and push into $\mathcal{L};$ 7 if $\mathcal{L} \neq \emptyset$, go to 2 If $\Delta \mathbb{X}$ denotes the union of yellow boxes and if \mathbb{X}^- is the union of red boxes then :

$$\mathbb{X}^- \subset \mathbb{X} \subset \mathbb{X}^- \cup \Delta \mathbb{X}.$$

2 Contractors

To characterize $\mathbb{X} \subset \mathbb{R}^n$, bisection algorithms bisect all boxes in all directions and become inefficient. Interval methods can still be useful if

- the solution set X is small (optimization problem, solving equations),
- contraction procedures are used as much as possible,
- bisections are used only as a last resort.

2.1 Definition

The operator $\mathcal{C}_{\mathbb{X}}:\mathbb{IR}^n\to\mathbb{IR}^n$ is a *contractor* for $\mathbb{X}\subset\mathbb{R}^n$ if

 $\forall [\mathbf{x}] \in \mathbb{IR}^n, \begin{cases} \mathcal{C}_{\mathbb{X}}([\mathbf{x}]) \subset [\mathbf{x}] & (\text{contractance}), \\ \mathcal{C}_{\mathbb{X}}([\mathbf{x}]) \cap \mathbb{X} = [\mathbf{x}] \cap \mathbb{X} & (\text{completeness}). \end{cases}$

 $\mathcal{C}_{\mathbb{X}}$ is said to be $\mathit{convergent}$ if

 $[\mathbf{x}](k) \to \mathbf{x} \quad \Rightarrow \quad \mathcal{C}_{\mathbb{X}}([\mathbf{x}](k)) \to \{\mathbf{x}\} \cap \mathbb{X}.$

2.2 **Projection of constraints**

Let x, y, z be 3 variables such that

$$egin{array}{rcl} x &\in & [-\infty, 5], \ y &\in & [-\infty, 4], \ z &\in & [6, \infty], \ z &= & x+y. \end{array}$$

Which values for x, y, z are consistent.

Since $x \in [-\infty, \mathbf{5}], y \in [-\infty, \mathbf{4}], z \in [\mathbf{6}, \infty]$ and z = x + y , we have

$$\begin{array}{rcl} z = x + y \Rightarrow & z \in & [6, \infty] \cap ([-\infty, 5] + [-\infty, 4]) \\ & = [6, \infty] \cap [-\infty, 9] = [6, 9]. \\ x = z - y \Rightarrow & x \in & [-\infty, 5] \cap ([6, \infty] - [-\infty, 4]) \\ & = [-\infty, 5] \cap [2, \infty] = [2, 5]. \\ y = z - x \Rightarrow & y \in & [-\infty, 4] \cap ([6, \infty] - [-\infty, 5]) \\ & = [-\infty, 4] \cap [1, \infty] = [1, 4]. \end{array}$$

The contractor associated with z = x + y is.

Algorithm pplus(inout: $[z], [x], [y]$)	
1	$[z]:=[z]\cap \left(\left[x ight] +\left[y ight] ight)$;
2	$[x]:=[x]\cap \left(\left[z ight] -\left[y ight] ight)$;
3	$[y] := [y] \cap ([z] - [x]).$
The projection procedure developed for plus can be extended to other ternary constraints such as mult: $z = x \cdot y$, or equivalently

$$\mathsf{mult} \triangleq \left\{ (x, y, z) \in \mathbb{R}^3 \mid z = x \cdot y \right\}.$$

The resulting projection procedure becomes

Algorithm pmult(inout:
$$[z], [x], [y]$$
)

 1
 $[z] := [z] \cap ([x] \cdot [y]);$

 2
 $[x] := [x] \cap ([z] \cdot 1/[y]);$

 3
 $[y] := [y] \cap ([z] \cdot 1/[x]).$

Consider the binary constraint

$$\exp \triangleq \{(x, y) \in \mathbb{R}^n | y = \exp(x)\}.$$

The associated contractor is

Algorithm pexp(inout: $[y], [x]$)	
1	$[y]:=[y]\cap \exp\left(\left[x ight] ight)$;
2	$[x] := [x] \cap \log([y]).$

Any constraint for which such a projection procedure is available will be called a *primitive constraint*.

Projection of the sine constraint

2.3 Solvers

A CSP (Constraint Satisfaction Problem) is composed of 1) a set of variables $\mathcal{V} = \{x_1, \dots, x_n\}$,

- 2) a set of constraints $C = \{c_1, \ldots, c_m\}$ and
- 3) a set of interval domains $\{[x_1], \ldots, [x_n]\}$.

Principle of propagation techniques: contract $[\mathbf{x}] = [x_1] \times \cdots \times [x_n]$ as follows:

 $(((((([\mathbf{x}] \square c_1) \square c_2) \square \dots) \square c_m) \square c_1) \square c_2) \dots,$ until a steady box is reached. **Example.** Consider the system.

$$y = x^2$$
$$y = \sqrt{x}.$$

We build two contractors

$$\mathcal{C}_{1}: \begin{cases} [y] = [y] \cap [x]^{2} \\ [x] = [x] \cap \sqrt{[y]} \end{cases} \text{ associated to } y = x^{2} \\ \mathcal{C}_{2}: \begin{cases} [y] = [y] \cap \sqrt{[x]} \\ [x] = [x] \cap [y]^{2} \end{cases} \text{ associated to } y = \sqrt{x} \end{cases}$$

Exemple. Consider the system

$$\begin{cases} y = 3\sin(x) \\ y = x \end{cases} \quad x \in \mathbb{R}, \ y \in \mathbb{R}.$$

2.4 Decomposition into primitive constraints

$$egin{array}{l} x+\sin(xy)\leq { extsf{0}},\ x\in [-1,1], y\in [-1,1] \end{array}$$

can be decomposed into

$$\left\{ egin{array}{ll} a=xy & x\in [-1,1] & a\in [-\infty,\infty] \ b= \sin(a) &, y\in [-1,1] & b\in [-\infty,\infty] \ c=x+b & c\in [-\infty,0] \end{array}
ight.$$

3 Redermor

The Redermor, GESMA

The *Redermor* at the surface

Why choosing an interval constraint approach for SLAM ?

- 1) A reliable method is needed.
- 2) The model is nonlinear.
- 3) The pdf of the noises are unknown.
- 4) Reliable error bounds are provided by the sensors.
- 5) A huge number of redundant data are available.

3.1 Sensors
A GPS (Global positioning system) at the surface only.

 $t_0 = 6000 \text{ s}, \quad \ell^0 = (-4.4582279^\circ, 48.2129206^\circ) \pm 2.5m$ $t_f = 12000 \text{ s}, \quad \ell^f = (-4.4546607^\circ, 48.2191297^\circ) \pm 2.5m$ **A sonar** (KLEIN 5400 side scan sonar). Gives the distance r between the robot to the detected object.

Screenshot of SonarPro

Detection of a mine using SonarPro

A Loch-Doppler. Returns the speed of the robot \mathbf{v}_r and the altitude a of the robot ± 10 cm.

A Gyrocompass (Octans III from IXSEA). Returns the roll ϕ , the pitch θ and the head ψ .

$$\left(egin{array}{c} \phi \ heta \ heta \ \psi \end{array}
ight)\in \left(egin{array}{c} ilde{\phi} \ ilde{ heta} \ ilde{\psi} \end{array}
ight)+\left(egin{array}{c} 1.75 imes10^{-4}.\ [-1,1] \ 1.75 imes10^{-4}.\ [-1,1] \ 5.27 imes10^{-3}.\ [-1,1] \end{array}
ight).$$

3.2 Data

For each time $t \in \{6000.0, 6000.1, 6000.2, \dots, 11999.4\}$, we get intervals for

 $\phi(t), \theta(t), \psi(t), v_r^x(t), v_r^y(t), v_r^z(t), a(t).$

Six mines have been detected by the sonar:

37.90

36.71

	i		0	1	_	2		3		4		5	
7	$\overline{(i)}$	7054		7092		7374		7748		9038		9688	
c	$\sigma(i)$	1		2		1		0		1		5	
\hat{i}	$\tilde{i}(i)$	52.42		12.47		54.40		52.68		27.73		26.98	
_	6		7		0		0		10			11	
_	U		1		ð		9		TO			1 1	
	10024		10817		11172		11232		11279		1	11688	
	4		3		3		4			5		1	

37.37

15.05

33.51

31.03

3.3 Constraints satisfaction problem

$$t \in \{6000.0, 6000.1, 6000.2, \dots, 11999.4\},\$$

$$i \in \{0, 1, \dots, 11\},\$$

$$\begin{pmatrix} p_x(t) \\ p_y(t) \end{pmatrix} = 111120 \begin{pmatrix} 0 & 1 \\ \cos\left(\ell_y(t) * \frac{\pi}{180}\right) & 0 \end{pmatrix} \begin{pmatrix} \ell_x(t) - \ell_x^0 \\ \ell_y(t) - \ell_y^0 \end{pmatrix},\$$

$$\mathbf{p}(t) = (p_x(t), p_y(t), p_z(t)),\$$

$$\mathbf{R}_{\psi}(t) = \begin{pmatrix} \cos\psi(t) & -\sin\psi(t) & 0 \\ \sin\psi(t) & \cos\psi(t) & 0 \\ 0 & 0 & 1 \end{pmatrix},\$$

$$\mathbf{R}_{\theta}(t) = \begin{pmatrix} \cos\theta(t) & 0 & \sin\theta(t) \\ 0 & 1 & 0 \\ -\sin\theta(t) & 0 & \cos\theta(t) \end{pmatrix},\$$

$$egin{aligned} \mathbf{R}_arphi(t) &= egin{pmatrix} 1 & 0 & 0 \ 0 & \cos arphi(t) & -\sin arphi(t) \ 0 & \sin arphi(t) & -\sin arphi(t) \ 0 & \sin arphi(t) & \cos arphi(t) \end{pmatrix}, \ \mathbf{R}(t) &= \mathbf{R}_\psi(t).\mathbf{R}_ heta(t).\mathbf{R}_arphi(t), \ \dot{\mathbf{p}}(t) &= \mathbf{R}(t).\mathbf{v}_r(t) \ ||\mathbf{m}(\sigma(i)) - \mathbf{p}(au(i))|| &= r(i), \ \mathbf{R}^\mathsf{T}(au(i)) \left(\mathbf{m}(\sigma(i)) - \mathbf{p}(au(i))\right) \in [0] imes [0,\infty]^{ imes 2}, \ m_z(\sigma(i)) - p_z(au(i)) - a(au(i)) \in [-0.5, 0.5]. \end{aligned}$$

3.4 GESMI

GESMI (Guaranteed Estimation of Sea Mines with Intervals)

Trajectory reconstructed by GESMI

4 SAUC'ISSE

Robot SAUC'ISSE

Portsmouth, July 12-15, 2007.

4.1 Localization with sonar

4.2 Set-membership approach

$$\left\{ egin{array}{ll} \mathbf{x}(k+1) &=& \mathbf{f}_k(\mathbf{x}(k),\mathbf{n}\left(k
ight)) \ \mathbf{y}(k) &=& \mathbf{g}_k(\mathbf{x}(k)), \end{array}
ight.$$

with $\mathbf{n}(k) \in \mathbb{N}(k)$ and $\mathbf{y}(k) \in \mathbb{Y}(k)$.

Without outliers

$$\mathbb{X}(k+1) = \mathbf{f}_k\left(\mathbb{X}(k) \cap \mathbf{g}_k^{-1}\left(\mathbb{Y}(k)\right), \mathbb{N}(k)\right).$$

4.3 Relaxed intersection

4.4 Robust localization

Define

$$\begin{cases} \mathbf{f}_{k:k} (\mathbb{X}) & \stackrel{\text{def}}{=} \mathbb{X} \\ \mathbf{f}_{k_1:k_2+1} (\mathbb{X}) & \stackrel{\text{def}}{=} \mathbf{f}_{k_2} (\mathbf{f}_{k_1:k_2} (\mathbb{X}), \mathbb{N} (k_2)), \ k_1 \leq k_2. \end{cases}$$

The set $\mathbf{f}_{k_1:k_2} (\mathbb{X})$ represents the set of all $\mathbf{x} (k_2)$, consis-

tent with $\mathbf{x}(k_1) \in \mathbb{X}$.

Consider the set state estimator

$$\begin{cases} \mathbb{X}(k) = \mathbf{f}_{0:k}(\mathbb{X}(0)) & \text{if } k < m, \text{ (initialization step)} \\ \mathbb{X}(k) = \mathbf{f}_{k-m:k}(\mathbb{X}(k-m)) \cap \\ \{q\} \\ \bigcap_{i \in \{1,...,m\}} \mathbf{f}_{k-i:k} \circ \mathbf{g}_{k-i}^{-1}(\mathbb{Y}(k-i)) & \text{if } k \ge m \end{cases}$$

4.5 Application to localization

Sauc'isse robot inside a swimming pool

The robot evolution is described by

$$\begin{cases} \dot{x}_1 = x_4 \cos x_3 \\ \dot{x}_2 = x_4 \sin x_3 \\ \dot{x}_3 = u_2 - u_1 \\ \dot{x}_4 = u_1 + u_2 - x_4, \end{cases}$$

where x_1, x_2 are the coordinates of the robot center, x_3 is its orientation and x_4 is its speed. The inputs u_1 and u_2 are the accelerations provided by the propellers. The system can be discretized by $\mathbf{x}_{k+1} = \mathbf{f}_k\left(\mathbf{x}_k
ight)$, where,

$$\mathbf{f}_{k}\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\\x_{4}\end{pmatrix} = \begin{pmatrix}x_{1}+\delta.x_{4}.\cos(x_{3})\\x_{2}+\delta.x_{4}.\sin(x_{3})\\x_{3}+\delta.(u_{2}(k)-u_{1}(k))\\x_{4}+\delta.(u_{1}(k)+u_{2}(k)-x_{4})\end{pmatrix}$$

Underwater robot moving inside a pool

https://youtu.be/c-8ZW8nUh7U

5 Scout project

Goal : (i) coordination of underwater robots ; (ii) collaborative behavior.

Supervisors: L. Jaulin, C. Aubry, S. Rohou, B. Zerr, J. Nicola, F. Le bars

Compagny: RTsys (P. Raude)

Students: G. Ricciardelli, L. Devigne, C. Guillemot, S. Pommier, T. Viravau, T. Le Mezo, B. Sultan, B. Moura, M. Fadlane, A. Bellaiche, T. Blanchard, U. Da rocha, G. Pinto, K. Machado.

5.1 Simulator

MOOS, MORSE, BLENDER, IBEX, Vibes, GIT

MOOS architecture

5.2 Controller

5.3 Localization

Range only Based on interval analysis Robust with respect to outliers Distributed computation Low rate communication

Presentation of the scout project

http://youtu.be/ATPabRHz0LA

5.4 Tests

www.ensta-bretagne.fr/jaulin/easibex.html