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1 Interval analysis



1.1 Basic notions on set theory



If f is defined as follows

f(A) = {2, 3, 4} = Im(f).

f−1(B) = {a, b, c, e} = dom(f).

f−1(f(A)) = {a, b, c, e} ⊂ A

f−1(f({b, c})) = {a, b, c}.



If f(x) = x2, then

f([2, 3]) = [4, 9]

f−1([4, 9]) = [−3,−2] ∪ [2, 3].

This is consistent with the property

f
�
f−1 (Y)

�
⊂ Y.



1.2 Interval arithmetic



If ⋄ ∈ {+,−, ·, /,max,min}

[x] ⋄ [y] = [{x ⋄ y | x ∈ [x], y ∈ [y]}] .
For instance,

[−1, 3] + [2, 5] = [1, 8]
[−1, 3] · [2, 5] = [−5, 15]
[−1, 3]/[2, 5] = [−1

2,
3
2].



[x−, x+] + [y−, y+] = [x− + y−, x+ + y+].
[x−, x+] · [y−, y+] = [x−y− ∧ x+y− ∧ x−y+ ∧ x+y+,

x−y− ∨ x+y− ∨ x−y+ ∨ x+y+].



If f ∈ {cos, sin,sqr, sqrt, log, exp, . . . }

f ([x]) = [{f(x) | x ∈ [x]}] .
For instance,

sin ([0, π]) = [0, 1],

sqr ([−1, 3]) = [−1, 3]2 = [0, 9],

abs ([−7, 1]) = [0, 7],

sqrt ([−10, 4]) =
�
[−10, 4] = [0, 2],

log ([−2,−1]) = ∅.



1.3 Boxes



A box, or interval vector [x] of Rn is

[x] = [x−1 , x
+
1 ]× · · · × [x−n , x

+
n ] = [x1]× · · · × [xn].

The set of all boxes of Rn will be denoted by IRn.



The principal plane of [x] is the symmetric plane [x] per-

pendicular to its largest side.



1.4 Inclusion function



The interval function [f ] from IRn to IRm, is an inclusion

function of f if

∀ [x] ∈ IRn, f([x]) ⊂ [f ] ([x]).

Inclusion functions [f ] and [f ]∗; here, [f ]∗ is minimal.



The natural inclusion function for f(x) = x2 + 2x+ 4 is

[f ]([x]) = [x]2 + 2[x] + 4.

If [x] = [−3, 4], we have

[f ]([−3, 4]) = [−3, 4]2 + 2[−3, 4] + 4

= [0, 16] + [−6, 8] + 4

= [−2, 28].
Note that f([−3, 4]) = [3, 28] ⊂ [f ]([−3, 4]) = [−2, 28].



If f is given by the algorithm

Algorithm f(in: x = (x1, x2, x3), out: y = (y1, y2))
1 z := x1;
2 for k := 0 to 100
3 z := x2(z + kx3);
4 next;
5 y1 := z;
6 y2 := sin(z · x1);



Its natural inclusion function is

Algorithm [f ](in: [x], out: [y])
1 [z] := [x1];
2 for k := 0 to 100
3 [z] := [x2] ∗ ([z] + k ∗ [x3]);
4 next;
5 [y1] := [z] ;
6 [y2] := sin([z] · [x1]);

Here, [f ] is a convergent, thin and monotonic inclusion

function for f .



1.5 Subpavings



A subpaving of Rn is a set of non-overlapping boxes of Rn.

Compact sets X can be bracketed between inner and outer

subpavings:

X
− ⊂ X ⊂ X+.



Example.

X = {(x1, x2)
��� x21 + x22 ∈ [1, 2]}.

Set operations such as Z := X+ Y, X := f−1 (Y) ,Z :=

X ∩ Y . . . can be approximated by subpaving operations.



1.6 Set inversion



Let f : Rn → Rm and let Y be a subset of Rm. Set

inversion is the characterization of

X = {x ∈ Rn | f(x) ∈ Y} = f−1(Y).



We shall use the following tests.

(i) [f ]([x]) ⊂ Y ⇒ [x] ⊂ X
(ii) [f ]([x]) ∩ Y = ∅ ⇒ [x] ∩ X = ∅.

Boxes for which these tests failed, will be bisected, except

if they are too small.



.

Algorithm Sivia(in: [x](0), f ,Y)
1 L := {[x](0)} ;
2 pull [x] from L;
3 if [f ]([x]) ⊂ Y, draw([x], ’red’);
4 elseif [f ]([x]) ∩ Y = ∅, draw([x], ’blue’);
5 elseif w([x]) < ε, {draw ([x], ’yellow’)};
6 else bisect [x] and push into L;
7 if L �= ∅, go to 2



If ∆X denotes the union of yellow boxes and if X− is the

union of red boxes then :

X
− ⊂ X ⊂ X− ∪∆X.



2 Contractors



To characterize X ⊂ Rn, bisection algorithms bisect all

boxes in all directions and become inefficient. Interval

methods can still be useful if

• the solution set X is small (optimization problem, solv-

ing equations),

• contraction procedures are used as much as possible,

• bisections are used only as a last resort.



2.1 Definition



The operator CX : IRn → IR
n is a contractor for X ⊂

Rn if

∀[x] ∈ IRn,
�
CX([x]) ⊂ [x] (contractance),
CX([x]) ∩ X = [x] ∩ X (completeness).







CX is said to be convergent if

[x](k)→ x ⇒ CX([x] (k))→ {x} ∩ X.



2.2 Projection of constraints



Let x, y, z be 3 variables such that

x ∈ [−∞, 5],
y ∈ [−∞, 4],
z ∈ [6,∞],

z = x+ y.

Which values for x, y, z are consistent.



Since x ∈ [−∞, 5], y ∈ [−∞, 4], z ∈ [6,∞] and z =

x+ y, we have

z = x+ y ⇒ z ∈ [6,∞] ∩ ([−∞, 5] + [−∞, 4])
= [6,∞] ∩ [−∞, 9] = [6, 9].

x = z − y ⇒ x ∈ [−∞, 5] ∩ ([6,∞]− [−∞, 4])
= [−∞, 5] ∩ [2,∞] = [2, 5].

y = z − x⇒ y ∈ [−∞, 4] ∩ ([6,∞]− [−∞, 5])
= [−∞, 4] ∩ [1,∞] = [1, 4].



The contractor associated with z = x+ y is.

Algorithm pplus(inout: [z], [x], [y])
1 [z] := [z] ∩ ([x] + [y]) ;
2 [x] := [x] ∩ ([z]− [y]) ;
3 [y] := [y] ∩ ([z]− [x]) .



The projection procedure developed for plus can be ex-

tended to other ternary constraints such as mult: z = x ·y,
or equivalently

mult �
�
(x, y, z) ∈ R3 | z = x · y

�
.

The resulting projection procedure becomes

Algorithm pmult(inout: [z], [x], [y])
1 [z] := [z] ∩ ([x] · [y]) ;
2 [x] := [x] ∩ ([z] · 1/[y]) ;
3 [y] := [y] ∩ ([z] · 1/[x]) .



Consider the binary constraint

exp � {(x, y) ∈ Rn|y = exp (x)} .
The associated contractor is

Algorithm pexp(inout: [y], [x])
1 [y] := [y] ∩ exp ([x]) ;
2 [x] := [x] ∩ log ([y]) .



Any constraint for which such a projection procedure is

available will be called a primitive constraint.



Projection of the sine constraint



2.3 Solvers



A CSP (Constraint Satisfaction Problem) is composed of

1) a set of variables V = {x1, . . . , xn} ,
2) a set of constraints C = {c1, . . . , cm} and

3) a set of interval domains {[x1], . . . , [xn]}.



Principle of propagation techniques: contract [x] = [x1]×
· · · × [xn] as follows:

(((((([x]⊓c1) ⊓ c2) ⊓ . . . ) ⊓ cm)⊓c1)⊓c2) . . . ,
until a steady box is reached.



Example. Consider the system.

y = x2

y =
√
x.



We build two contractors

C1 :
�

[y] = [y] ∩ [x]2

[x] = [x] ∩
�
[y]

associated to y = x2

C2 :
�

[y] = [y] ∩
�
[x]

[x] = [x] ∩ [y]2
associated to y =

√
x





















Exemple. Consider the system
�
y = 3 sin(x)
y = x

x ∈ R, y ∈ R.























2.4 Decomposition into primitive constraints



x+ sin(xy) ≤ 0,
x ∈ [−1, 1], y ∈ [−1, 1]

can be decomposed into





a = xy
b = sin(a)
c = x+ b

,
x ∈ [−1, 1] a ∈ [−∞,∞]
y ∈ [−1, 1] b ∈ [−∞,∞]

c ∈ [−∞, 0]



3 Redermor



The Redermor, GESMA



The Redermor at the surface



Why choosing an interval constraint approach for

SLAM ?

1) A reliable method is needed.

2) The model is nonlinear.

3) The pdf of the noises are unknown.

4) Reliable error bounds are provided by the sensors.

5) A huge number of redundant data are available.



3.1 Sensors



A GPS (Global positioning system) at the surface only.

t0 = 6000 s, ℓ0=(−4.4582279o, 48.2129206o)± 2.5m

tf = 12000 s, ℓf=(−4.4546607o, 48.2191297o)± 2.5m



A sonar (KLEIN 5400 side scan sonar). Gives the distance

r between the robot to the detected object.



Screenshot of SonarPro



Detection of a mine using SonarPro



A Loch-Doppler. Returns the speed of the robot vr and

the altitude a of the robot ± 10cm.



A Gyrocompass (Octans III from IXSEA). Returns the roll

φ, the pitch θ and the head ψ.




φ
θ
ψ




 ∈





φ̃

θ̃

ψ̃




+






1.75× 10−4. [−1, 1]
1.75× 10−4. [−1, 1]
5.27× 10−3. [−1, 1]




 .



3.2 Data

For each time t ∈ {6000.0, 6000.1, 6000.2, . . . , 11999.4},
we get intervals for

φ(t), θ(t), ψ(t), vxr (t), v
y
r(t), v

z
r(t), a(t).



Six mines have been detected by the sonar:

i 0 1 2 3 4 5
τ(i) 7054 7092 7374 7748 9038 9688
σ(i) 1 2 1 0 1 5
r̃(i) 52.42 12.47 54.40 52.68 27.73 26.98

6 7 8 9 10 11
10024 10817 11172 11232 11279 11688
4 3 3 4 5 1

37.90 36.71 37.37 31.03 33.51 15.05



3.3 Constraints satisfaction problem

t ∈ {6000.0, 6000.1, 6000.2, . . . , 11999.4},

i ∈ {0, 1, . . . , 11},
�
px(t)
py(t)

�

= 111120

�
0 1

cos
�
ℓy(t) ∗ π

180

�
0

��
ℓx(t)− ℓ0x
ℓy(t)− ℓ0y

�

,

p(t) = (px(t), py(t), pz(t)),

Rψ(t) =






cosψ(t) − sinψ(t) 0
sinψ(t) cosψ(t) 0

0 0 1




 ,

Rθ(t) =






cos θ(t) 0 sin θ(t)
0 1 0

− sin θ(t) 0 cos θ(t)




 ,



Rϕ(t) =






1 0 0
0 cosϕ(t) − sinϕ(t)
0 sinϕ(t) cosϕ(t)




 ,

R(t) = Rψ(t).Rθ(t).Rϕ(t),

ṗ(t) = R(t).vr(t)

||m(σ(i))− p(τ(i))|| = r(i),

RT(τ(i)) (m(σ(i))− p(τ(i))) ∈ [0]× [0,∞]×2,

mz(σ(i))− pz(τ(i))− a(τ(i)) ∈ [−0.5, 0.5].



3.4 GESMI



GESMI (Guaranteed Estimation of Sea Mines with

Intervals)









Trajectory reconstructed by GESMI



4 SAUC’ISSE



Robot SAUC’ISSE



Portsmouth, July 12-15, 2007.













4.1 Localization with sonar





4.2 Set-membership approach



�
x(k + 1) = fk(x(k),n (k))
y(k) = gk(x(k)),

with n (k) ∈ N (k) and y (k) ∈ Y (k).



Without outliers

X(k + 1) = fk

�
X(k) ∩ g−1k (Y(k)) , N (k)

�
.



4.3 Relaxed intersection





4.4 Robust localization



Define




fk:k (X)

def
= X

fk1:k2+1 (X)
def
= fk2(fk1:k2 (X) ,N (k2)), k1 ≤ k2.

The set fk1:k2 (X) represents the set of all x (k2), consis-

tent with x (k1) ∈ X.



Consider the set state estimator





X(k) = f0:k (X(0)) if k < m, (initialization step)
X(k) = fk−m:k (X(k −m)) ∩

{q}�

i∈{1,...,m}
fk−i:k◦g−1k−i (Y(k − i)) if k ≥ m





4.5 Application to localization



Sauc’isse robot inside a swimming pool



The robot evolution is described by





ẋ1 = x4 cosx3
ẋ2 = x4 sinx3
ẋ3 = u2 − u1
ẋ4 = u1 + u2 − x4,

where x1, x2 are the coordinates of the robot center, x3 is

its orientation and x4 is its speed. The inputs u1 and u2
are the accelerations provided by the propellers.



The system can be discretized by xk+1 = fk (xk) , where,

fk






x1
x2
x3
x4





=






x1 + δ.x4. cos (x3)
x2 + δ.x4. sin (x3)

x3 + δ. (u2(k)− u1(k))
x4 + δ. (u1(k) + u2(k)− x4)








Underwater robot moving inside a pool







https://youtu.be/c-8ZW8nUh7U



5 Scout project

Goal : (i) coordination of underwater robots ; (ii) collabo-

rative behavior.



Supervisors: L. Jaulin, C. Aubry, S. Rohou, B. Zerr, J.

Nicola, F. Le bars

Compagny: RTsys (P. Raude)

Students: G. Ricciardelli, L. Devigne, C. Guillemot, S.

Pommier, T. Viravau, T. Le Mezo, B. Sultan, B. Moura,

M. Fadlane, A. Bellaiche, T. Blanchard, U. Da rocha, G.

Pinto, K. Machado.











5.1 Simulator



MOOS, MORSE, BLENDER, IBEX, Vibes, GIT



MOOS architecture



5.2 Controller





5.3 Localization

Range only

Based on interval analysis

Robust with respect to outliers

Distributed computation

Low rate communication





Presentation of the scout project

http://youtu.be/ATPabRHz0LA



5.4 Tests





www.ensta-bretagne.fr/jaulin/easibex.html


