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Problem. Given f : Rn→ R and a box [x]⊂ Rn, prove that

∀x ∈ [x] , f (x)≥ 0.

Interval arithmetic can solve e�ciently this problem.
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Example. Is the function

f (x) = x1x2− (x1+ x2)cosx2+ sinx1 · sinx2+2

always positive for x1,x2 ∈ [−1,1] ?
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Interval arithmetic

[−1,3]+ [2,5] =?,
[−1,3] · [2,5] =?,
abs([−7,1]) =?
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Interval arithmetic

[−1,3]+ [2,5] = [1,8],
[−1,3] · [2,5] = [−5,15],
abs([−7,1]) = [0,7]
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The interval extension of

f (x1,x2) = x1 ·x2− (x1+ x2) · cosx2+ sinx1 · sinx2+2

is

[f ] ([x1] , [x2]) = [x1] · [x2]− ([x1]+ [x2]) · cos [x2]
+sin [x1] · sin [x2]+2.
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Theorem (Moore, 1970)

[f ] ([x])⊂ R+⇒∀x ∈ [x] , f (x)≥ 0.
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Set Inversion
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A subpaving of Rn is a set of non-overlapping boxes of Rn.
Compact sets X can be bracketed between inner and outer
subpavings:

X− ⊂ X⊂ X+.
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Example.
X= {(x1,x2)

∣∣ x21 + x22 ∈ [1,2]}.
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Let f : Rn→ Rm and let Y be a subset of Rm. Set inversion is the
characterization of

X= {x ∈ Rn | f(x) ∈ Y}= f−1(Y).
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We shall use the following tests.

(i) [f]([x])⊂ Y ⇒ [x]⊂ X
(ii) [f]([x])∩Y= /0 ⇒ [x]∩X= /0.

Boxes for which these tests failed, will be bisected, except if they
are too small.
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Contractors
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The operator C : IRn→ IRn is a contractor [4] for the equation
f (x) = 0, if{

C ([x])⊂ [x] (contractance)
x ∈ [x] and f (x) = 0⇒ x ∈ C ([x]) (consistence)
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Building contractors

Consider the primitive equation

x1+ x2 = x3

with x1 ∈ [x1], x2 ∈ [x2], x3 ∈ [x3] .
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We have

x3 = x1+ x2⇒ x3 ∈ [x3]∩ ([x1]+ [x2])
x1 = x3−x2⇒ x1 ∈ [x1]∩ ([x3]− [x2])
x2 = x3−x1⇒ x2 ∈ [x2]∩ ([x3]− [x1])
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The contractor associated with x1+ x2 = x3 is thus

C

 [x1]
[x2]
[x3]

=

 [x1]∩ ([x3]− [x2])
[x2]∩ ([x3]− [x1])
[x3]∩ ([x1]+ [x2])



Distributed localization and control of underwater robots



Interval analysis
Dynamical localization

Swarm localization

Tubes

Distributed localization and control of underwater robots



Interval analysis
Dynamical localization

Swarm localization

A trajectory is a function f : R→ Rn. [6, 5]. For instance

f (t) =

(
cos t
sin t

)
is a trajectory.
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Order relation

f ≤ g⇔∀t,∀i , fi (t)≤ gi (t) .
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We have

h = f ∧g⇔∀t,∀i ,hi (t) =min(fi (t) ,gi (t)) ,

h = f ∨g⇔∀t,∀i ,hi (t) =max(fi (t) ,gi (t)) .
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The set of trajectories is a lattice. Interval of trajectories (tubes)
can be de�ned.
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Example.

[f] (t) =

(
cos t+

[
0, t2

]
sin t+[−1,1]

)
is an interval trajectory (or tube).

Distributed localization and control of underwater robots



Interval analysis
Dynamical localization

Swarm localization

Tube arithmetics

Distributed localization and control of underwater robots



Interval analysis
Dynamical localization

Swarm localization

If [x ] and [y ] are two scalar tubes [1], we have

[z ] = [x ]+ [y ]⇒ [z ] (t) = [x ] (t)+ [y ] (t) (sum)
[z ] = shifta ([x ])⇒ [z ] (t) = [x ] (t+a) (shift)
[z ] = [x ]◦ [y ]⇒ [z ] (t) = [x ] ([y ] (t)) (composition)

[z ] =
∫
[x ]⇒ [z ] (t) =

[∫ t
0 x
− (τ)dτ,

∫ t
0 x

+ (τ)dτ
]

(integral)
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Tube arithmetic allows us to build contractors [3].
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Consider for instance the di�erential constraint

ẋ (t) = x (t+ τ) ·u (t) ,
x (t) ∈ [x ] (t) , ẋ (t) ∈ [ẋ ] (t) ,u (t) ∈ [u] (t) ,τ ∈ [τ]

We decompose as follows
x (t) = x (0)+

∫ t
0 y (τ)dτ

y (t) = a (t) ·u (t) .
a (t) = x (t+ τ)
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Possible contractors are

[x ] (t) = [x ] (t)∩
(
[x ] (0)+

∫ t
0 [y ] (τ)dτ

)
[y ] (t) = [y ] (t)∩ [a] (t) · [u] (t)
[u] (t) = [u] (t)∩ [y ](t)

[a](t)

[a] (t) = [a] (t)∩ [y ](t)
[u](t)

[a] (t) = [a] (t)∩ [x ] (t+[τ])
[x ] (t) = [x ] (t)∩ [a] (t− [τ])
[τ] = [τ] (t)∩ . . .
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Example. Consider x (t) ∈ [x ] (t) with the constraint

∀t, x (t) = x (t+1)

Contract the tube [x ] (t) .
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We �rst decompose into primitive trajectory constraints

x (t) = a (t+1)

x (t) = a (t) .
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Contractors

[x ] (t) : = [x ] (t)∩ [a] (t+1)

[a] (t) : = [a] (t)∩ [x ] (t−1)

[x ] (t) : = [x ] (t)∩ [a] (t)
[a] (t) : = [a] (t)∩ [x ] (t)
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http://www.simon-rohou.fr/research/tubex-lib/ [6]
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Classical state estimation{
ẋ(t) = f (x(t) ,u(t)) t ∈ R
0 = g (x(t) , t) t ∈ T⊂ R.

Space constraint g (x(t) , t) = 0.
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Example. 

ẋ1 = x3 cosx4
ẋ2 = x3 cosx4
ẋ3 = u1
ẋ4 = u2
(x1 (5)−1)2+(x2 (5)−2)2−4= 0

(x1 (7)−1)2+(x2 (7)−2)2−9= 0
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With time-space constraints{
ẋ(t) = f (x(t) ,u(t)) t ∈ R
0 = g (x(t) ,x(t ′) , t, t ′) (t, t ′) ∈ T⊂ R×R.
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Example. An ultrasonic underwater robot with state

x= (x1,x2, . . .) = (x ,y ,θ ,v , . . .)

At time t the robot emits an omnidirectional sound. At time t ′ it
receives it (

x1−x
′
1

)2
+
(
x2−x

′
2

)2
− c
(
t− t ′

)2
= 0.
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Mass spring problem
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The mass spring satis�es

ẍ+ ẋ+ x−x3 = 0

i.e. {
ẋ1 = x2
ẋ2 = −x2−x1+ x31

The initial state is unknown.
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ẋ1 = x2
ẋ2 =−x2−x1+ x31
L−x1 (t1)+L−x1 (t2) = c (t2− t1) .
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Consider n robots R1, . . . ,Rn described by

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
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Omnidirectional sounds are emitted and received.
A ping is a 4-uple (a,b, i , j) where a is the emission time, b is the
reception time, i is the emitting robot and j the receiver.
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With the time space constraint

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
g
(
xi(k) (a (k)) ,xj(k) (b (k)) ,a (k) ,b (k)

)
= 0

where
g (xi ,xj ,a,b) = ‖x1−x2‖− c (b−a) .
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Clocks are uncertain. We only have measurements ã (k) , b̃ (k) of
a (k) ,b (k) thanks to clocks hi . Thus

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
g
(
xi(k) (a (k)) ,xj(k) (b (k)) ,a (k) ,b (k)

)
= 0

ã (k) = hi(k) (a (k))

b̃ (k) = hj(k) (b (k))
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The drift of the clocks is bounded

ẋi = f (xi ,ui ) ,ui ∈ [ui ] .
g
(
xi(k) (a (k)) ,xj(k) (b (k)) ,a (k) ,b (k)

)
= 0

ã (k) = hi(k) (a (k))

b̃ (k) = hj(k) (b (k))

ḣi = 1+nh, nh ∈ [nh]
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https://youtu.be/j-ERcoXF1Ks [2]
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https://youtu.be/jr8xKIe0Nds
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https://youtu.be/GycJxGFvYE8
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https://youtu.be/GVGTwnJ_dpQ
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