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A Constraint Network is composed of

1) a set of variables ¥ = {x; € X1,...,x, € X,,},
2) a set of constraints ¢ = {ci,...,cm} and

3) a set of domains {[x1],...,[xn]}.
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Constraint network

1) a set of variables ¥ = {x € R,y € R},
2) a set of constraints ¢ = {y =x%y= \/;(} and
3) a set of domains {[—1,2],[-1,2]}.
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We have a system of two equations.
y = X

y = Vx
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We can build two contractors
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¢ :{ {ﬁ;{ﬁg[\/]m associated to y = x

: [y]:[y]ﬁ\/m associated to y = +/x
%'{[X]z[x]ﬂ[ylz ted to y = v/x
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Constraint network

A Constraint Network is composed of

1) a set of variables ¥ = {x; € X1,...,x, € X,,},

2) a set of constraints ¢ = {ci,...,cm} and

3) a set of domains {[x1],...,[xn]}.

Classically, the X; are lattices, but it is not necessary.
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The domains [x;] should be representable in the machine.
The domains should be a Moore family.
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An example with angles
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The set of angles A is not a lattice. Thus, we cannot define
intervals of angles.
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The family IA is a Moore family (containing A) if

Vi,[a] (i) €TA = m[a] (i) € TA
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Eliakim Hastings Moore

Born

Died

Nationality

Fields

Institutions

January 26, 1862
Marietta, Ohio, U.S.

December 30, 1932
(aged 70)

Chicago, Illinois, U.S.
American

Mathematics
University of Chicago
1892-31

Yale University 1887-89
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Embedding
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Embedding. To have a Moore family, we perform an embedding:
o < cos > €R?
sina

Now, we introduce a pessimism (Embedding effect).
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Inner and outer contractions
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A maze is a set of trajectories.
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Mazes can be made more accurate by adding polygones.
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Or using doors instead of a graph
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Here, we use bi-directional doors

The trajectory x(-) belongs to the maze [x](-)
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Here, a maze .Z is composed of [2][1]
e A paving &

@ Doors between adjacent boxes
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The set of mazes forms a lattice with respect to C.
L, C % means :

o the boxes of .%, are subboxes of the boxes of .Z,.
@ The doors of %, are thinner than those of .%}.
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We consider a constraint network composed of

1) One trajectory ¥ = {x(-) € X = {x(-) [x =f(x)}},
2) One constraint € = {x([0,00]) C A}

3) One maze {[x]}.
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Example: The Van der Pol system

X1 = X2
Xy = (1—x12)-X2—X1

Computing positive invariant sets with intervals



e
Y
/7
/
/

- > - - - - s s e e e e e o«
—r—v—v’_v_'_r_»._‘/,_..

t
4
\
X
\
\
\
\
\

Trajectories (a),(b),(d) are variables that are solution. (c) is a
variable which is not a solution.
The trajectory (e) satisfies the constraint, but is not a variable.
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We search for a trajectory which never reach A.
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Abstract interpretation
If Xk4+1 = h(Xk), X0 € Xg C A.
Show that x, will never leave A.
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Forward method (inflations)
© Repeat Xy411 = h(Xk)UXk, until X1 =Xy
@ Check that X, C A.

The principle is to add the x that can be reached from X until no
more can be added.
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Backward method (contractions)
Q Set Xy =A.
@ Repeat X ; = h™}(X,)NX,, until X, =X,.
© Check that Xy C X’k.

The principle is to remove the x that leave X’k until no more can be
removed.
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Backward method for mazes
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Take a maze [x](-) and close door in A.
Remove from [x] () paths that may leave [x](:) until no more can
be removed.
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Positive invariant set
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Largest positive invariant set

Van der Pol system
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Consider the system

>'<1 = X2
Xo = (1—X12)-X2—X1

and the box Xo = [—4,4] x [—4,4].
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www.ensta-bretagne.fr/lemezo/pyinvariant/pyinvariant.html
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Guaranteed integration
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Eulerian smoother
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Take the Van der Pol system with

Xo =[a] =1[0,0.6] x [0.8,1.8]
X; =[b]=[0.7,1.5] x [-0.2,0.2]
X, =[c]=[0.2,0.6] x [-2.2,~1.5]
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An application of Eulerian state estimation moving taking
advantage of ocean currents.
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Visiting the three red boxes using a buoy that follows the currents
is an Eulerian state estimation problem
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