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A Constraint Network is composed of
1) a set of variables V = {x1 ∈ X1, . . . ,xn ∈ Xn} ,
2) a set of constraints C = {c1, . . . ,cm} and
3) a set of domains {[x1], . . . , [xn]}.
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1) a set of variables V = {x ∈ R,y ∈ R} ,
2) a set of constraints C =

{
y = x2,y =

√
x
}
and

3) a set of domains {[−1,2], [−1,2]}.
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We have a system of two equations.

y = x2

y =
√
x .
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We can build two contractors

C1 :

{
[y ] = [y ]∩ [x ]2
[x ] = [x ]∩

√
[y ]

associated to y = x2

C2 :

{
[y ] = [y ]∩

√
[x ]

[x ] = [x ]∩ [y ]2 associated to y =
√
x
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A Constraint Network is composed of
1) a set of variables V = {x1 ∈ X1, . . . ,xn ∈ Xn} ,
2) a set of constraints C = {c1, . . . ,cm} and
3) a set of domains {[x1], . . . , [xn]}.
Classically, the Xi are lattices, but it is not necessary.
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The domains [xi ] should be representable in the machine.
The domains should be a Moore family.
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An example with angles
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The set of angles A is not a lattice. Thus, we cannot define
intervals of angles.
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The family IA is a Moore family (containing A) if

∀i , [a] (i) ∈ IA ⇒
⋂
i

[a] (i) ∈ IA
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Embedding
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Embedding. To have a Moore family, we perform an embedding:

α 7→
(

cosα

sinα

)
∈ R2

Now, we introduce a pessimism (Embedding effect).
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Inner and outer contractions
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A maze is a set of trajectories.
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Mazes can be made more accurate by adding polygones.
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Or using doors instead of a graph
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Here, we use bi-directional doors

The trajectory x(·) belongs to the maze [x] (·)
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Here, a maze L is composed of [2][1]
A paving P

Doors between adjacent boxes
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The set of mazes forms a lattice with respect to ⊂.
La ⊂Lb means :

the boxes of La are subboxes of the boxes of Lb.
The doors of La are thinner than those of Lb.
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We consider a constraint network composed of
1) One trajectory V = {x(·) ∈ X= {x(·) |ẋ = f(x)}} ,
2) One constraint C = {x ([0,∞])⊂ A}
3) One maze {[x]}.
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Example: The Van der Pol system{
ẋ1 = x2
ẋ2 =

(
1−x2

1
)
·x2−x1
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Trajectories (a),(b),(d) are variables that are solution. (c) is a
variable which is not a solution.
The trajectory (e) satisfies the constraint, but is not a variable.
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We search for a trajectory which never reach A.
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Abstract interpretation
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Abstract interpretation
If xk+1 = h(xk), x0 ∈ X0 ⊂ A.
Show that xk will never leave A.
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Forward method (inflations)
1 Repeat Xk+1 = h(Xk)∪Xk , until Xk+1 = Xk .
2 Check that Xk ⊂ A.

The principle is to add the x that can be reached from Xk until no
more can be added.
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Backward method (contractions)
1 Set X′0 = A.
2 Repeat X′k+1 = h−1(X′k)∩X

′
k , until X

′
k+1 = X′k .

3 Check that X0 ⊂ X′k .
The principle is to remove the x that leave X′k until no more can be
removed.
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Backward method for mazes
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Take a maze [x] (·) and close door in A.
Remove from [x] (·) paths that may leave [x] (·) until no more can
be removed.
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Positive invariant set
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Van der Pol system
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Consider the system{
ẋ1 = x2
ẋ2 =

(
1−x2

1
)
·x2−x1

and the box X0 = [−4,4]× [−4,4].
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www.ensta-bretagne.fr/lemezo/pyinvariant/pyinvariant.html
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Guaranteed integration
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Eulerian smoother
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Take the Van der Pol system with

X0 = [a] = [0,0.6]× [0.8,1.8]
X1 = [b] = [0.7,1.5]× [−0.2,0.2]
X2 = [c] = [0.2,0.6]× [−2.2,−1.5]
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An application of Eulerian state estimation moving taking
advantage of ocean currents.
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Visiting the three red boxes using a buoy that follows the currents
is an Eulerian state estimation problem
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