The role of preconditioning for contractors

October 2, 2024

▲日▼▲□▼▲□▼▲□▼ 回▼ 2000

Abstract. Centered form is traditionally used to enclose the range of a function over narrow intervals. The quadratic approximation property guarantees an asymptotically small overestimation for sufficiently narrow boxes. In this presentation, I will show how the centered form can be included efficiently inside a propagation process to get more precise contractions. I will also show the fundamental role of the preconditioning.

1. Introduction

<ロト < 回 > < 臣 > < 臣 > 三 の へ つ) ??

Take

$$\Leftrightarrow \underbrace{\left(\begin{array}{c} -x_{3}^{2}+2x_{3}\sin(x_{3}x_{1})+\cos(x_{3}x_{2})\\ 2x_{3}\cos(x_{3}x_{1})-\sin(x_{3}x_{2})\end{array}\right)}_{\mathbf{f}(x_{1},x_{2},x_{3})} = \mathbf{0}$$

With $[x_1] = [0, 2.5]$, $[x_2] = [1, 4]$, $[x_3] = [0, 10]$, with a Matlab implementation, with a forward-backward contractor, and $\varepsilon = 2^{-8}$, [?] got:

https://youtu.be/DaR2NZZIV10?t=2453 € € ∽ ۹ ℃ 5 / ??

Introduction

Minimal contractors Asymptotic minimality Results

 $arepsilon=2^{-8}$, Codac [4] generated 43173 boxes.

We still have a Clustering effect $\equiv + + \equiv + - = -9$ $(- -)^{?}$

Centered constraint

$$\left\{ \begin{array}{ll} f(x) = \mathbf{0} \\ x \in [x] \\ m = \texttt{center}([x]) \end{array} \right. \Rightarrow \left\{ \begin{array}{ll} f(m) + A \cdot (x - m) = \mathbf{0} \\ A \in [\frac{df}{dx}]([x]) \\ x \in [x] \end{array} \right.$$

Centered constraint with preconditioning

$$\left\{ \begin{array}{ll} f(x) = \mathbf{0} \\ x \in [x] \\ m = \texttt{center}([x]) \end{array} \right. \Rightarrow \left\{ \begin{array}{ll} \mathbf{Q} \cdot \mathbf{f}(m) + \mathbf{Q} \cdot \mathbf{A} \cdot (x - m) = \mathbf{0} \\ \mathbf{A} \in [\frac{d\mathbf{f}}{dx}]([x]) \\ \mathbf{x} \in [x] \end{array} \right.$$

2. Minimal contractors

<ロ><日><日><日><日><日><日><日><日><日><10</td>

Given a function $\mathbf{f}:\mathbb{R}^n\mapsto\mathbb{R}^p.$ An inclusion function for \mathbf{f} is minimal if

 $[\mathbf{f}]([\mathbf{x}]) = [\![\{\mathbf{y} = \mathbf{f}(\mathbf{x}) \,|\, \mathbf{x} \in [\mathbf{x}]\}]\!].$

With a minimal inclusion, the clustering effect may exist, when solving $\boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{0}$

A contractor associated to the set $X \subset \mathbb{R}^n$ is a function $\mathscr{C} : \mathbb{IR}^n \mapsto \mathbb{IR}^n$ such that

$$\begin{array}{ll} \mathscr{C}([\mathbf{x}]) \subset [\mathbf{x}] & (\texttt{contraction}) \\ [\mathbf{x}] \cap \mathbb{X} \subset \mathscr{C}([\mathbf{x}]) & (\texttt{consistency}) \end{array}$$

It is minimal if $\mathscr{C}([\mathbf{x}]) = \llbracket [\mathbf{x}] \cap \mathbb{X} \rrbracket$.

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ▲ 国 → の Q (* 12 / ??

Tree matrices

<ロ> < 団> < 団> < 豆> < 豆> < 豆> 三 のへで 14 / ??

Consider the interval linear system:

$$\left(\begin{array}{ccc} d_{11} & d_{12} & 0 \\ 0 & d_{22} & d_{23} \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} b_1 \\ b_2 \end{array}\right)$$

where

$$d_{ij} \in [d_{ij}], x_j \in [x_j], b_i \in [b_i]$$

The optimal contraction can be obtained by a simple interval propagation [1].

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 16 / ??

No cycle for:

$$\begin{pmatrix} d_{11} & d_{12} & 0 & 0 \\ 0 & d_{22} & d_{23} & 0 \\ 0 & 0 & d_{33} & d_{34} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

A matrix **D** such that $\mathbf{D} \cdot \mathbf{x} = \mathbf{b}$ has no cycle is a *tree matrix*.

With a Gauss Jordan transformation:

 $\mathbf{A}\mathbf{x} = \mathbf{c} \Leftrightarrow \mathbf{Q} \cdot \mathbf{A} \cdot \mathbf{x} = \mathbf{Q} \cdot \mathbf{c}$

we may get a tree matrix: $\mathbf{D} = \mathbf{Q} \cdot \mathbf{A}$.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ 18 / ??

Simplex contractor

<ロ> < 母> < 母> < 注> < 注> 注 の < で 19 / ??

For the linear system

$$\mathbf{A}\mathbf{x} = \mathbf{c}, \mathbf{x} \in [\mathbf{x}], \mathbf{c} \in [\mathbf{c}]$$

we can use the simplex algorithm to build the minimal contractor. Guarantee can be obtained with an inflation [3]

3. Asymptotic minimality

<ロ> < 母> < 母> < ヨ> < ヨ> = のへで 21 / ??

Proximity. Denote by $L(\mathbf{a}, \mathbf{b})$ a distance between \mathbf{a} and \mathbf{b} of \mathbb{R}^n induced by the *L*-norm (L_{∞} or L_2). The *proximity* of \mathbb{A} to \mathbb{B} is

$$h(\mathbb{A},\mathbb{B}) = \sup_{\mathbf{a}\in\mathbb{A}} L(\mathbf{a},\mathbb{B})$$

where

$$L(\mathbf{a},\mathbb{B}) = \inf_{\mathbf{b}\in\mathbb{B}} L(\mathbf{a},\mathbf{b}).$$

Proximity of $\mathbb A$ to $\mathbb B$

Definition. The pessimism of an inclusion function $[\mathbf{f}]$ is

 $\eta([\mathbf{x}]) = h([\mathbf{f}]([\mathbf{x}]), [\![\mathbf{f}([\mathbf{x}])]\!])$

<ロ> < 母> < 母> < ヨ> < ヨ> ヨ の へ つ 24 / ??

Definition [2]. An inclusion function $[\mathbf{f}]$ is of order j if

 $\boldsymbol{\eta}([\mathbf{x}]) = o(w^j([\mathbf{x}]))$

Definition. [f] is convergent if it is of order j = 0:

 $\eta([\mathbf{x}]) = o(w^0([\mathbf{x}])) = O(w([\mathbf{x}]))$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Definition. [f] is asymptotically minimal if it is of order j = 1:

 $\eta([\mathbf{x}]) = o(w([\mathbf{x}]))$

< □ > < @ > < E > < E > E の < C 28 / ??

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition [2]. The centered form

$$[f]([x]) = f(m) + [f']([x]) \cdot ([x] - m)$$

where $\mathbf{m} = \text{center}([\mathbf{x}])$ is asymptotically minimal.

Definition. The pessimism of a contractor ${\mathscr C}$ for ${\mathbb X}$ at [x] is

 $\eta([\mathbf{x}]) = h(\mathscr{C}([\mathbf{x}]), \llbracket [\mathbf{x}] \cap \mathbb{X} \rrbracket)$

<ロ> < 母> < 母> < 注> < 注> 注 の < で 32 / ??

Definition. A contractor \mathscr{C} for \mathbb{X} is of order j if

 $\boldsymbol{\eta}([\mathbf{x}]) = o(w^j([\mathbf{x}]))$

<ロ> < 団> < 団> < 豆> < 豆> < 豆> 三 のへで 33 / ??

<ロト < 回 > < 臣 > < 臣 > 臣 の Q @ 34 / ??

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ ○ ○ ○ 36 / ??

Proposition. Consider a set $\mathbb{X} = \{x \in \mathbb{R}^n | f(x) = 0\}$. Take [x] with center m. Define Q s.t. $Q \cdot \frac{df}{dx}(m)$ is a tree matrix. An interval propagation on;

$$\begin{aligned} \mathbf{Q} \cdot \mathbf{f}(\mathbf{m}) + \mathbf{Q} \cdot \mathbf{A} \cdot (\mathbf{x} - \mathbf{m}) &= \mathbf{0} \\ \mathbf{A} \in [\frac{d\mathbf{f}}{d\mathbf{x}}]([\mathbf{x}]) \\ \mathbf{x} \in [\mathbf{x}] \end{aligned}$$

yields an asymptotically minimal contractor for X.

Proof....

<ロ> < 母> < 母> < 注> < 注> 注 の < で 37 / ??

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q (P 39 / ??

▲□▶ ▲□▶ ▲ 壹▶ ▲ 壹▶ 壹 ⑦ � ♡ ◆ 40 / ??

Centered contractor

<ロ> < 団> < 団> < 豆> < 豆> < 豆> 三 のへで 41 / ??

Input:	f,[x]
1	$\mathbf{m} = center([\mathbf{x}])$
2	Compute the Gauss-Jordan matrix Q for $\frac{d\mathbf{f}}{d\mathbf{x}}(\mathbf{m})$
3	Define $\mathbf{g}(\mathbf{x}) = \mathbf{Q} \cdot \mathbf{f}(\mathbf{x})$
4	For $i \in \{1, \dots, p\}$
5	For $j \in \{1,\ldots,n\}$
6	$[\mathbf{a}] = [\frac{\partial g_i}{\partial \mathbf{x}}]([\mathbf{x}])$
7	$[s] = \sum [a_k] \cdot ([x_k] - m_k)$
	$\overline{k \neq j}$
8	$[x_j] = [x_j] \cap (-g_i(\mathbf{m}) - [s])$
9	Return [x]

4. Results

<ロ> < 団> < 団> < 豆> < 豆> < 豆> 三 のへで 43 / ??

With a forward-backward contractor and $arepsilon=2^{-8}$

<ロ > < 回 > < 画 > < 三 > < 三 > 三 の Q @ 44 / ??

With the centered contractor $arepsilon=2^{-4}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Blue:
$$arepsilon=2^{-4}$$
 ; Thin: $arepsilon=2^{-8}$

▲□▶ ▲□▶ ▲ 壹▶ ▲ 壹▶ 壹 ∽ � ♀ ↔ 46 / ??

Gray:
$$oldsymbol{arepsilon}=2^{-8}$$
 ; Magenta: $oldsymbol{arepsilon}=2^{-12}$

▲□▶ ▲□▶ ▲ 壹▶ ▲ 壹▶ = - 約९ペ 47 / ??

Contributions

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆> 三 のへで 48 / ??

Notion of asymptotic minimal contractor Link between the preconditioning and acyclic constraint networks Better results than the basic affine arithmetic No use of guaranteed linear programming

Perspectives

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Compare with modern affine arithmetic Improve the tree preconditioning Use linear programming with an order 1 inflation Sequential centered contractor (for state estimation)

U. Montanari and F. Rossi. Constraint relaxation may be perfect.

Artificial Intelligence, 48(2):143-170, 1991.

R. Moore.

Methods and Applications of Interval Analysis. Society for Industrial and Applied Mathematics, jan 1979.

- A. Neumaier and O. Shcherbina. Safe bounds in linear and mixed-integer linear programming. Math. Program., 99(2):283–296, 2004.
- 🔋 S. Rohou.

Codac (Catalog Of Domains And Contractors), available at http://codac.io/.

Robex, Lab-STICC, ENSTA-Bretagne, 2021.