Solving set-valued problems;

Application to localisation and
mapping with robots

Luc Jaulin
OSM, IHSEV, ENSTA Bretagne, LabSTICC, Brest,
France

CEA List, May 6, 2014



1 Contractors



The operator C : IR"™ — IR" is a contractor for the
equation f (x) =0, if

{ C([x]) C [x] (contractance)
x € [x] and f(x) =0=x € C([x]) (consistence)



Example. Consider the primitive equation:

Lo — sin L.









Backward contraction



Building contractors for equations

Consider the primitive equation

Tr1+ T2 =3

with 1 € [z1], 2 € [x2], 3 € [23].



We have

3 =x1+x2= z3€ [z3]N([x1]+[z2]) // forward
r1 =23 —x2 = x1 € [z1]N([x3] —[z2]) // backward
rp =23 —x1 = x2 € [z2] N ([x3] —[z1]) // backward



The contractor associated with x1 + x5 = x3 is thus

[1] [z1] M ([3] — [22])
Cl [z2] | = [z2] N([23] —[x1])
[3] [23] N ([z1] + [22])



Consider the following problem
(C1): y=a?
(C2): =zy=1
(C3): y=-2x+1
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2 Interval trajectories



A trajectory is a function f : R — R™. For instance

cost
£(t) = ( sint )
Is a trajectory and

cost + [O,tz] )

() = (sint—|— [—1, 1]

is an interval trajectory (or tube).



Consider x (t) € [x] (t) with the constraint
Vt, z(t) = x(t + 1)

Contract the tube [x] (t) .



Method

[z (¢) : =[] (¥) N [=] (¢4 1)
[z (¢) : =I[=](¢) N [z] (t - 1)






3 Set intervals



Given two sets A~ and A™ of R", the pair [A] = [A‘, Aﬂ
which encloses all sets A such that

AT CACAT

Is a set Iinterval.
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Machine representation of [A‘, Aﬂ



The set interval [0, (] is a singleton : ) € [0, 0].
The set interval [(), R"] encloses all sets of R™.



Given two sets A and B of R™. The smallest set interval
which contains A and B is

O{A,B} =[ANB,AUB.

[ANB,AUB]

A / AUB

ANB B




4 Arithmetic



4.1 Specific set interval operations

Set intervals are sets (of sets), the intersection, the union,
the inclusion can thus be defined.



Intersection.

[A]M[B] = {X,X € [A] and X € [B]}
= [A—uB—,MmBﬂ.
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Inclusion.

[AlC [B] < [A]N[B] = [B].



Set interval envelope.

D{AZ,’LEH}:

(A, U A

vell vell

For instance,

C{[1,4],13,7],[2,6]} = [[3, 4], [1, 7]].



Union. We have

[A]U[B] = O{X,X € [A] or X € [B]}
- [A—mB—,MuBﬂ.



4.2 Set extension

All operations existing for sets such as N, U, reciprocal im-
age, direct image, ... can be extended to set intervals.



foc{nuU,x,\,...}

[A]o [B] =0 {C,A € [A],B € [B],C=AcB}.
We have
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Extension of functions. A set-valued function f can be
extended to set intervals as follows

f([A—,Aﬂ) — D{f(A),A e [A—,Aﬂ}.

When f is inclusion monotonic, we have

Flamat]) =17 (a7). 7 (a7)]-



5 Interval extension



The interval extension associated with the set-valued ex-
pression

f(X1,X0,X3) =X U (XoNg(X3))

F1([X1], [Xo], [X3]) = [Xq] U ([X2] N g ([X3])) -



Theorem 1. If X € [X{],..., Xy € [Xy] then

f(Xy, X, o, X)) € [fT([X4] [X2] 5 - - [Xn]) -

Moreover, if in the expression of f, all X; occur only once,
the set interval evaluation is minimal.



Dependency problem. For instance,
AT AT\ [AT AT = [AT\AT, ANAT] = [0, AT\AT].
Of course, we have the inclusion property

{A\A,A € A7, AT|} =[0,0] C [0,AT\A".



Example. Consider two equivalent expressions of the ex-
clusive union

f(AB) = (A\B)U(B\A)
g(AB) = (AUB)\(ANB).
The two natural set interval extensions are given by

[FTCA]L [B]) = ([AJ\[B]) U ([B] \ [A])
lo] ([A] [B]) = ([A]JU[B])\ ([A] N [B]).
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6 Contractors



(P(R™), <)

E_ c1 (A, B)
N | ﬁx[ﬂg]
_E \
B_E C1(AL[B])
el | | |(7|D(Rn)’C)

[A]



Consider the CSP

ACB
{AE[A],IB%E[IB%].

The optimal contractor is

{ (i) [A] == [A] T ([A] N [B])
(i) [B] := [B] ™1 ([A] U [B])

Proof.

ACB &« A=ANB & B=AUB.



Consider the CSP

ANB =10
{AEMLBEBL

The optimal contractor is

{ (i) [A]:=[A] ([0, R"] \ [B])
(i) [B] := [B] 1 ([0, R"] \ [A]).

Proof.

ANB=0 < 3Zc[0,R"] such that A = Z\B
& 37 € [0,R"] such that B = Z\A.



Consider the CSP

ANB=C
{AE[A],IB%E[IB%],CE[C].

The optimal contractor is
{ (i) [C] = [C] M ([A] N [B])

(i) [A]:=[A] M ([CTU ([0, R™]\ ([B] \ [C])))
(iii) - [B] := [B] 1 ([C] L ([0, R*]\ ([A]\[C]))) -
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Consider the CSP

{ f(A) =B
A € [A],B € [B]
where f : R™ — R" is bijective. The optimal contractor
{ (i) [B] := [B] M f([A])
(i) [A]:=[A]N f=1([B]).



{ Application



Consider the following CSP

(i) XCA
(ii) BCX
(i) XNC=0

(V) fX) =X,

where X is an unknown subset of R? f is a rotation with
an angle of —¢, and

(A = (:cl,:cz),:c%—l—x%SS}
$ B = {(z1,22), (w1 —0.5)* + 23 < 0.3
C = {(z1,22),(x1—1)°+ (22— 1)° < o.15}
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8 Range-only SLAM



Range-only SLAM equations

r1(t) = wi(t)cos (ux(t))
To(t) = wq(t)sin (ux(t))
20 = d(x(t),M).

Actual trajectory and dug space



{ x (t) f(x(t),u(t)) (evolution equation)
z (t) d(x(t),M) (map equation)

where t € R, x € R”, u € R™, M € C(R9) is the
occupancy map.

Unknown: the map M and the trajectory x.



Assumption. d corresponds to a rangefinder, i.e.,

{ d(Xa Ml U MZ) = min {d (X7 Ml) ) d(X7 MZ)}
d(x,0) = +oo0.



Impact, covering and dug zones



Define the function 6x : R — R as

ox (a) = d(x,{a}).

For given x and z, we define

covering zone | 53 * ([0, oo[) = {a, 5x (a) < oo}

impact zone | 0x* ({z}) = {a,x (a) = 2}

dug zone o<+ ([0, z[) = {a, 6x (a) < z}




Theorem 1. The dug zone does not intersect M, i.e.,

z=d(x,M) = 61 ([0,z]) "M = 0.

The set D = Uy (5;1) ([0, z(¢)[) is called the dug space.
We have

DN M = 0.



Theorem 2. For all x, the impact zone intersects the map,
l.e,

z=d(x,M) =61 ({z}) "M # 0.



5:5([0,2(1)D)
U 858 ([0.202)D)

Sty ({2(3)})




The range-only SLAM problem is a hybrid CSP.
Variables: x(t), M and D.

Constraints:

(1) %) =f(x(t),u(®)

(2) D= Ute[t] 5;(%5) (10, z(¢)[)

(3) DNM=20 }:z(t)d(x(t),M)
(4) Sy L=} NM#0.

Domains: [M] = [D] = [0,RY], [x] (t) = R™ for ¢t > 0
and [x] (0) = x (0).



Constraint diagram of the range only SLAM problem



9 Hybrid intervals



A closed interval (or interval for short) [x] of a complete
lattice & is a subset of £ which satisfies

[zl ={zc&| ANz] <z < V[z]}

Both @ and &€ are intervals of &.



[ANB,AUB]

ANB B

Lattice (P (R"™), C)




T =

An interval function (or tube) and a set interval




Hybrid intervals. If [x] € I€z, [y] € IEy then [x] X [y] is
a hybrid interval.



Hybrid contractor
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10 SLAM



Range-only SLAM equations

r1(t) = wi(t)cos (ux(t))
To(t) = wq(t)sin (ux(t))
20 = d(x(t),M).

Actual trajectory and dug space
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