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1 Contractors



The operator C : IRn → IR
n is a contractor for the

equation f (x) = 0, if
�
C([x]) ⊂ [x] (contractance)
x ∈ [x] and f (x) = 0⇒ x ∈ C([x]) (consistence)



Example. Consider the primitive equation:

x2 = sinx1.





Forward contraction



Backward contraction



Building contractors for equations

Consider the primitive equation

x1 + x2 = x3

with x1 ∈ [x1], x2 ∈ [x2], x3 ∈ [x3] .



We have

x3 = x1 + x2⇒ x3 ∈ [x3] ∩ ([x1] + [x2]) // forward
x1 = x3 − x2⇒ x1 ∈ [x1] ∩ ([x3]− [x2]) // backward
x2 = x3 − x1⇒ x2 ∈ [x2] ∩ ([x3]− [x1]) // backward



The contractor associated with x1 + x2 = x3 is thus

C





[x1]
[x2]
[x3]




 =





[x1] ∩ ([x3]− [x2])
[x2] ∩ ([x3]− [x1])
[x3] ∩ ([x1] + [x2])








Consider the following problem





(C1) : y = x2

(C2) : xy = 1
(C3) : y = −2x+ 1















(C1)⇒ y ∈ [−∞,∞]2 = [0,∞]
(C2)⇒ x ∈ 1/[0,∞] = [0,∞]
(C3)⇒ y ∈ [0,∞] ∩ ((−2) .[0,∞] + 1)

= [0,∞] ∩ ([−∞, 1]) = [0, 1]

x ∈ [0,∞] ∩ (−[0, 1]/2 + 1/2) = [0, 12]

(C1)⇒ y ∈ [0, 1] ∩ [0, 1/2]2 = [0, 1/4]
(C2)⇒ x ∈ [0, 1/2] ∩ 1/[0, 1/4] = ∅

y ∈ [0, 1/4] ∩ 1/∅ = ∅



2 Interval trajectories



A trajectory is a function f : R→ Rn. For instance

f (t) =

�
cos t
sin t



is a trajectory and

[f ] (t) =

�
cos t+

�
0, t2

�

sin t+ [−1, 1]



is an interval trajectory (or tube).



Consider x (t) ∈ [x] (t) with the constraint

∀t, x (t) = x (t+ 1)

Contract the tube [x] (t) .



Method

[x] (t) : = [x] (t) ∩ [x] (t+ 1)

[x] (t) : = [x] (t) ∩ [x] (t− 1)





3 Set intervals



Given two setsA− andA+ ofRn, the pair [A] =
�
A−,A+

�

which encloses all sets A such that

A
− ⊂ A ⊂ A+

is a set interval.



Lattice (P (Rn) ,⊂)



Machine representation of
�
A−,A+

�



The set interval [∅, ∅] is a singleton : ∅ ∈ [∅, ∅].

The set interval [∅,Rn] encloses all sets of Rn.



Given two sets A and B of Rn. The smallest set interval

which contains A and B is

� {A,B} = [A ∩ B,A ∪ B] .



4 Arithmetic



4.1 Specific set interval operations

Set intervals are sets (of sets), the intersection, the union,

the inclusion can thus be defined.



Intersection.

[A] ⊓ [B] = {X,X ∈ [A] and X ∈ [B]}

=
�
A
− ∪ B−,A+ ∩ B+

�
.





Inclusion.

[A] ⊏ [B] ⇔ [A] ⊓ [B] = [B] .



Set interval envelope.

� {Ai, i ∈ I} =




�

i∈I

Ai,
�

i∈I

Ai



 .

For instance,

� {[1, 4] , [3, 7] , [2, 6]} = [[3, 4], [1, 7]] .



Union. We have

[A] ⊔ [B] = � {X,X ∈ [A] or X ∈ [B]}

=
�
A
− ∩ B−,A+ ∪ B+

�
.



4.2 Set extension

All operations existing for sets such as ∩,∪, reciprocal im-

age, direct image, . . . can be extended to set intervals.



If ⋄ ∈ {∩,∪,×, \, . . . },

[A] ⋄ [B] = � {C,A ∈ [A] ,B ∈ [B] ,C = A ⋄ B} .

We have

(i)
�
A−,A+

�
∩
�
B−,B+

�
=

�
A− ∩ B−,A+ ∩ B+

�

(ii)
�
A−,A+

�
∪
�
B−,B+

�
=

�
A− ∪ B−,A+ ∪ B+

�

(iii)
�
A−,A+

�
×
�
B−,B+

�
=

�
A− × B−,A+ × B+

�

(iv)
�
A−,A+

�
\
�
B−,B+

�
=

�
A−\B+,A+\B−

�
.





Extension of functions. A set-valued function f can be

extended to set intervals as follows

f
��
A
−,A+

��
= �

�
f (A) ,A ∈

�
A
−,A+

��
.

When f is inclusion monotonic, we have

f
��
A
−,A+

��
=
�
f
�
A
−
�
, f
�
A
+
��
.



5 Interval extension



The interval extension associated with the set-valued ex-

pression

f (X1,X2,X3) = X1 ∪ (X2 ∩ g (X3))

is

[f ] ([X1] , [X2] , [X3]) = [X1] ∪ ([X2] ∩ g ([X3])) .



Theorem 1. If X1 ∈ [X1] , . . . ,Xn ∈ [Xn] then

f (X1,X2, . . . ,Xn) ∈ [f ] ([X1] , [X2] , . . . , [Xn]) .

Moreover, if in the expression of f , all Xi occur only once,

the set interval evaluation is minimal.



Dependency problem. For instance,
�
A
−,A+

�
\
�
A
−,A+

�
=
�
A
−\A+,A+\A−

�
=
�
∅,A+\A−

�
.

Of course, we have the inclusion property
�
A\A,A ∈

�
A
−,A+

��
= [∅, ∅] ⊏

�
∅,A+\A−

�
.



Example. Consider two equivalent expressions of the ex-

clusive union

f (A,B) = (A\B)∪ (B\A)

g (A,B) = (A ∪ B) \ (A ∩ B) .

The two natural set interval extensions are given by

[f ] ([A] , [B]) = ([A] \ [B])∪ ([B] \ [A])

[g] ([A] , [B]) = ([A]∪ [B]) \ ([A] ∩ [B]) .



(a) A ∈
�
A−,A+

�

(b) B ∈
�
B−,B+

�

(c) [A] \ [B]

(d) [B] \ [A]

(e) [A] \ [B] ∪ [B] \ [A]

(f) [A]∪ [B]

(g) [A] ∩ [B]

(h) ([A]∪ [B]) \ ([A] ∩ [B])



6 Contractors





Consider the CSP
�

A ⊂ B
A ∈ [A] ,B ∈ [B] .

The optimal contractor is
�

(i) [A] := [A] ⊓ ([A] ∩ [B])
(ii) [B] := [B] ⊓ ([A] ∪ [B])

Proof.

A ⊂ B ⇔ A = A ∩ B ⇔ B = A ∪ B.



Consider the CSP
�

A ∩ B = ∅
A ∈ [A] ,B ∈ [B] ,

The optimal contractor is
�

(i) [A] := [A] ⊓ ([∅,Rn] \ [B])
(ii) [B] := [B] ⊓ ([∅,Rn] \ [A]) .

Proof.

A ∩ B = ∅ ⇔ ∃Z ∈ [∅,Rn] such that A = Z\B
⇔ ∃Z ∈ [∅,Rn] such that B = Z\A.



Consider the CSP
�

A ∩ B = C
A ∈ [A] ,B ∈ [B] ,C ∈ [C] .

The optimal contractor is





(i) [C] := [C] ⊓ ([A] ∩ [B])
(ii) [A] := [A] ⊓ ([C]∪ ([∅,Rn] \ ([B] \ [C])))
(iii) [B] := [B] ⊓ ([C]∪ ([∅,Rn] \ ([A] \ [C]))) .





Consider the CSP
�

f(A) = B
A ∈ [A] ,B ∈ [B]

where f : Rn → Rn is bijective. The optimal contractor

is
�

(i) [B] := [B] ⊓ f ([A])
(ii) [A] := [A] ⊓ f−1 ([B]) .



7 Application



Consider the following CSP





(i) X ⊂ A
(ii) B ⊂ X
(iii) X ∩ C = ∅
(iv) f (X) = X,

where X is an unknown subset of R2, f is a rotation with

an angle of −π6 , and





A =
�
(x1, x2) , x

2
1 + x

2
2 ≤ 3

�

B =
�
(x1, x2) , (x1 − 0.5)

2 + x22 ≤ 0.3
�

C =
�
(x1, x2) , (x1 − 1)

2 + (x2 − 1)
2 ≤ 0.15

�



(a) [A]

(b) [B]

(c) [C]

(d) X ⊂ A

(e) B ⊂ X

(f) X ∩ C = ∅

(g) f (X) = X

(h) (f (X) = X)∞



8 Range-only SLAM



Range-only SLAM equations





ẋ1(t) = u1(t) cos (u2(t))
ẋ2(t) = u1(t) sin (u2(t))
z (t) = d (x (t) ,M) .

Actual trajectory and dug space



�
ẋ (t) = f (x (t) ,u (t)) (evolution equation)
z (t) = d (x (t) ,M) (map equation)

where t ∈ R, x ∈ Rn, u ∈ Rm, M ∈ C (Rq) is the

occupancy map.

Unknown: the map M and the trajectory x.



Assumption. d corresponds to a rangefinder, i.e.,
�
d (x,M1 ∪M2) = min {d (x,M1) , d (x,M2)}
d (x, ∅) = +∞.



Impact, covering and dug zones



Define the function δx : Rq → R as

δx (a) = d (x, {a}) .

For given x and z, we define

covering zone δ−1x ([0,∞[) = {a, δx (a) <∞}

impact zone δ−1x ({z}) = {a, δx (a) = z}

dug zone δ−1x ([0, z[) = {a, δx (a) < z}



Theorem 1. The dug zone does not intersect M, i.e.,

z = d (x,M)⇒ δ−1x ([0, z[) ∩M = ∅.

The set D =
�
t∈[t] δ

−1
x(t)

([0, z(t)[) is called the dug space.

We have

D ∩M = ∅.

.



Theorem 2. For all x, the impact zone intersects the map,

i.e,

z = d (x,M)⇒ δ−1x ({z}) ∩M �= ∅.





The range-only SLAM problem is a hybrid CSP.

Variables: x(t), M and D.

Constraints:

(1) ẋ (t) = f (x (t) ,u (t))

(2) D =
�
t∈[t] δ

−1
x(t) ([0, z(t)[)

(3) D ∩M = ∅

(4) δ−1
x(t) ({z(t)}) ∩M �= ∅.





: z (t) = d (x (t) ,M)

Domains: [M] = [D] = [∅,Rq], [x] (t) = Rn for t > 0

and [x] (0) = x (0).



Constraint diagram of the range only SLAM problem



9 Hybrid intervals



A closed interval (or interval for short) [x] of a complete

lattice E is a subset of E which satisfies

[x] = {x ∈ E | ∧ [x] ≤ x ≤ ∨[x]}

Both ∅ and E are intervals of E.



Lattice (P (Rn) ,⊂)



An interval function (or tube) and a set interval



Hybrid intervals. If [x] ∈ IEx, [y] ∈ IEy then [x]× [y] is

a hybrid interval.



Hybrid contractor

Hybrid contractor C1



10 SLAM



Range-only SLAM equations





ẋ1(t) = u1(t) cos (u2(t))
ẋ2(t) = u1(t) sin (u2(t))
z (t) = d (x (t) ,M) .

Actual trajectory and dug space







Width of the tubes [x] (t)
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