Solving set-valued problems; Application to localisation and mapping with robots

Luc Jaulin

OSM, IHSEV, ENSTA Bretagne, LabSTICC, Brest, France

CEA List, May 6, 2014

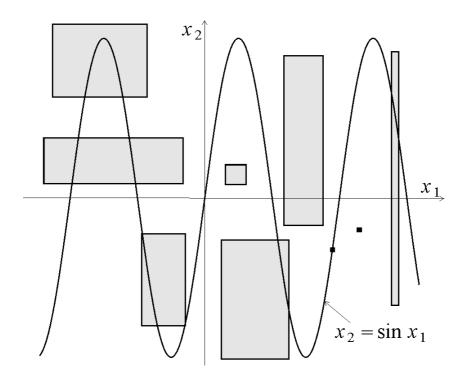
1 Contractors

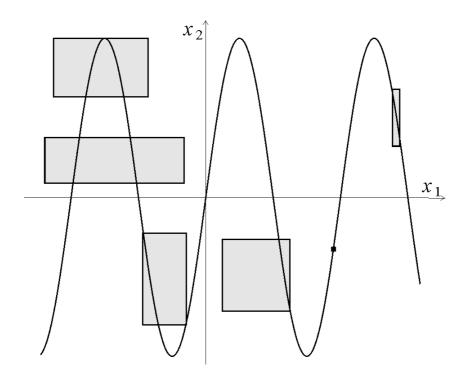
The operator \mathcal{C} : $\mathbb{IR}^n \to \mathbb{IR}^n$ is a *contractor* for the equation $f(\mathbf{x}) = 0$, if

 $\left\{ \begin{array}{ll} \mathcal{C}([\mathbf{x}]) \subset [\mathbf{x}] & (\text{contractance}) \\ \mathbf{x} \in [\mathbf{x}] \text{ and } f(\mathbf{x}) = \mathbf{0} \Rightarrow \mathbf{x} \in \mathcal{C}([\mathbf{x}]) & (\text{consistence}) \end{array} \right.$

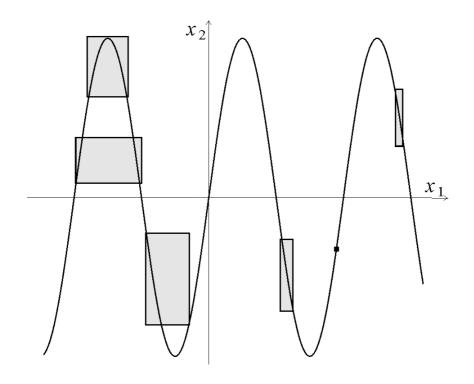
Example. Consider the primitive equation:

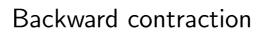
 $x_2 = \sin x_1.$





Forward contraction





Building contractors for equations

Consider the primitive equation

 $x_1 + x_2 = x_3$

with $x_1 \in [x_1]$, $x_2 \in [x_2]$, $x_3 \in [x_3]$.

We have

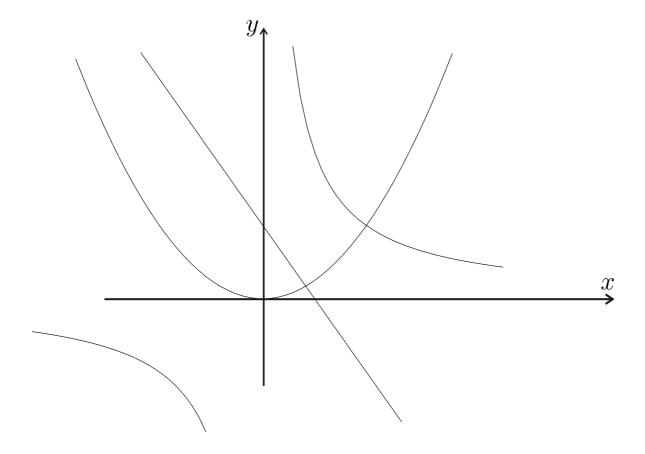
$$\begin{array}{rcl} x_{3} = x_{1} + x_{2} \Rightarrow & x_{3} \in & [x_{3}] \cap ([x_{1}] + [x_{2}]) & // \text{ forward} \\ x_{1} = x_{3} - x_{2} \Rightarrow & x_{1} \in & [x_{1}] \cap ([x_{3}] - [x_{2}]) & // \text{ backward} \\ x_{2} = x_{3} - x_{1} \Rightarrow & x_{2} \in & [x_{2}] \cap ([x_{3}] - [x_{1}]) & // \text{ backward} \end{array}$$

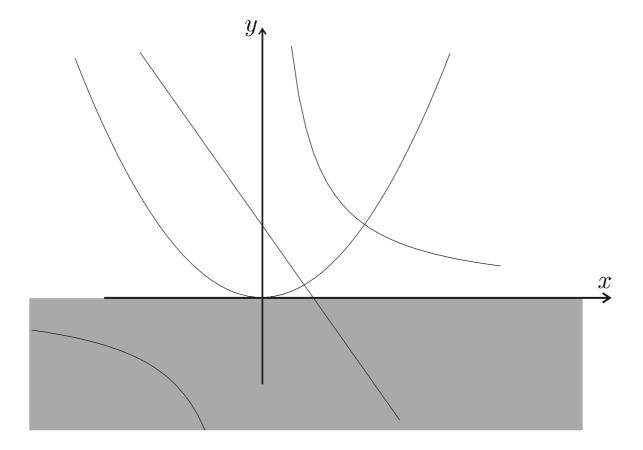
The contractor associated with $x_1 + x_2 = x_3$ is thus

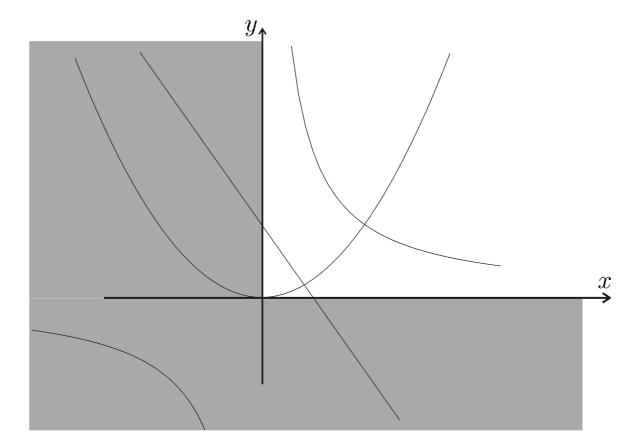
$$\mathcal{C}\begin{pmatrix} [x_1]\\ [x_2]\\ [x_3] \end{pmatrix} = \begin{pmatrix} [x_1] \cap ([x_3] - [x_2])\\ [x_2] \cap ([x_3] - [x_1])\\ [x_3] \cap ([x_1] + [x_2]) \end{pmatrix}$$

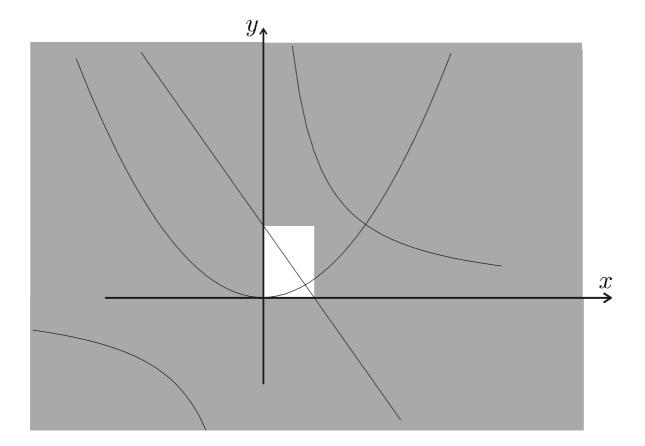
Consider the following problem

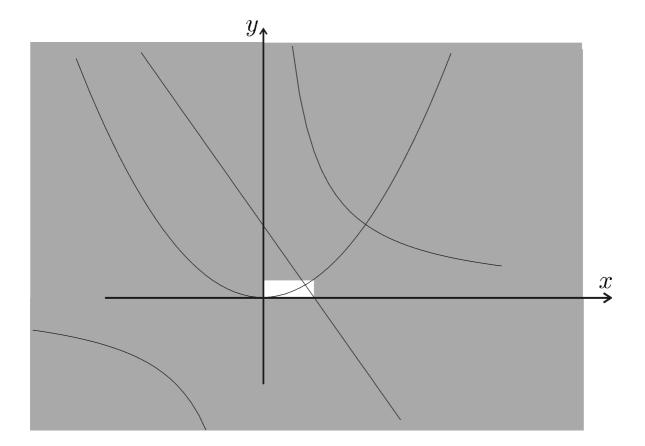
$$\begin{cases} (C_1): & y = x^2 \\ (C_2): & xy = 1 \\ (C_3): & y = -2x + 1 \end{cases}$$

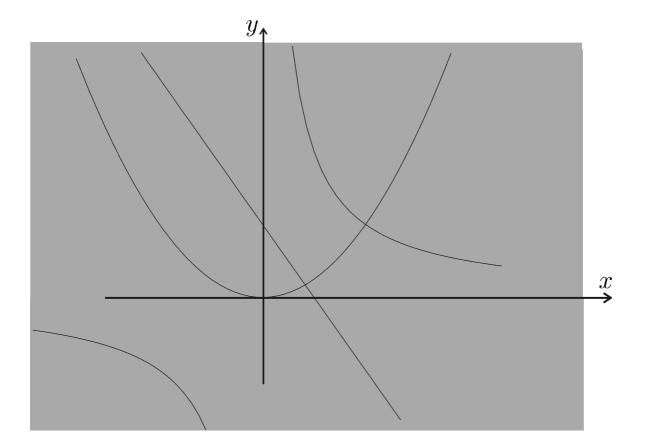












2 Interval trajectories

A trajectory is a function $f : \mathbb{R} \to \mathbb{R}^n$. For instance

$$\mathbf{f}(t) = \left(\begin{array}{c} \cos t \\ \sin t \end{array}\right)$$

is a trajectory and

$$[\mathbf{f}](t) = \left(\begin{array}{c} \cos t + \begin{bmatrix} 0, t^2 \end{bmatrix}\\ \sin t + \begin{bmatrix} -1, 1 \end{bmatrix}\right)$$

is an interval trajectory (or tube).

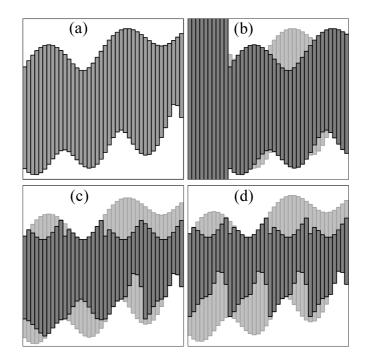
Consider $x(t) \in [x](t)$ with the constraint

$$\forall t, x(t) = x(t+1)$$

Contract the tube [x](t).

Method

$$\begin{array}{ll} [x] (t) & : & = [x] (t) \cap [x] (t+1) \\ [x] (t) & : & = [x] (t) \cap [x] (t-1) \end{array}$$

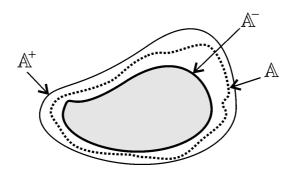


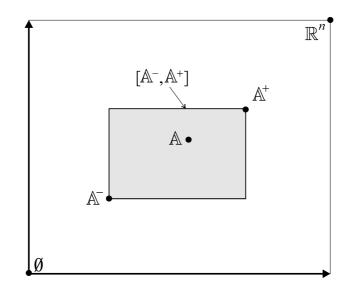
3 Set intervals

Given two sets \mathbb{A}^- and \mathbb{A}^+ of \mathbb{R}^n , the pair $[\mathbb{A}] = [\mathbb{A}^-, \mathbb{A}^+]$ which encloses all sets \mathbb{A} such that

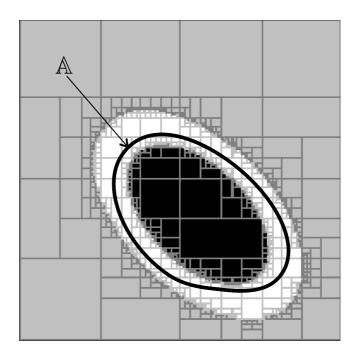
$$\mathbb{A}^- \subset \mathbb{A} \subset \mathbb{A}^+$$

is a set interval.



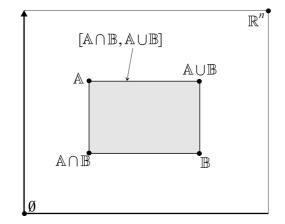


Lattice $\left(\mathcal{P}\left(\mathbb{R}^{n}
ight) ,\subset
ight)$



The set interval $[\emptyset, \emptyset]$ is a singleton : $\emptyset \in [\emptyset, \emptyset]$. The set interval $[\emptyset, \mathbb{R}^n]$ encloses all sets of \mathbb{R}^n . Given two sets A and B of \mathbb{R}^n . The smallest set interval which contains A and B is

$$\Box \{ \mathbb{A}, \mathbb{B} \} = [\mathbb{A} \cap \mathbb{B}, \mathbb{A} \cup \mathbb{B}].$$



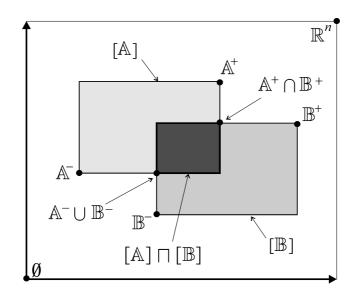
4 Arithmetic

4.1 Specific set interval operations

Set intervals are **sets** (of sets), the intersection, the union, the inclusion can thus be defined.

Intersection.

$$\begin{bmatrix} \mathbb{A} \end{bmatrix} \sqcap \begin{bmatrix} \mathbb{B} \end{bmatrix} = \{\mathbb{X}, \mathbb{X} \in \begin{bmatrix} \mathbb{A} \end{bmatrix} \text{ and } \mathbb{X} \in \begin{bmatrix} \mathbb{B} \end{bmatrix} \} \\ = \begin{bmatrix} \mathbb{A}^- \cup \mathbb{B}^-, \mathbb{A}^+ \cap \mathbb{B}^+ \end{bmatrix}.$$



Inclusion.

$$[\mathbb{A}] \sqsubset [\mathbb{B}] \iff [\mathbb{A}] \sqcap [\mathbb{B}] = [\mathbb{B}].$$

Set interval envelope.

$$\Box \{ \mathbb{A}_i, i \in \mathbb{I} \} = \left[\bigcap_{i \in \mathbb{I}} \mathbb{A}_i, \bigcup_{i \in \mathbb{I}} \mathbb{A}_i \right].$$

For instance,

$$\Box \{ [1,4], [3,7], [2,6] \} = [[3,4], [1,7]].$$

Union. We have

$$\begin{split} [\mathbb{A}] \sqcup [\mathbb{B}] &= \Box \{ \mathbb{X}, \mathbb{X} \in [\mathbb{A}] \text{ or } \mathbb{X} \in [\mathbb{B}] \} \\ &= \left[\mathbb{A}^- \cap \mathbb{B}^-, \mathbb{A}^+ \cup \mathbb{B}^+ \right]. \end{split}$$

4.2 Set extension

All operations existing for sets such as \cap, \cup , reciprocal image, direct image, ... can be extended to set intervals.

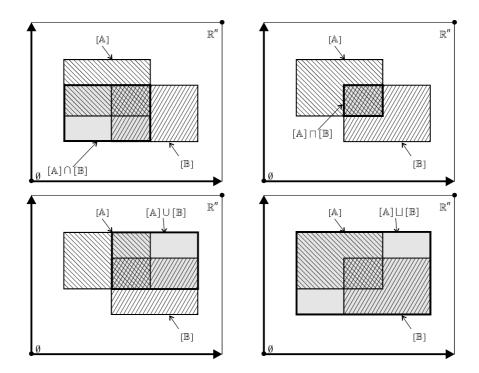
 $\mathsf{If} \diamond \in \{\cap, \cup, \times, \setminus, \dots\},$

 $[\mathbb{A}]\diamond [\mathbb{B}] = \Box \{\mathbb{C}, \mathbb{A} \in [\mathbb{A}], \mathbb{B} \in [\mathbb{B}], \mathbb{C} = \mathbb{A} \diamond \mathbb{B} \}.$

We have

(i)
$$\begin{bmatrix} \mathbb{A}^{-}, \mathbb{A}^{+} \end{bmatrix} \cap \begin{bmatrix} \mathbb{B}^{-}, \mathbb{B}^{+} \end{bmatrix} = \begin{bmatrix} \mathbb{A}^{-} \cap \mathbb{B}^{-}, \mathbb{A}^{+} \cap \mathbb{B}^{+} \end{bmatrix}$$

(ii) $\begin{bmatrix} \mathbb{A}^{-}, \mathbb{A}^{+} \end{bmatrix} \cup \begin{bmatrix} \mathbb{B}^{-}, \mathbb{B}^{+} \end{bmatrix} = \begin{bmatrix} \mathbb{A}^{-} \cup \mathbb{B}^{-}, \mathbb{A}^{+} \cup \mathbb{B}^{+} \end{bmatrix}$
(iii) $\begin{bmatrix} \mathbb{A}^{-}, \mathbb{A}^{+} \end{bmatrix} \times \begin{bmatrix} \mathbb{B}^{-}, \mathbb{B}^{+} \end{bmatrix} = \begin{bmatrix} \mathbb{A}^{-} \times \mathbb{B}^{-}, \mathbb{A}^{+} \cup \mathbb{B}^{+} \end{bmatrix}$
(iv) $\begin{bmatrix} \mathbb{A}^{-}, \mathbb{A}^{+} \end{bmatrix} \setminus \begin{bmatrix} \mathbb{B}^{-}, \mathbb{B}^{+} \end{bmatrix} = \begin{bmatrix} \mathbb{A}^{-} \setminus \mathbb{B}^{+}, \mathbb{A}^{+} \setminus \mathbb{B}^{-} \end{bmatrix}.$



Extension of functions. A set-valued function f can be extended to set intervals as follows

$$f\left(\left[\mathbb{A}^{-},\mathbb{A}^{+}\right]\right)=\Box\left\{f\left(\mathbb{A}\right),\mathbb{A}\in\left[\mathbb{A}^{-},\mathbb{A}^{+}\right]
ight\}.$$

When f is inclusion monotonic, we have

$$f\left(\left[\mathbb{A}^{-},\mathbb{A}^{+}\right]\right) = \left[f\left(\mathbb{A}^{-}\right),f\left(\mathbb{A}^{+}\right)\right].$$

5 Interval extension

The interval extension associated with the set-valued expression

$$f\left(\mathbb{X}_{1},\mathbb{X}_{2},\mathbb{X}_{3}\right)=\mathbb{X}_{1}\cup\left(\mathbb{X}_{2}\cap g\left(\mathbb{X}_{3}\right)\right)$$

is

$$[f]([\mathbb{X}_1], [\mathbb{X}_2], [\mathbb{X}_3]) = [\mathbb{X}_1] \cup ([\mathbb{X}_2] \cap g([\mathbb{X}_3])).$$

Theorem 1. If $X_1 \in [X_1], \ldots, X_n \in [X_n]$ then

 $f(\mathbb{X}_1,\mathbb{X}_2,\ldots,\mathbb{X}_n) \in [f]([\mathbb{X}_1],[\mathbb{X}_2],\ldots,[\mathbb{X}_n]).$

Moreover, if in the expression of f, all X_i occur only once, the set interval evaluation is minimal.

Dependency problem. For instance,

$$\left[\mathbb{A}^{-},\mathbb{A}^{+}\right]\setminus\left[\mathbb{A}^{-},\mathbb{A}^{+}\right]=\left[\mathbb{A}^{-}\backslash\mathbb{A}^{+},\mathbb{A}^{+}\backslash\mathbb{A}^{-}\right]=\left[\emptyset,\mathbb{A}^{+}\backslash\mathbb{A}^{-}\right]$$

Of course, we have the inclusion property

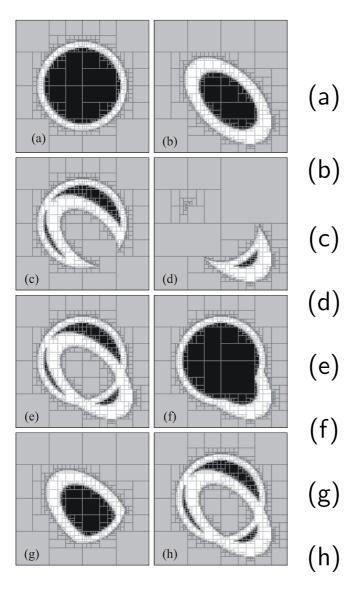
$$\left\{\mathbb{A}\setminus\mathbb{A},\mathbb{A}\in\left[\mathbb{A}^{-},\mathbb{A}^{+}\right]\right\}=\left[\emptyset,\emptyset\right]\sqsubset\left[\emptyset,\mathbb{A}^{+}\setminus\mathbb{A}^{-}\right].$$

Example. Consider two equivalent expressions of the exclusive union

$$f(\mathbb{A},\mathbb{B}) = (\mathbb{A}\backslash\mathbb{B})\cup(\mathbb{B}\backslash\mathbb{A})$$
$$g(\mathbb{A},\mathbb{B}) = (\mathbb{A}\cup\mathbb{B})\backslash(\mathbb{A}\cap\mathbb{B}).$$

The two natural set interval extensions are given by

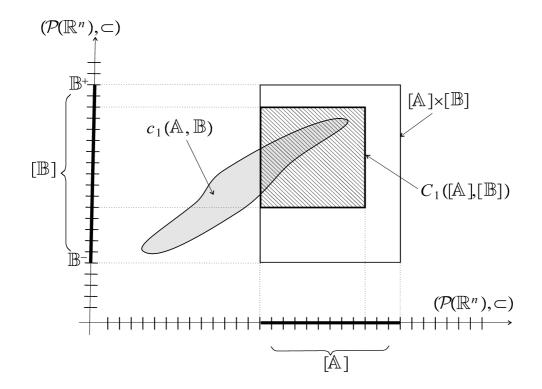
$$\begin{array}{ll} \left[f\right]\left(\left[\mathbb{A}\right],\left[\mathbb{B}\right]\right) &=& \left(\left[\mathbb{A}\right]\setminus\left[\mathbb{B}\right]\right)\cup\left(\left[\mathbb{B}\right]\setminus\left[\mathbb{A}\right]\right) \\ \left[g\right]\left(\left[\mathbb{A}\right],\left[\mathbb{B}\right]\right) &=& \left(\left[\mathbb{A}\right]\cup\left[\mathbb{B}\right]\right)\setminus\left(\left[\mathbb{A}\right]\cap\left[\mathbb{B}\right]\right). \end{array}$$



(h) $([\mathbb{A}] \cup [\mathbb{B}]) \setminus ([\mathbb{A}] \cap [\mathbb{B}])$

-) $[\mathbb{A}] \cap [\mathbb{B}]$
- (f) $[\mathbb{A}] \cup [\mathbb{B}]$
- (e) $[\mathbb{A}] \setminus [\mathbb{B}] \cup [\mathbb{B}] \setminus [\mathbb{A}]$
- (d) $[\mathbb{B}] \setminus [\mathbb{A}]$
- $\llbracket \mathbb{A} \rrbracket \setminus \llbracket \mathbb{B} \rrbracket$
- $\mathbb{B} \in \ \left[\mathbb{B}^{-}, \mathbb{B}^{+}
 ight]$
- (a) $\mathbb{A} \in \left[\mathbb{A}^{-}, \mathbb{A}^{+}\right]$

Contractors



$$\left(\begin{array}{c} \mathbb{A} \subset \mathbb{B} \\ \mathbb{A} \in [\mathbb{A}], \mathbb{B} \in [\mathbb{B}]. \end{array}\right.$$

The optimal contractor is

$$\begin{cases} (i) & [\mathbb{A}] := [\mathbb{A}] \sqcap ([\mathbb{A}] \cap [\mathbb{B}]) \\ (ii) & [\mathbb{B}] := [\mathbb{B}] \sqcap ([\mathbb{A}] \cup [\mathbb{B}]) \end{cases} \end{cases}$$

Proof.

$$\mathbb{A} \subset \mathbb{B} \iff \mathbb{A} = \mathbb{A} \cap \mathbb{B} \iff \mathbb{B} = \mathbb{A} \cup \mathbb{B}.$$

$$\left\{egin{array}{c} \mathbb{A}\cap\mathbb{B}=\emptyset\ \mathbb{A}\in\left[\mathbb{A}
ight],\mathbb{B}\in\left[\mathbb{B}
ight], \end{array}
ight.$$

The optimal contractor is

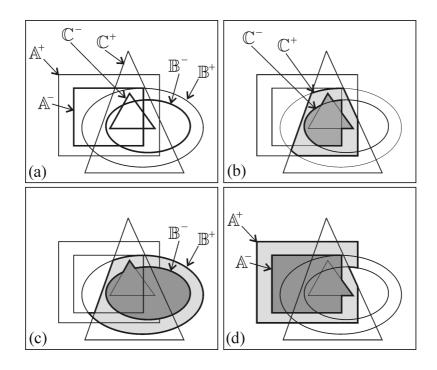
$$\begin{cases} (\mathsf{i}) & [\mathbb{A}] := [\mathbb{A}] \sqcap ([\emptyset, \mathbb{R}^n] \setminus [\mathbb{B}]) \\ (\mathsf{ii}) & [\mathbb{B}] := [\mathbb{B}] \sqcap ([\emptyset, \mathbb{R}^n] \setminus [\mathbb{A}]). \end{cases}$$

Proof.

$$\left\{\begin{array}{c} \mathbb{A} \cap \mathbb{B} = \mathbb{C} \\ \mathbb{A} \in [\mathbb{A}], \mathbb{B} \in [\mathbb{B}], \mathbb{C} \in [\mathbb{C}]. \end{array}\right.$$

The optimal contractor is

$$\begin{cases} (\mathsf{i}) & [\mathbb{C}] := [\mathbb{C}] \sqcap ([\mathbb{A}] \cap [\mathbb{B}]) \\ (\mathsf{ii}) & [\mathbb{A}] := [\mathbb{A}] \sqcap ([\mathbb{C}] \cup ([\emptyset, \mathbb{R}^n] \setminus ([\mathbb{B}] \setminus [\mathbb{C}]))) \\ (\mathsf{iii}) & [\mathbb{B}] := [\mathbb{B}] \sqcap ([\mathbb{C}] \cup ([\emptyset, \mathbb{R}^n] \setminus ([\mathbb{A}] \setminus [\mathbb{C}]))). \end{cases}$$



$$igg(egin{array}{c} f(\mathbb{A}) = \mathbb{B} \ \mathbb{A} \in [\mathbb{A}] \,, \mathbb{B} \in [\mathbb{B}] \end{array}$$

where $f: \mathbb{R}^n \rightarrow \mathbb{R}^n$ is bijective. The optimal contractor is

$$\begin{cases} (i) & [\mathbb{B}] := [\mathbb{B}] \sqcap f([\mathbb{A}]) \\ (ii) & [\mathbb{A}] := [\mathbb{A}] \sqcap f^{-1}([\mathbb{B}]) \end{cases}$$

•

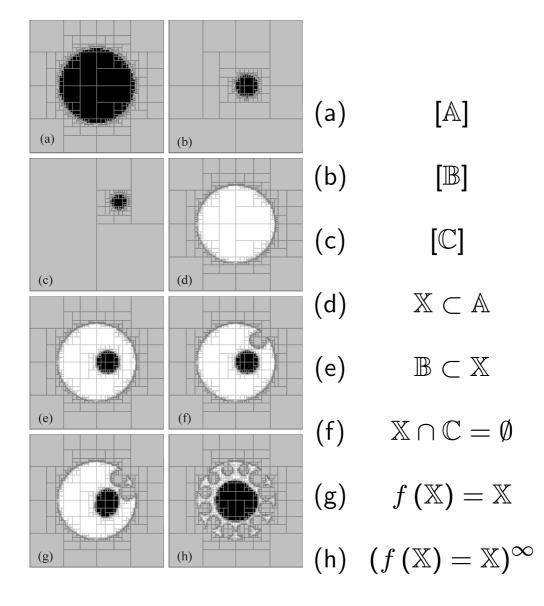
7 Application

Consider the following CSP

$$\begin{cases} (i) & \mathbb{X} \subset \mathbb{A} \\ (ii) & \mathbb{B} \subset \mathbb{X} \\ (iii) & \mathbb{X} \cap \mathbb{C} = \emptyset \\ (iv) & f(\mathbb{X}) = \mathbb{X}, \end{cases}$$

where $\mathbb X$ is an unknown subset of $\mathbb R^2,\ f$ is a rotation with an angle of $-\frac{\pi}{6},$ and

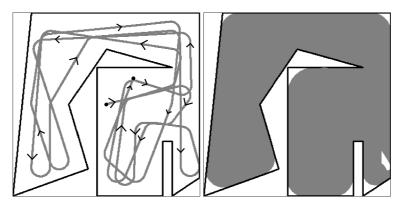
$$\begin{cases} \mathbb{A} &= \left\{ (x_1, x_2), x_1^2 + x_2^2 \leq 3 \right\} \\ \mathbb{B} &= \left\{ (x_1, x_2), (x_1 - 0.5)^2 + x_2^2 \leq 0.3 \right\} \\ \mathbb{C} &= \left\{ (x_1, x_2), (x_1 - 1)^2 + (x_2 - 1)^2 \leq 0.15 \right\} \end{cases}$$



8 Range-only SLAM

Range-only SLAM equations

$$\begin{cases} \dot{x}_1(t) = u_1(t) \cos(u_2(t)) \\ \dot{x}_2(t) = u_1(t) \sin(u_2(t)) \\ z(t) = d(\mathbf{x}(t), \mathbb{M}). \end{cases}$$



Actual trajectory and dug space

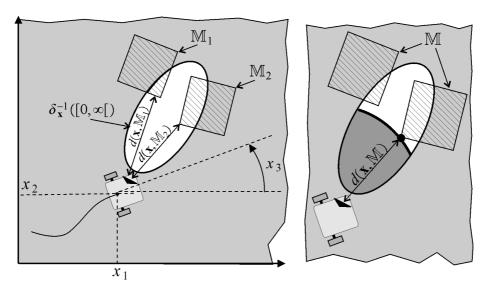
$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) & (\text{evolution equation}) \\ z(t) = d(\mathbf{x}(t), \mathbb{M}) & (\text{map equation}) \end{cases}$$

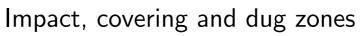
where $t \in \mathbb{R}$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{u} \in \mathbb{R}^m$, $\mathbb{M} \in \mathcal{C}(\mathbb{R}^q)$ is the occupancy map.

Unknown: the map $\mathbb M$ and the trajectory $\mathbf x.$

Assumption. *d* corresponds to a *rangefinder*, i.e.,

$$\begin{cases} d(\mathbf{x}, \mathbb{M}_1 \cup \mathbb{M}_2) = \min \{ d(\mathbf{x}, \mathbb{M}_1), d(\mathbf{x}, \mathbb{M}_2) \} \\ d(\mathbf{x}, \emptyset) = +\infty. \end{cases}$$





Define the function $\delta_{\mathbf{x}}: \mathbb{R}^q \to \mathbb{R}$ as

$$\delta_{\mathbf{x}}(\mathbf{a}) = d(\mathbf{x}, \{\mathbf{a}\}).$$

For given ${\bf x}$ and z, we define

covering zone	$\delta_{\mathbf{x}}^{-1}\left(\left[0,\infty ight] ight)=\left\{ \mathbf{a},\delta_{\mathbf{x}}\left(\mathbf{a} ight)<\infty ight\}$
impact zone	$\delta_{\mathbf{x}}^{-1}(\{z\}) = \{\mathbf{a}, \delta_{\mathbf{x}}(\mathbf{a}) = z\}$
dug zone	$\delta_{\mathbf{x}}^{-1}\left(\left[0,z ight] ight) = \left\{\mathbf{a},\delta_{\mathbf{x}}\left(\mathbf{a} ight) < z ight\}$

Theorem 1. The dug zone does not intersect \mathbb{M} , i.e.,

$$z = d(\mathbf{x}, \mathbb{M}) \Rightarrow \delta_{\mathbf{x}}^{-1}([\mathbf{0}, z[) \cap \mathbb{M} = \emptyset.$$

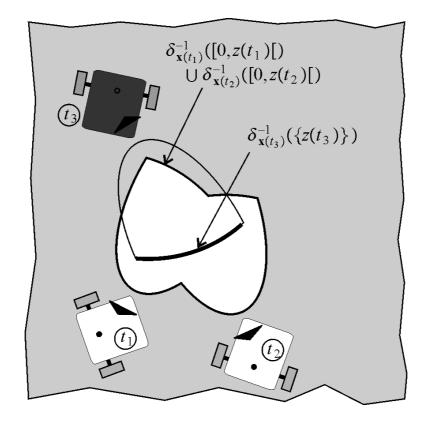
The set $\mathbb{D} = \bigcup_{t \in [t]} \delta_{\mathbf{x}(t)}^{-1} ([0, z(t)])$ is called the *dug space*. We have

 $\mathbb{D}\cap\mathbb{M}=\emptyset.$

•

Theorem 2. For all \mathbf{x} , the impact zone intersects the map, i.e,

$$z = d(\mathbf{x}, \mathbb{M}) \Rightarrow \delta_{\mathbf{x}}^{-1}(\{z\}) \cap \mathbb{M} \neq \emptyset.$$



The range-only SLAM problem is a *hybrid CSP*.

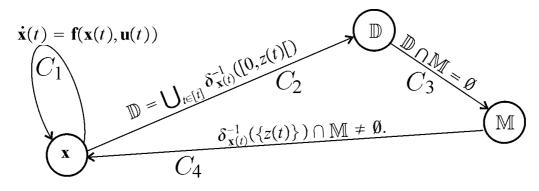
Variables: $\mathbf{x}(t)$, \mathbb{M} and \mathbb{D} .

Constraints:

(1)
$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$$

(2) $\mathbb{D} = \bigcup_{t \in [t]} \delta_{\mathbf{x}(t)}^{-1}([0, z(t)])$
(3) $\mathbb{D} \cap \mathbb{M} = \emptyset$
(4) $\delta_{\mathbf{x}(t)}^{-1}(\{z(t)\}) \cap \mathbb{M} \neq \emptyset.$
 $\left. \right\} : z(t) = d(\mathbf{x}(t), \mathbb{M})$

Domains: $[\mathbb{M}] = [\mathbb{D}] = [\emptyset, \mathbb{R}^q]$, $[\mathbf{x}](t) = \mathbb{R}^n$ for t > 0and $[\mathbf{x}](0) = \mathbf{x}(0)$.



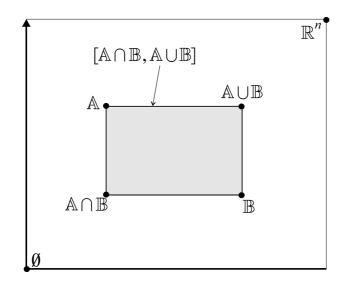
Constraint diagram of the range only SLAM problem

9 Hybrid intervals

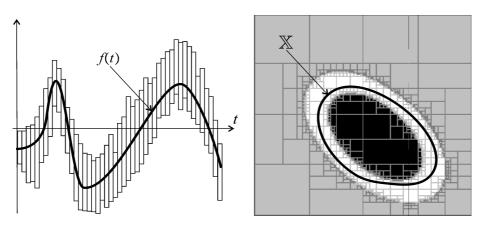
A closed interval (or interval for short) [x] of a complete lattice \mathcal{E} is a subset of \mathcal{E} which satisfies

$$[x] = \{ x \in \mathcal{E} \mid \land [x] \le x \le \lor [x] \}$$

Both \emptyset and \mathcal{E} are intervals of \mathcal{E} .



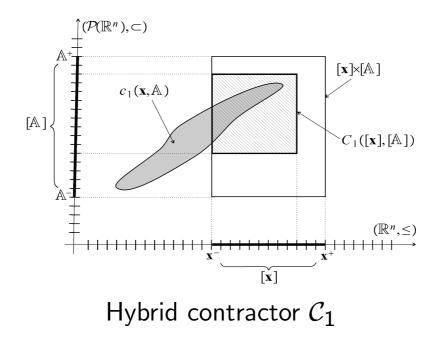
Lattice $\left(\mathcal{P}\left(\mathbb{R}^{n}
ight) ,\subset
ight)$



An interval function (or tube) and a set interval

Hybrid intervals. If $[x] \in \mathbb{I}\mathcal{E}_x, [y] \in \mathbb{I}\mathcal{E}_y$ then $[x] \times [y]$ is a hybrid interval.

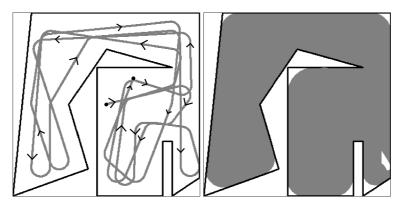
Hybrid contractor



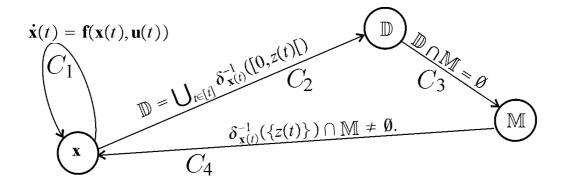
10 SLAM

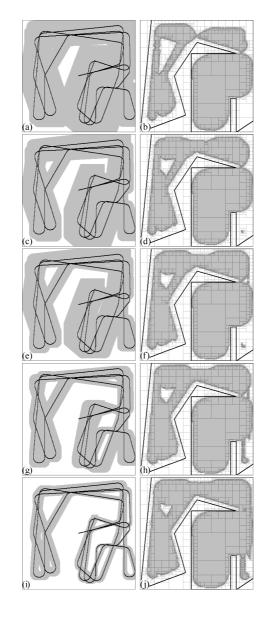
Range-only SLAM equations

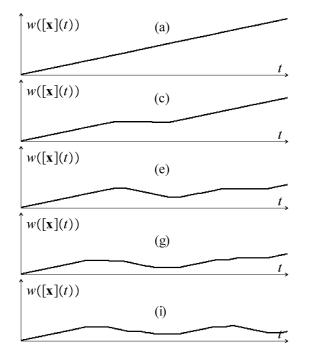
$$\begin{cases} \dot{x}_1(t) = u_1(t) \cos(u_2(t)) \\ \dot{x}_2(t) = u_1(t) \sin(u_2(t)) \\ z(t) = d(\mathbf{x}(t), \mathbb{M}). \end{cases}$$



Actual trajectory and dug space







Width of the tubes $[\mathbf{x}](t)$

References

L. Jaulin (2012). Solving set-valued constraint satisfaction problems. Computing. Volume 94, Issue 2, Page 297-311.

L. Jaulin (2011). Range-only SLAM with occupancy maps; A set-membership approach. IEEE-TRO. Vol 27, Issue 5, pp 1004-101