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1 Interval analysis



Problem. Given f : Rn → R and a box [x] ⊂ Rn, prove
that

∀x ∈ [x] , f (x) ≥ 0.

Interval arithmetic can solve efficiently this problem.



Example. Is the function

f (x) = x1x2 − (x1 + x2) cosx2 + sinx1 · sinx2 + 2

always positive for x1, x2 ∈ [−1, 1] ?



Interval arithmetic

[−1, 3] + [2, 5] = [1, 8],
[−1, 3] · [2, 5] = [−5, 15],
abs ([−7, 1]) = [0, 7]



The interval extension of

f (x1, x2) = x1 · x2 − (x1 + x2) · cosx2
+sinx1 · sinx2 + 2

is

[f ] ([x1] , [x2]) = [x1] · [x2]− ([x1] + [x2]) · cos [x2]
+ sin [x1] · sin [x2] + 2.



Theorem (Moore, 1970)

[f ] ([x]) ⊂ R+⇒ ∀x ∈ [x] , f (x) ≥ 0.



2 Computing with sets



Subsets X ⊂ Rn can be bracketted by subpavings :

X
− ⊂ X ⊂ X+.

which can be obtained using interval calculus



Example.

X = {(x1, x2)
��� x21 + x

2
2 + sin (x1 + x2) ∈ [4, 9]}.



3 Contractors



The operator C : IRn → IR
n is a contractor for the

equation f (x) = 0, if
�
C([x]) ⊂ [x] (contractance)
x ∈ [x] and f (x) = 0⇒ x ∈ C([x]) (consistence)



Example. Consider the primitive equation:

x2 = sinx1.











C is monotonic if [x] ⊂ [y]⇒ C([x]) ⊂ C([y])
C is idempotent if C (C([x])) = C([x])



Contractor algebra

intersection (C1 ∩ C2) ([x]) def= C1 ([x]) ∩ C2 ([x])
union (C1 ∪ C2) ([x]) def= [C1 ([x]) ∪ C2 ([x])]
composition (C1 ◦ C2) ([x]) def= C1 (C2 ([x]))
reiteration C∞ def

= C ◦ C ◦ C ◦ . . .



Contractor associated with a database

The robot with coordinates (x1, x2) is in the water.







Building contractors for equations

Consider the primitive equation

x1 + x2 = x3

with x1 ∈ [x1], x2 ∈ [x2], x3 ∈ [x3] .



We have

x3 = x1 + x2⇒ x3 ∈ [x3] ∩ ([x1] + [x2]) // forward
x1 = x3 − x2⇒ x1 ∈ [x1] ∩ ([x3]− [x2]) // backward
x2 = x3 − x1⇒ x2 ∈ [x2] ∩ ([x3]− [x1]) // backward



The contractor associated with x1 + x2 = x3 is thus

C





[x1]
[x2]
[x3]




 =





[x1] ∩ ([x3]− [x2])
[x2] ∩ ([x3]− [x1])
[x3] ∩ ([x1] + [x2])








4 Solver



Example. Solve the system

y = x2

y =
√
x.



We build two contractors

C1 :
�
[y] = [y] ∩ [x]2
[x] = [x] ∩

	
[y]

associated with y = x2

C2 :
�
[y] = [y] ∩

	
[x]

[x] = [x] ∩ [y]2
associated with y =

√
x





















5 Sailboat robotics













6 Vaimos

Collaboration ENSTA/IFREMER



Vaimos à la WRSC (ENSTA-IFREMER-Ecole Navale).








ẋ = v cos θ + p1a cosψ
ẏ = v sin θ + p1a sinψ

θ̇ = ω

v̇ = fs sin δs−fr sinu1−p2v2
p9

ω̇ =
fs(p6−p7 cos δs)−p8fr cosu1−p3ω

p10
fs = p4a sin (θ − ψ + δs)
fr = p5v sinu1
σ = cos (θ − ψ) + cos (u2)

δs =

�
π − θ + ψ si σ ≤ 0

sign (sin (θ − ψ)) .u2 sinon.



The robot satisfies a state equation

ẋ = f (x,u) .

With the controller u = g (x), the robot satisfies

ẋ = f (x) .



With all uncertainties, the robot satisfies.

ẋ ∈ F (x)

which is a differential inclusion.



7 Line following



Controller of a sailboat robot





Heading controller





δr =
δmaxr
π
.atan(tan θ−θ̄2 )

δmaxs = π
2 .

�
cos(ψ−θ̄)+1

2

�
.



Rudder
�
δr =

δmaxr
π
.atan(tan θ−θ̄2 )



Sail

δmaxs =
π

2
·



cos

�
ψ − θ̄

�
+ 1

2







7.1 Vector field



Nominal vector field: θ∗ = ϕ− 1
2.atan

�
e
r

�



A course θ∗ may be unfeasible



Keep close hauled strategy.



7.2 Controller



Controlleur : in: m, θ, ψ, a,b; out: δr, δmaxs ; inout: q

1 e =
det(b−a,m−a)

�b−a�
2 if |e| > r

2 then q = sign(e)

3 θ̄ = atan2(b− a)− 1
2.atan

�
e
r

�

4 if cos
�
ψ − θ̄

�
+ cos ζ < 0 then θ̄ = π + ψ − q.ζ.

5 δr =
δmaxr
π
.atan(tan θ−θ̄2 )

6 δmaxs = π
2 .

�
cos(ψ−θ̄)+1

2

�
.



8 Validation by simulation





9 Theoretical validation

∗
Jaulin, Le Bars (2012). An interval approach for stability analysis; Application to

sailboat robotics. IEEE TRO.



When the wind is known, the sailboat with the heading

controller is described by

ẋ = f (x) .



The system

ẋ = f (x)

is Lyapunov-stable (1892) is there exists V (x) ≥ 0 such

that

V̇ (x) < 0 if x �= 0,
V (x) = 0 iff x = 0.



Definition. Consider a differentiable function V (x) : Rn→
R. The system ẋ = f (x) is V -stable if

�
V (x) ≥ 0 ⇒ V̇ (x) ≤ ε < 0

�
.





Theorem. If the system ẋ = f (x) is V -stable then

(i) ∀x (0) ,∃t ≥ 0 such that V (x (t)) < 0
(ii) if V (x (t)) < 0 then ∀τ > 0, V (x (t+ τ)) < 0.



Now,
�
V (x) ≥ 0 ⇒ V̇ (x) < 0

�

⇔
�
V (x) ≥ 0⇒ ∂V

∂x (x) .f (x) < 0
�

⇔ ∀x, ∂V
∂x (x) .f (x) < 0 or V (x) < 0

⇔ ¬
�
∃x, ∂V

∂x (x) .f (x) ≥ 0 and V (x) ≥ 0
�



Theorem. We have
�
∂V
∂x (x) .f (x) ≥ 0
V (x) ≥ 0 inconsistent ⇔ ẋ = f (x) is V -stable.

Interval method could easily prove the V -stability.



Theorem. We have





∂V
∂x (x) .a ≥ 0
a ∈ F (x)
V (x) ≥ 0

inconsistent ⇔ ẋ ∈ F (x) is V -stable



Differential inclusion ẋ ∈ F (x) for the sailboat.
V (x) = x22 − r2max.



10 Experimental validation

Collaboration ENSTA-Ifremer. Fabrice Le Bars, Olivier Mé-

nage, Patrick Rousseau, . . .



Rade de Brest



Brest-Douarnenez. January 17, 2012, 8am















Middle of Atlantic ocean, 350 km made by Vaimos in

53h, September 6-9, 2012.



Consequence.

It is possible for a sailboat robot to navigate inside a cor-

ridor.

Essential, to create circulation rules when robot swarms are

considered.

Essential to determine who has to pay in case of accident.


