GUARANTEED LOCALIZATION OF AN UNDERWATER ROBOT USING BATHYMETRY DATA AND INTERVAL ANALYSIS

Guaranteed localization of an underwater robot using bathymetry data and interval analysis

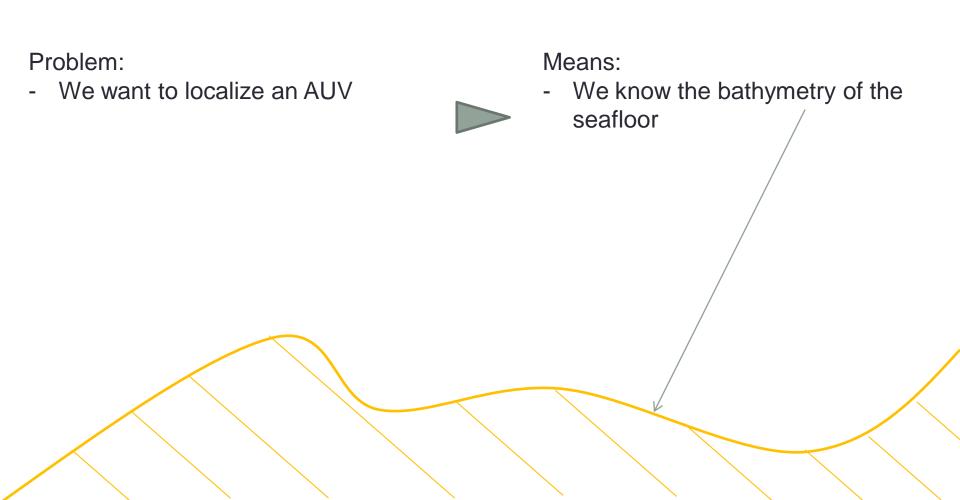
- The problem
- Interval analysis
- Contractors
- Application to our problem
- Conclusion

Guaranteed localization of an underwater robot using bathymetry data and interval analysis

- The problem
- Interval analysis
- Contractors
- Application to our problem
- Conclusion

Problem:

- We want to localize an AUV



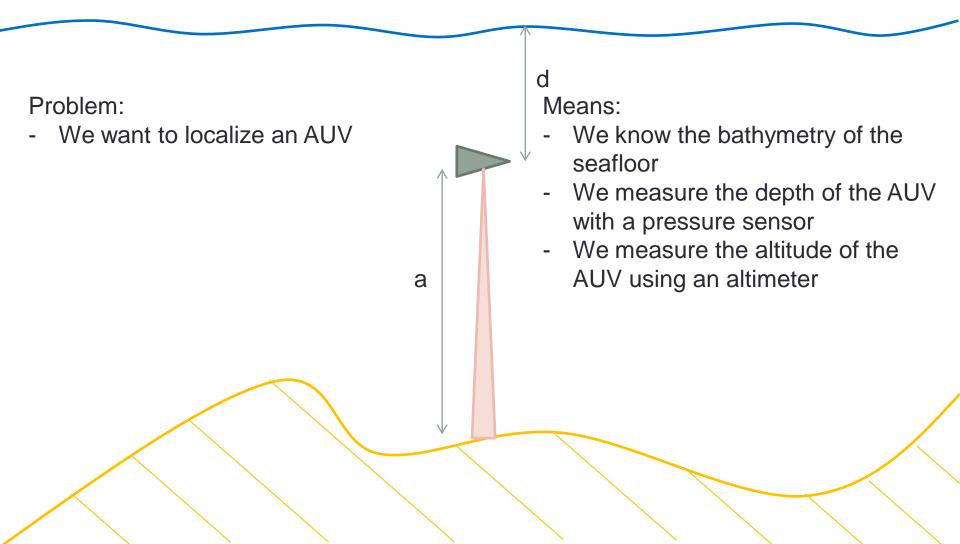
Problem:

- We want to localize an AUV

Means:

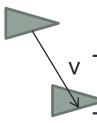
d

- We know the bathymetry of the seafloor
- We measure the depth of the AUV with a pressure sensor



Problem:

- We want to localize an AUV



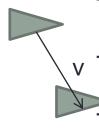
Means:

- We know the bathymetry of the seafloor
- We measure the depth of the AUV with a pressure sensor

- We measure the altitude of the AUV using an altimeter
- We measure the speed of the AUV with an IMU/DVL coupling

Problem:

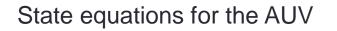
- We want to localize an AUV



Means:

- We know the bathymetry of the seafloor
- We measure the depth of the AUV with a pressure sensor

- We measure the altitude of the AUV using an altimeter
- We measure the speed of the AUV with an IMU/DVL coupling



Evolution model:

 $\dot{p} = v$ v is its speed

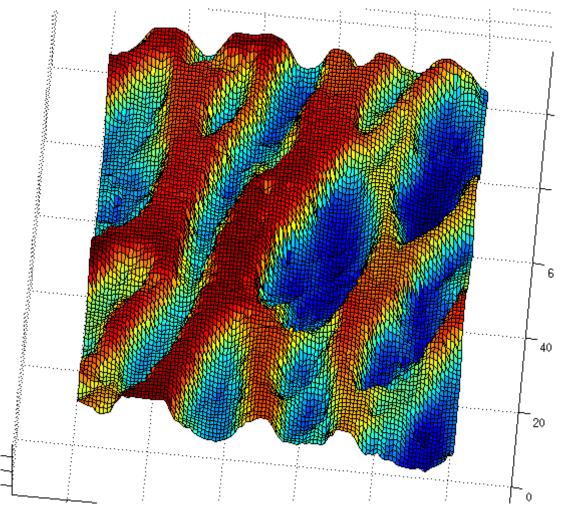
Observation model:

z = d d is its depth as measured by the pressure sensor

p is the position of the AUV

 $z = a + \boldsymbol{M}(x, y)$

Problem: we don't have an expression for the function

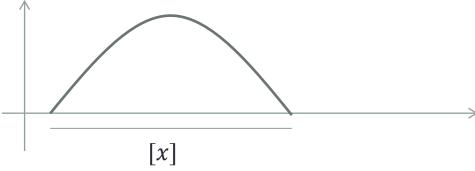


M(x,y)

Guaranteed localization of an underwater robot using bathymetry data and interval analysis

- The problem
- Interval analysis
- Contractors
- Application to our problem
- Conclusion

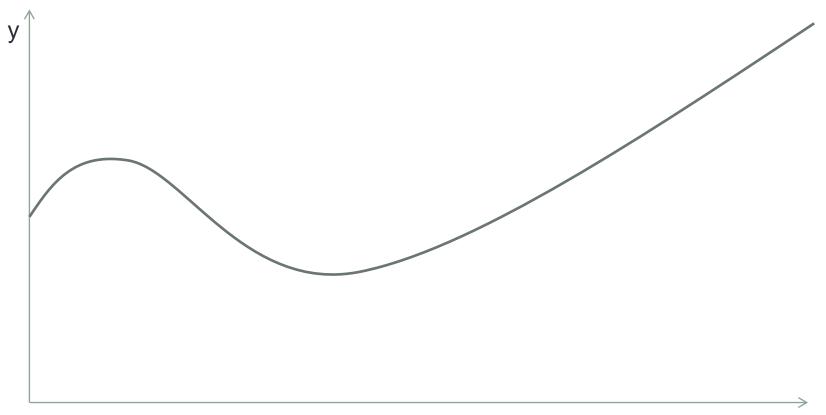
- An interval $[x] = [\underline{x}, \overline{x}] \in IR^n$ is a closed, connected subset of R^n
- Arithmetic operations such as +,-,/ are defined on intervals
- Elementary functions such as *sin*, *tan*, *exp* can be extended to intervals
- We use intervals to treat uncertainties in a nonprobabilistic way

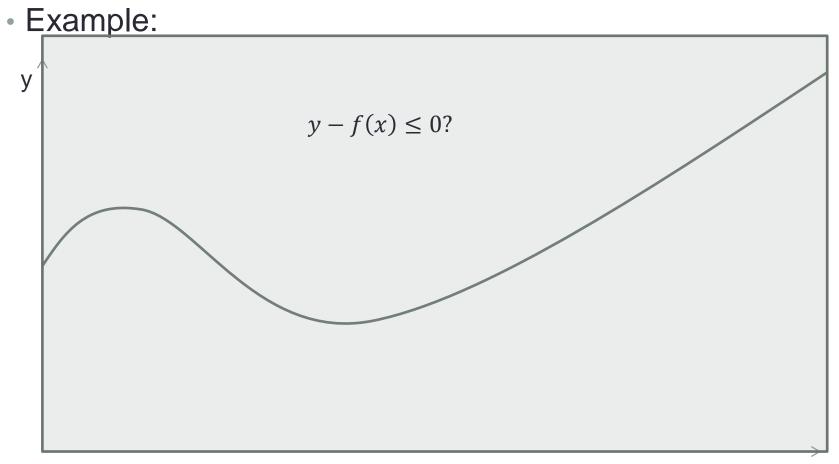


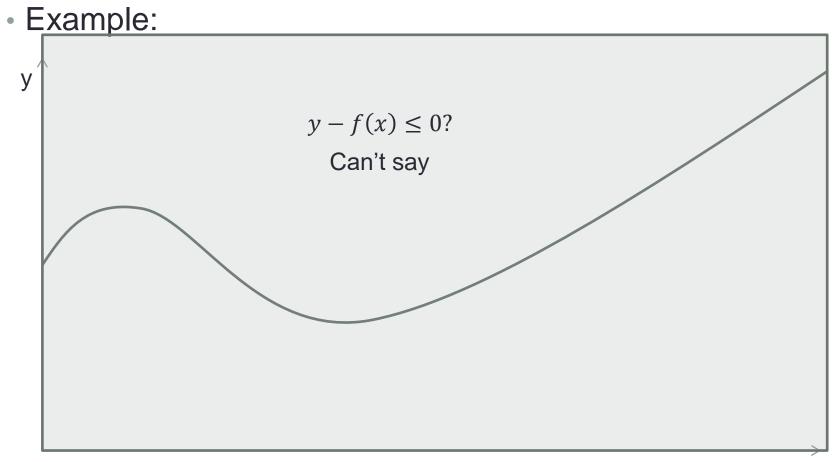
 Intervals enables us to easily approximate sets in a guaranteed manner

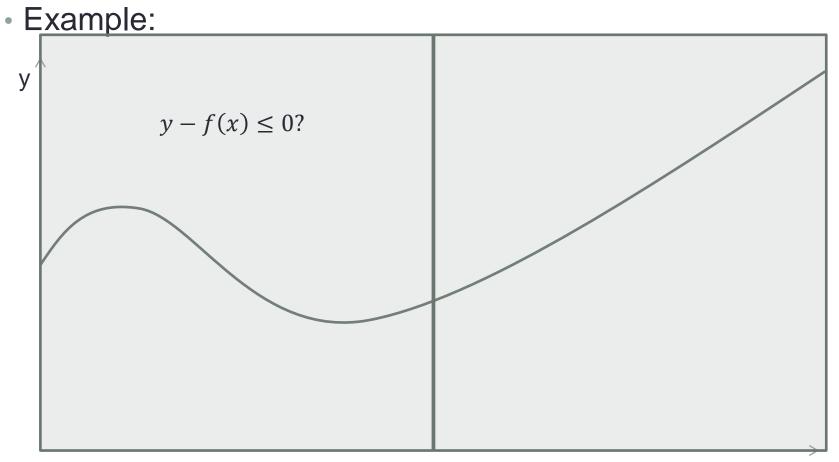
- Intervals enables us to easily approximate sets in a guaranteed manner
- The epigraph **E** of a function $f(x):\mathbb{R}^n \to \mathbb{R}$ is defined as: $E = \{x \in \mathbb{R}^n, y \in \mathbb{R} | y - f(x) \le 0\}$

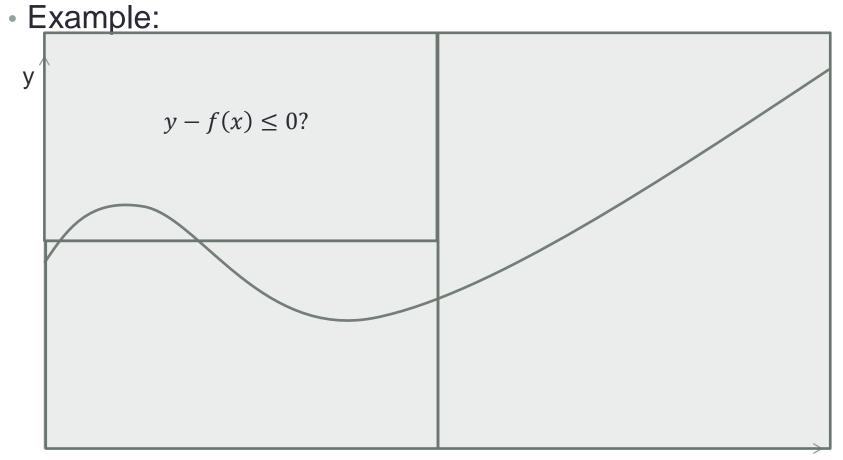
• Example:

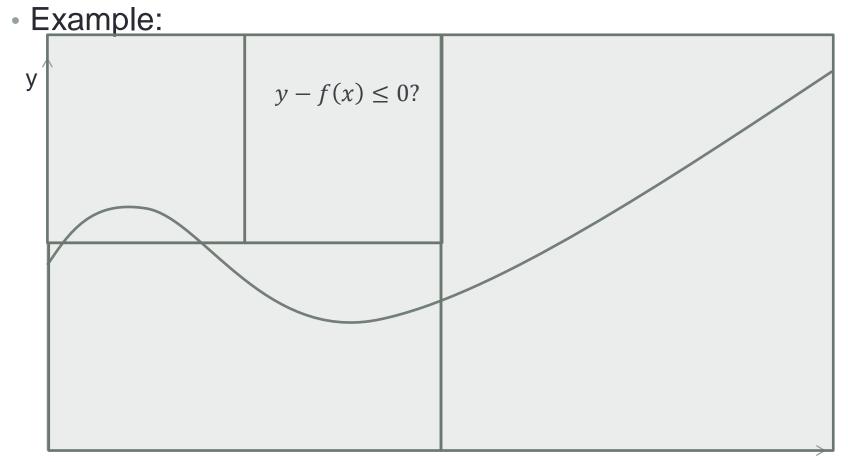


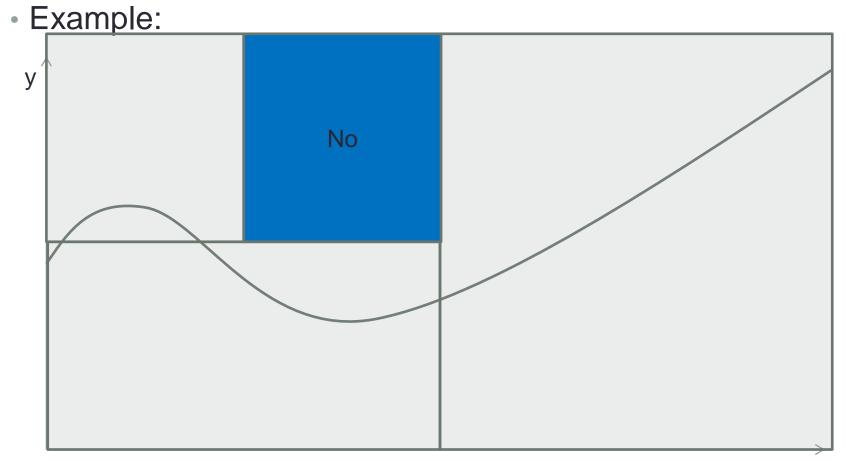




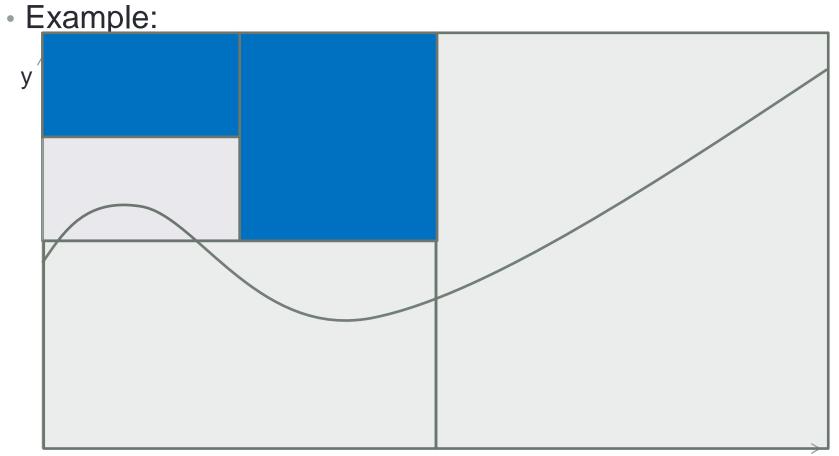




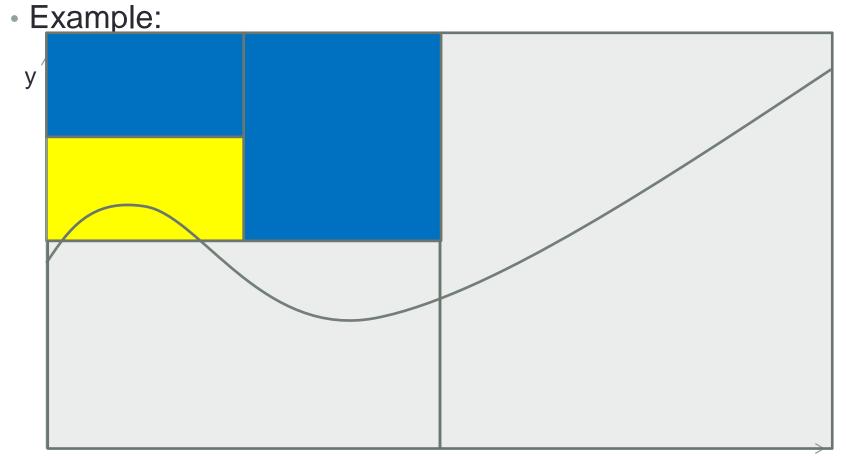


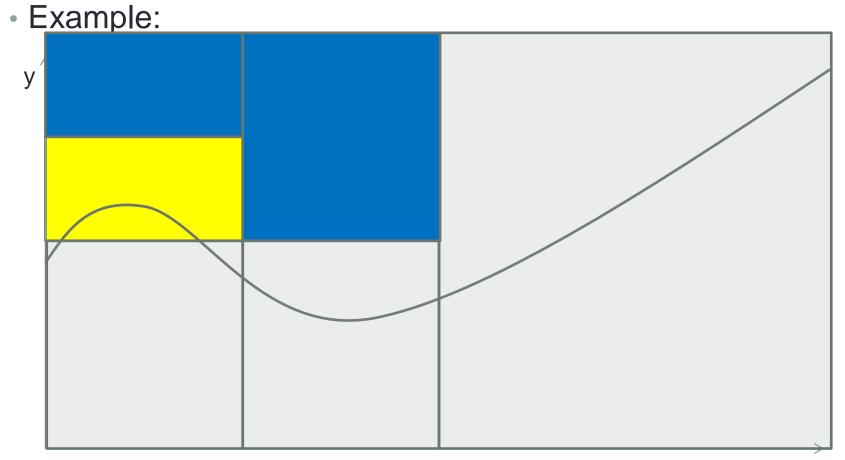


Χ

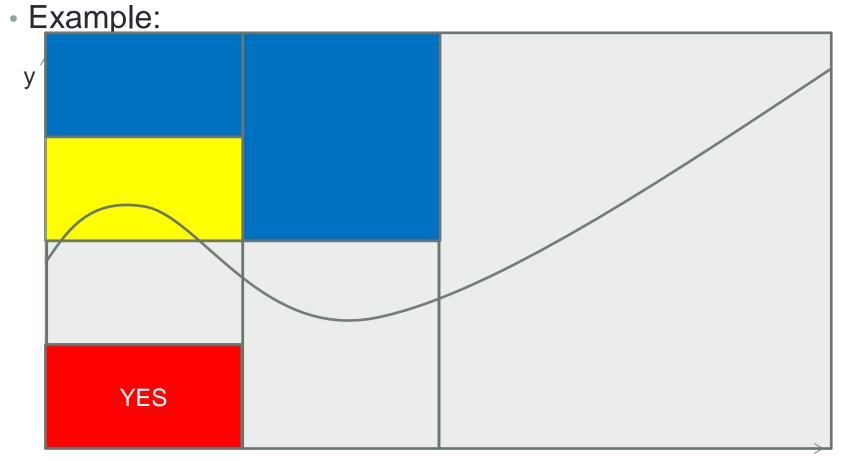


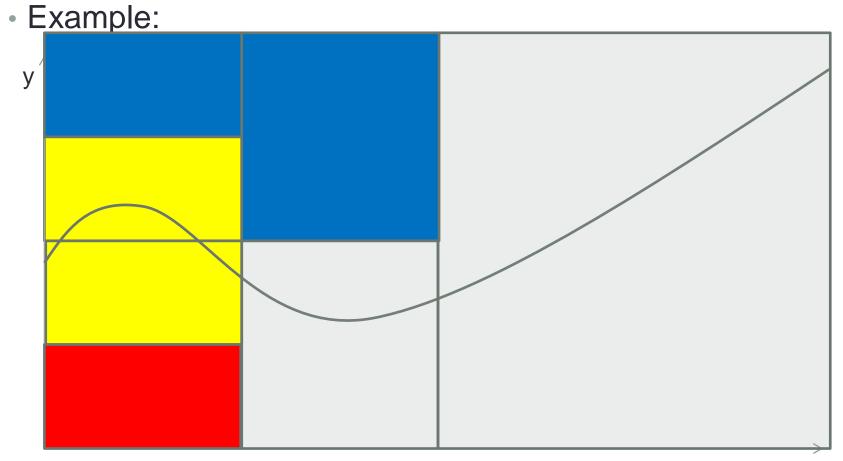
Χ

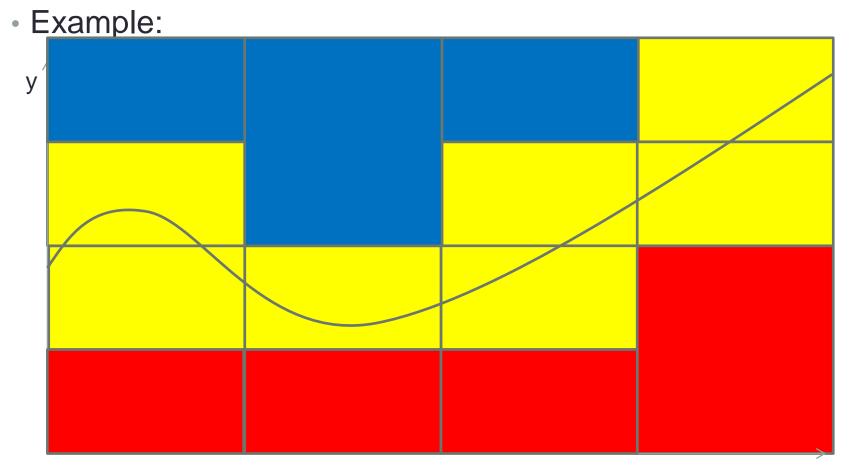


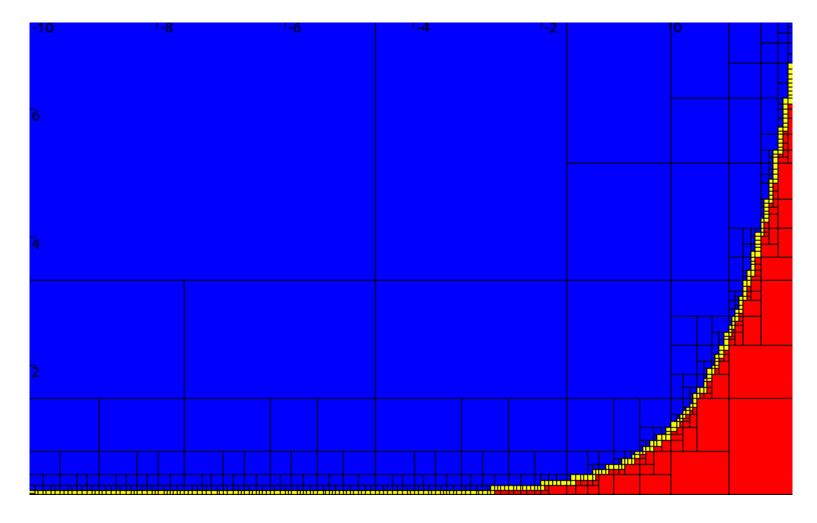


Χ

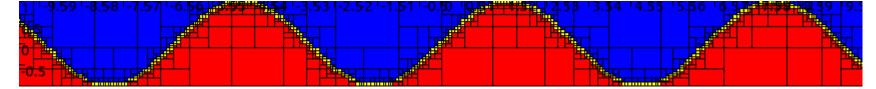








Epigraph of $y = e^x$



Epigraph of $y = \cos x$

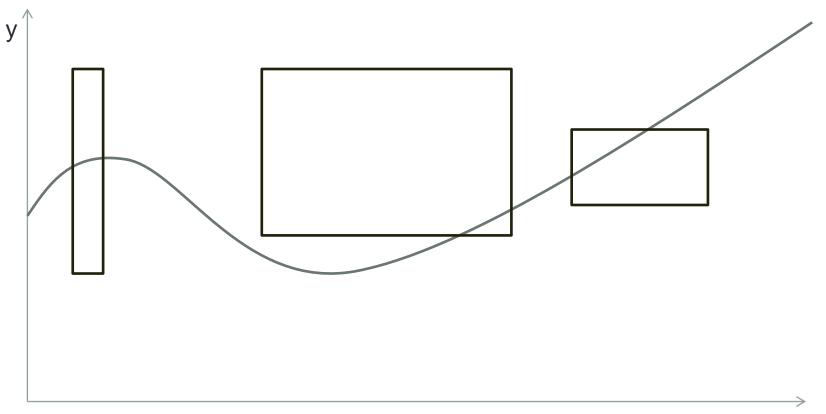
Epigraph of $y = \tan x$

- The epigraph is stored in a binary-tree structure
 - This enables a very quick access to the boxes stored (O(log(n)))
- This is the representation we use to store and manipulate the bathymetry data

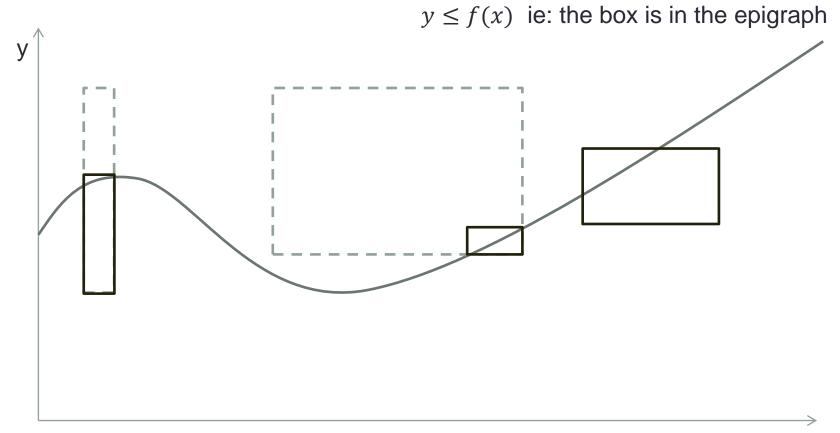
Guaranteed localization of an underwater robot using bathymetry data and interval analysis

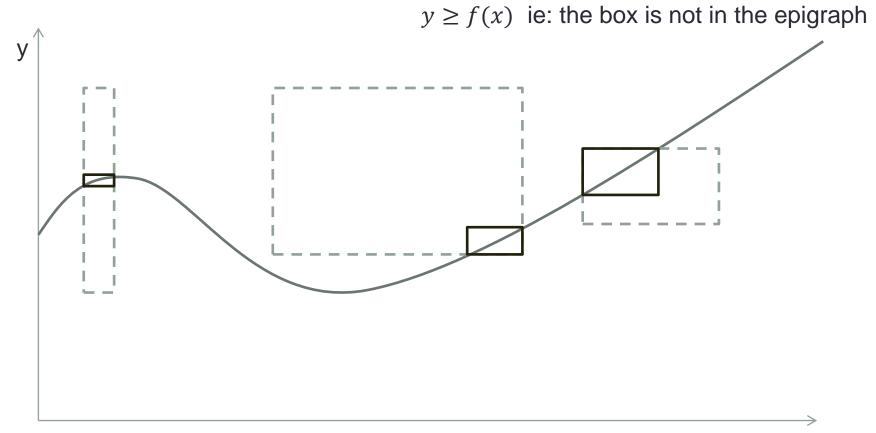
- The problem
- Interval analysis
- Contractors
- Application to our problem
- Conclusion

- A contractor C associated to a set X is an operator which associates to a box [x] ∈ IRⁿ an other box C([x]) ∈ IRⁿ such that the following properties are satisfied:
 - $C([x]) \subset [x]$ (contractance)
 - $C([x]) \cap [x] = [x] \cap X$ (completeness)



Х

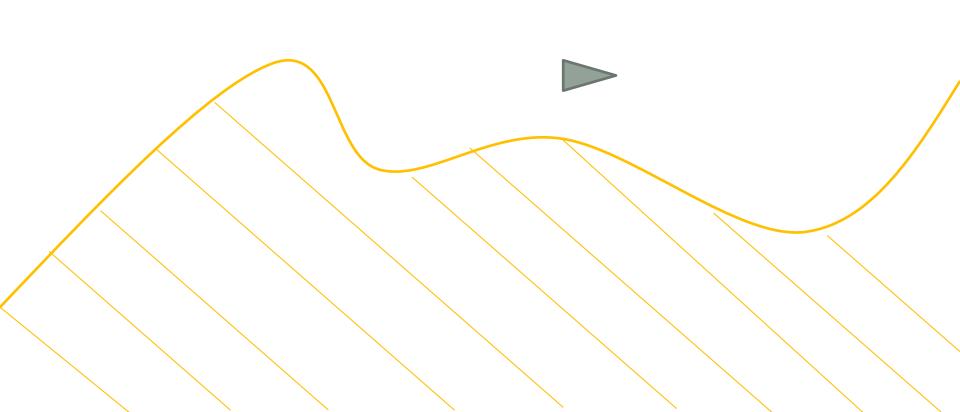


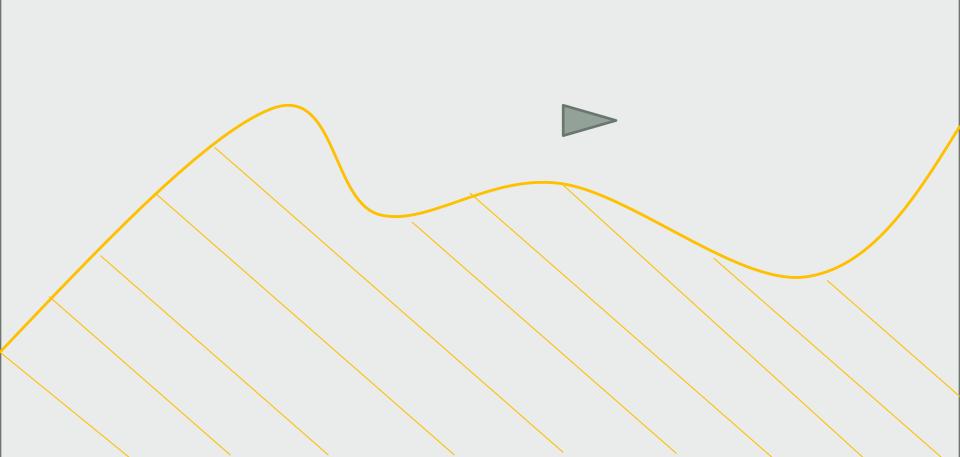


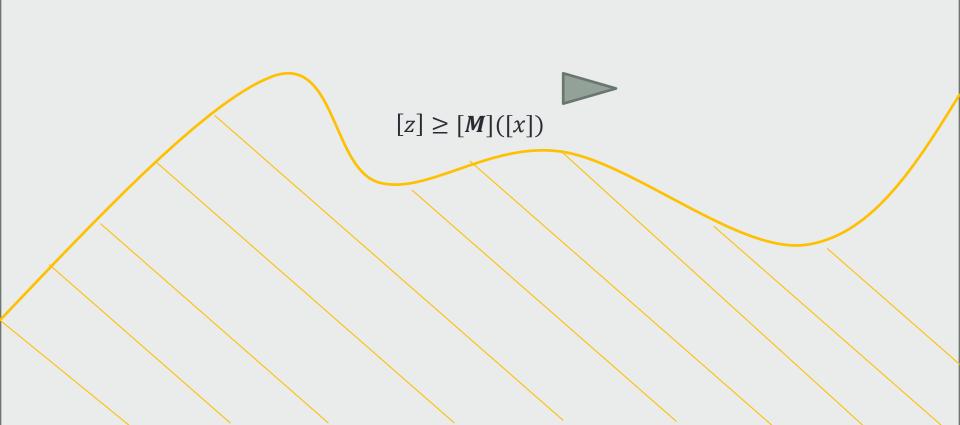
Х

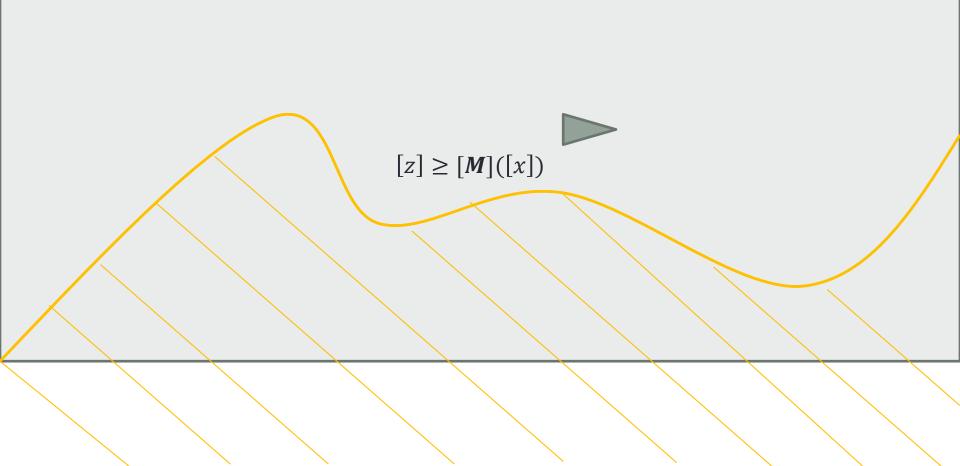
Guaranteed localization of an underwater robot using bathymetry data and interval analysis

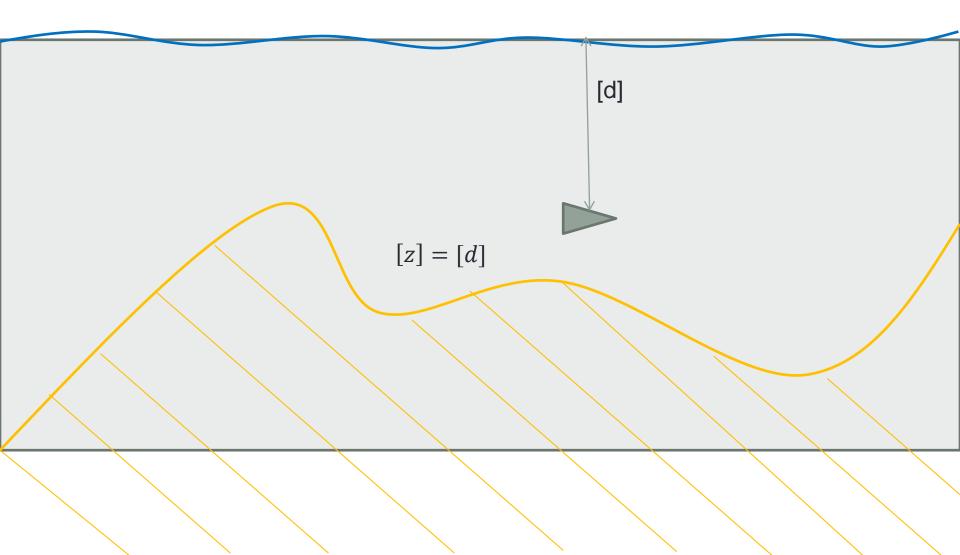
- The problem
- Interval analysis
- Contractors
- Application to our problem
- Conclusion

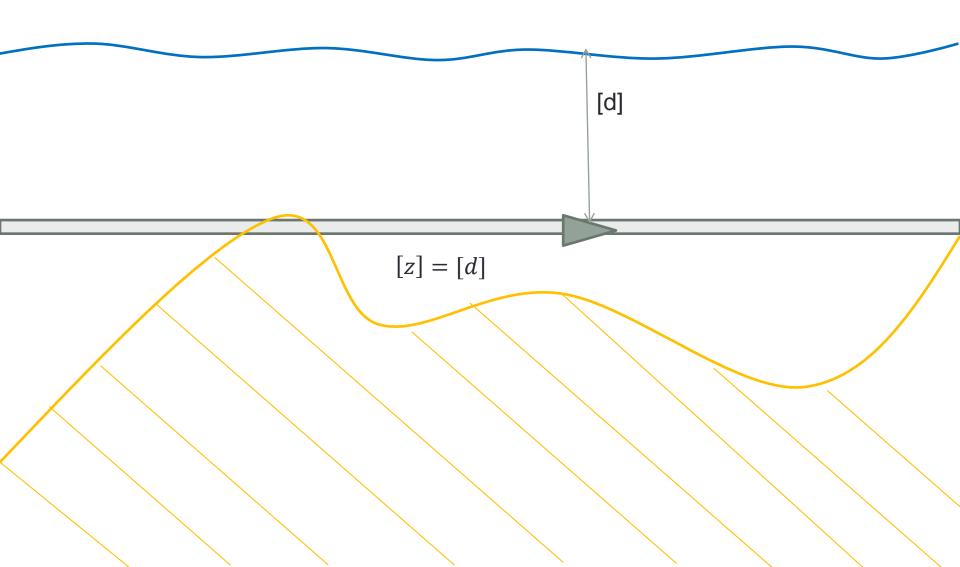




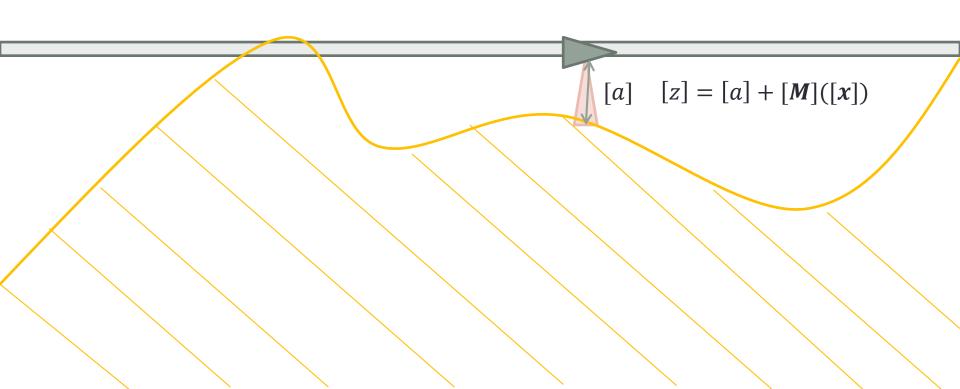


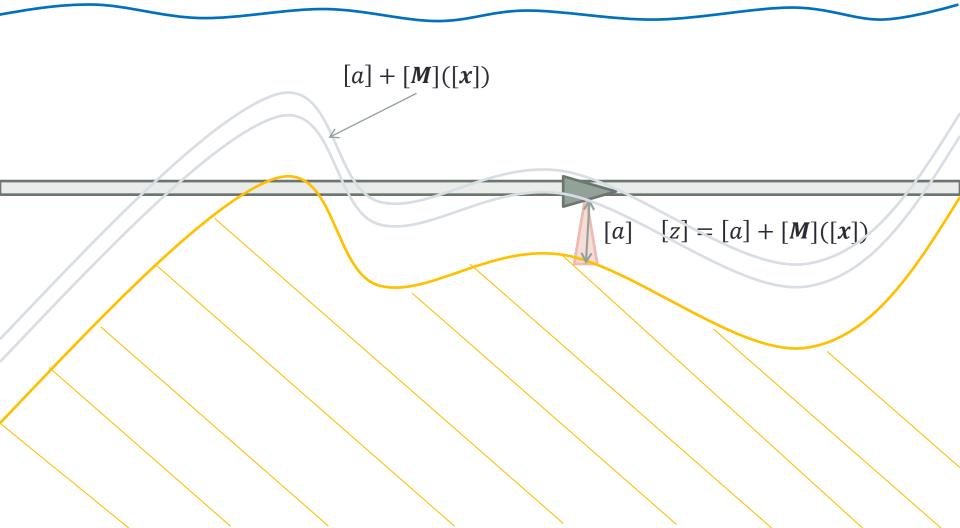


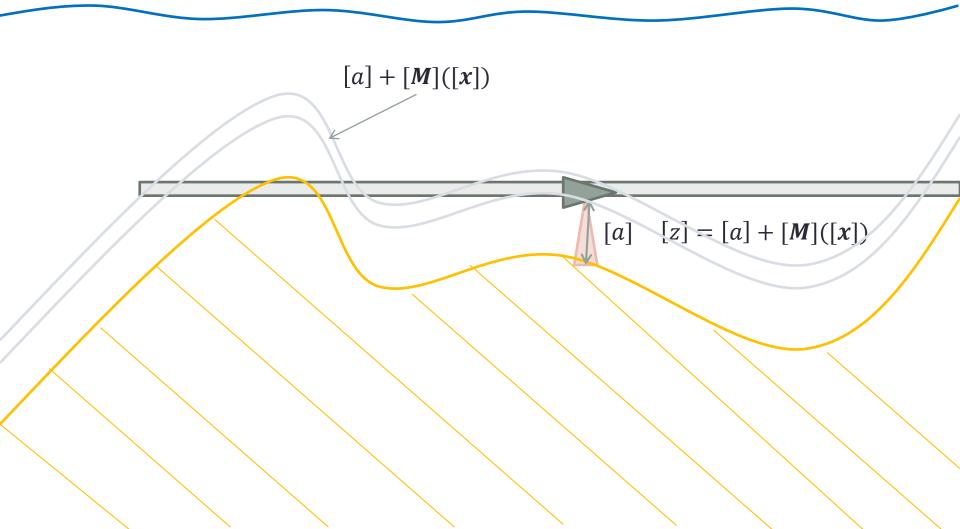


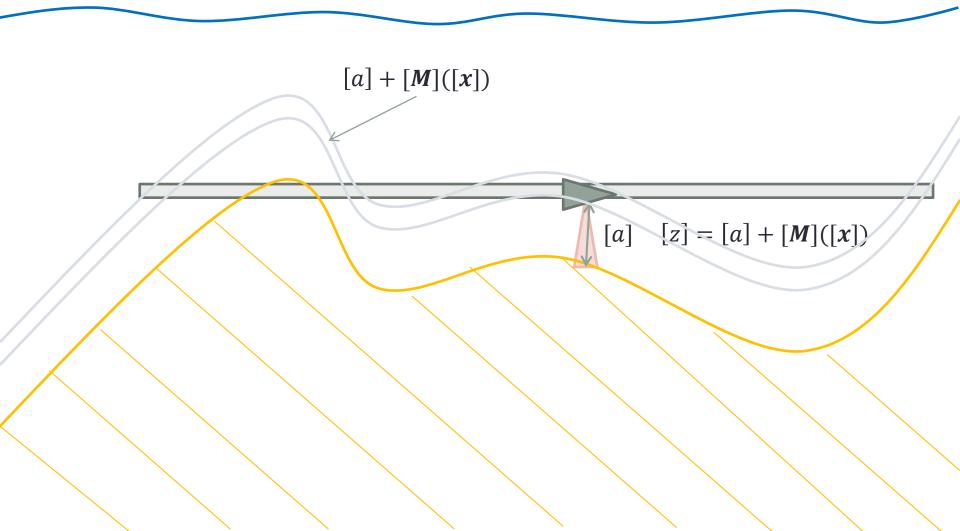


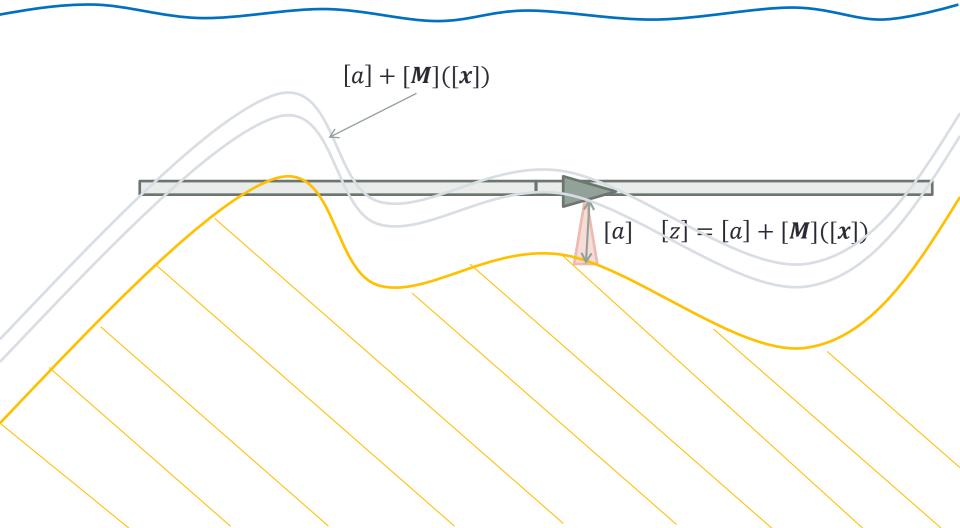
DATA

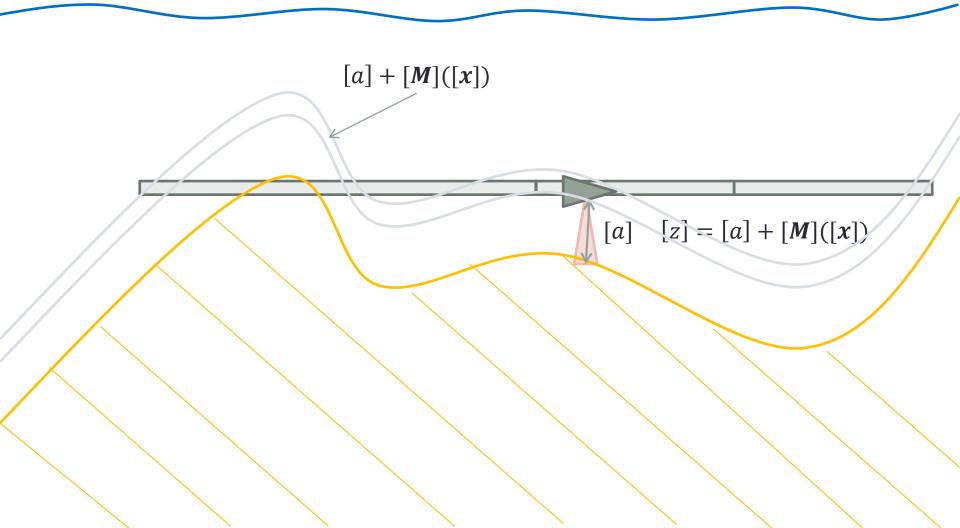


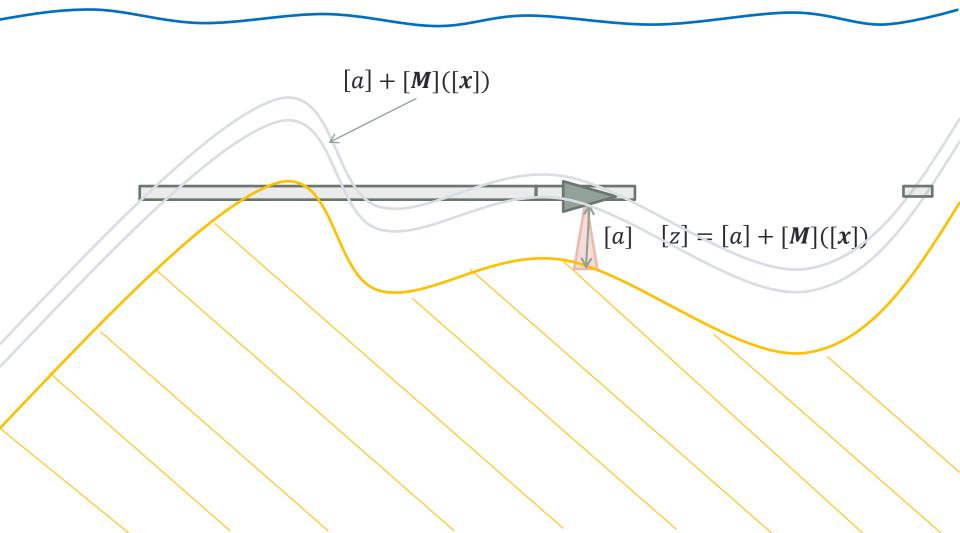


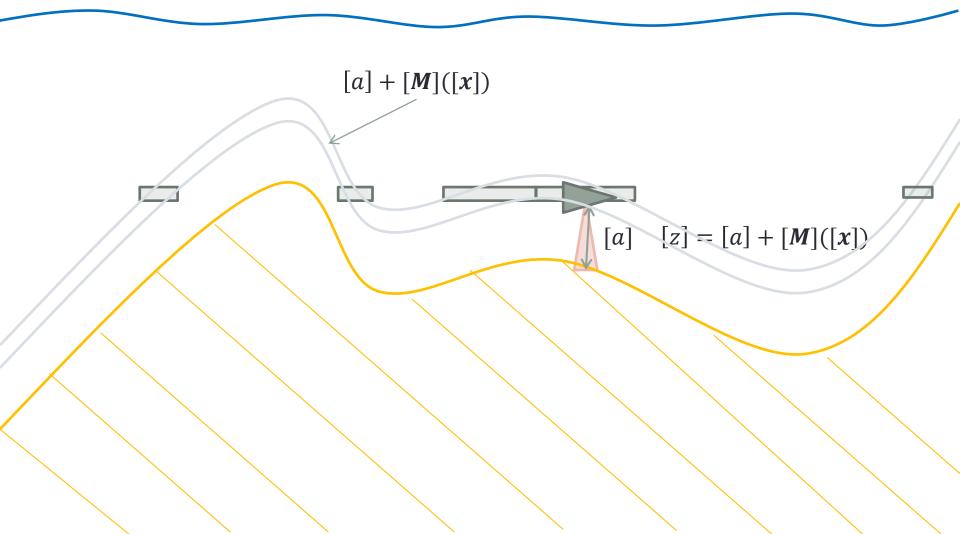


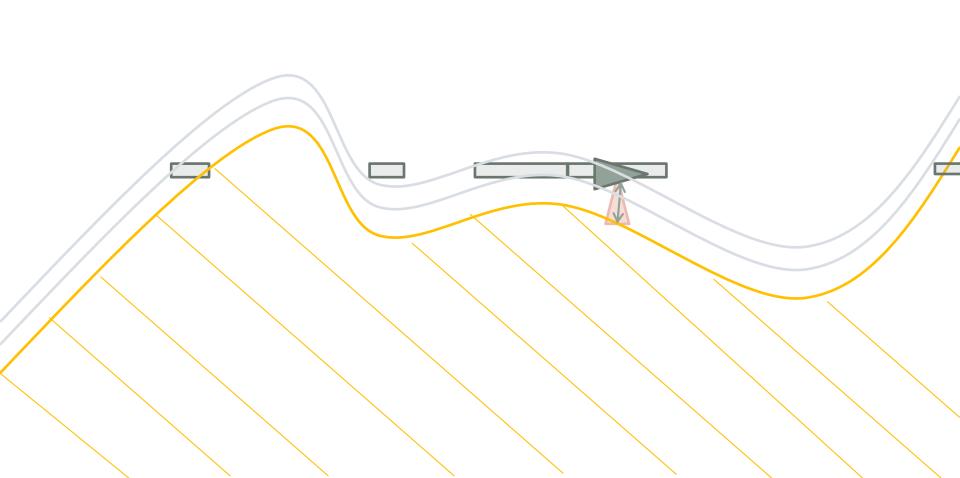


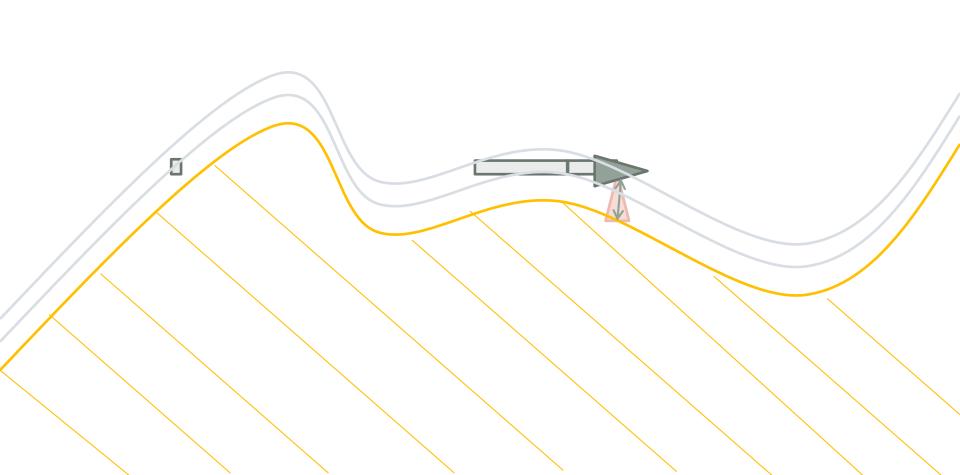


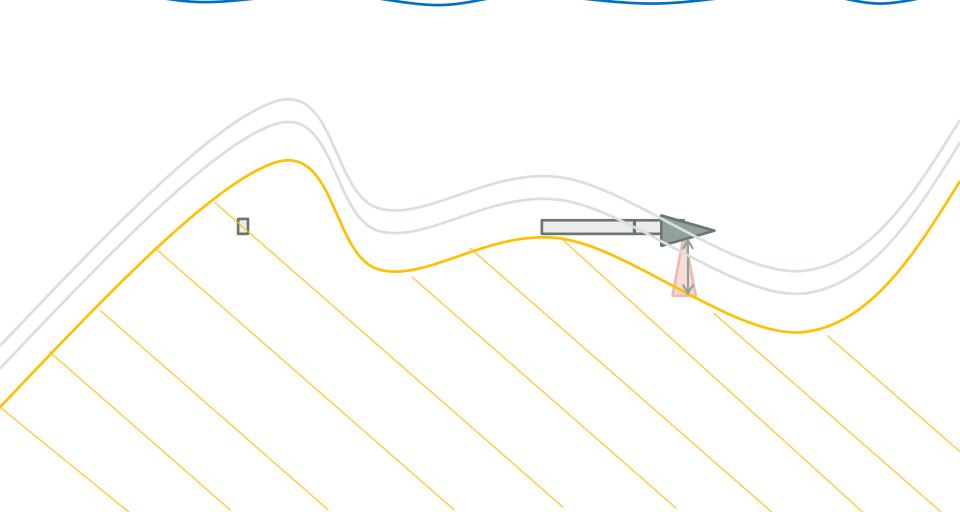


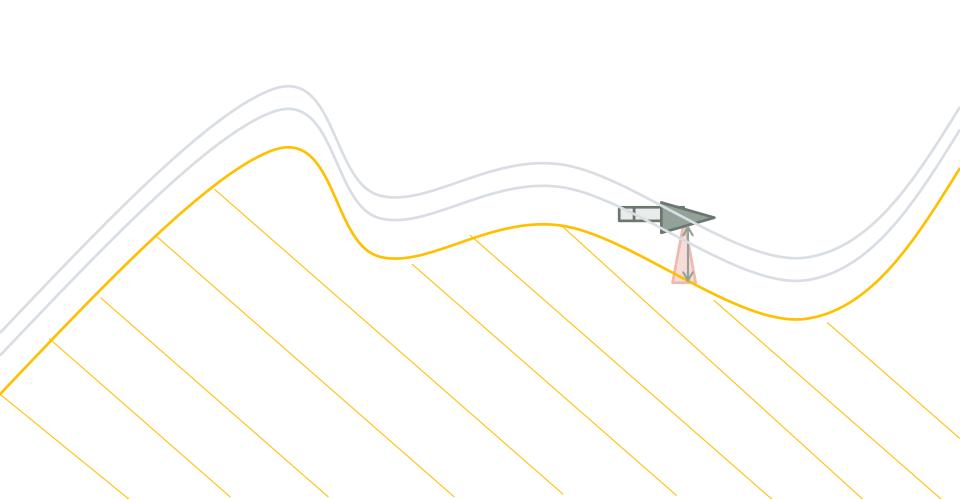










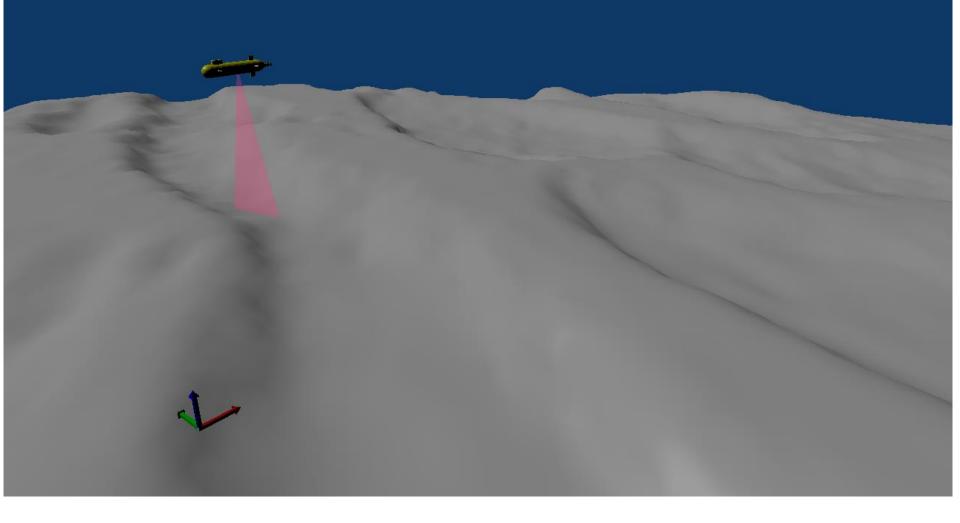


- After some time, if
 - The motion sensors are precise enough
 - The topology of the seafloor is rich enough
- We should converge to the correct position

Guaranteed localization of an underwater robot using bathymetry data and interval analysis

- The problem
- Interval analysis
- Contractors
- Application to our problem
- Simulation
- Conclusion

- We simulated a navigation in a 3D environment
- The AUV follows an helicoïdal trajectory with a radius R=15m at a speed V=1,57m/s
- The speed is measured with a confidence of +-4cm/s
- The depth is measured with a confidence of +-10cm
- The altitude is measured with a confidence of +-10cm
- The initial position of the AUV is totally unknown
- The map dimension is 100m X 100m

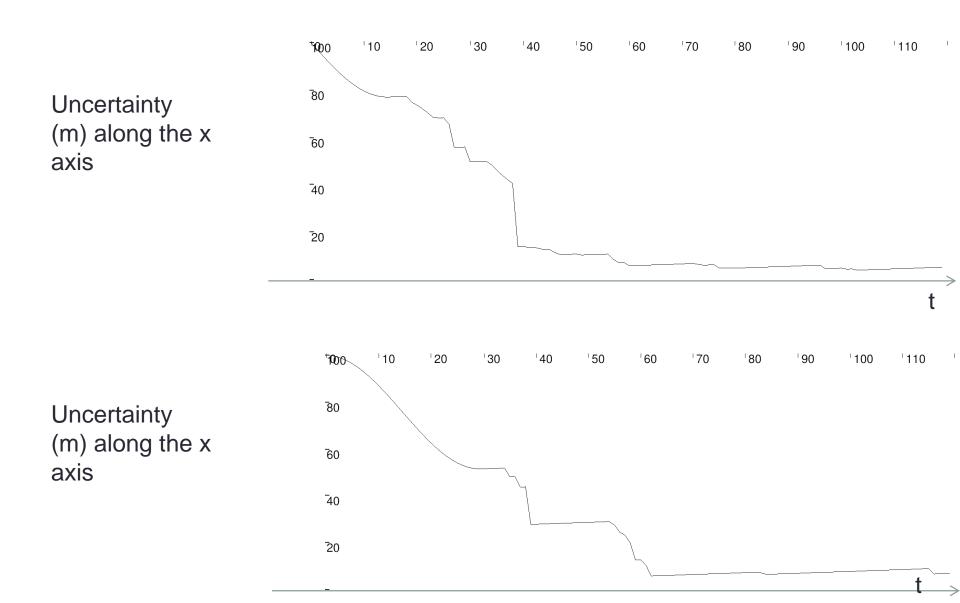


Cf: video

MOQESM 2014: LOCALIZATION USING BATHYMETRY DATA

61

Width of the uncertainty corridors



Guaranteed localization of an underwater robot using bathymetry data and interval analysis

- The problem
- Interval analysis
- Contractors
- Application to our problem
- Simulation
- Conclusion

- We presented a bathymetry-based localization method for an AUV using interval analysis
- The algorithm is:
 - Fast
 - Guaranteed
- However, storing the epigraph of the map requires a lot of memory, and might not be suited for very large maps (>1GB)
- Propagating information back in time could greatly enhance the contractions
- Can we chose a trajectory that will help us converge quickly?

Questions?