A contractor which is minimal for narrow boxes

L. Jaulin

18-19 april 2023 Séminaire AID/CIEDS, Palaiseau

ヘロト ヘロト ヘヨト ヘヨト

Abstract. Centered form is one of the most fundamental brick in interval analysis. It is traditionally used to enclose the range of a function over narrow intervals. The quadratic approximation property guarantees an asymptotically small overestimation for sufficiently narrow boxes. In this presentation, I will propose to use the centered form to build efficient contractors that are optimal when the intervals are narrow. The method is based on the centered form combined with a Gauss Jordan band diagonalization preconditioning.

Stability analysis of linear systems

Minimal contractors Asymptotic minimality Results

1. Stability of a linear systems

●●● Ⅲ ▲田▼ ▲田▼ ▲田▼

Consider the system [1]

$$x + \sin(p_1 p_2) \cdot \ddot{x} + p_1^2 \cdot \dot{x} + p_1 p_2 \cdot x = 0$$

Its characteristic function is

$$\theta(\mathbf{p},s) = s^3 + \sin(p_1p_2) \cdot s^2 + p_1^2 \cdot s + p_1p_2$$

Stability domain

 $\mathbb{S} = \left\{ \mathbf{p} \,|\, \boldsymbol{\theta}(\mathbf{p}, s) \,\mathsf{Hurwitz} \right\}.$

We have

$$\mathbb{S}: \left\{ \begin{array}{ll} p_1 p_2 &\geq 0\\ \sin(p_1 p_2) &\geq 0\\ p_1^2 \sin(p_1 p_2) - p_1 p_2 &\geq 0 \end{array} \right.$$

Stability analysis of linear systems

Minimal contractors Asymptotic minimality Results

Value set approach

▲ロ▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

The roots of $\theta(\mathbf{p}, s) = 0$ change continuously with \mathbf{p} . We define the *value set*

 $\mathscr{P} = \{\mathbf{p} | \exists \boldsymbol{\omega} > 0, \, \boldsymbol{\theta}(\mathbf{p}, j\boldsymbol{\omega}) = 0\}.$

Zero exclusion theorem

Cut off frequency. The roots of

$$P(s) = s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0}$$

are in the disk with center 0 and radius

$$\omega_c = 1 + \max\{\|a_0\|, \|a_1\|, \dots, \|a_{n-1}\|\}$$

<ロ> <同> <同> <同> <同> < 同> < 同> <

3

which is the Cauchy bound.

For

$$\theta(\mathbf{p},s) = s^3 + \sin(p_1p_2) \cdot s^2 + p_1^2 \cdot s + p_1p_2$$

and $s = j\omega$, we get

$$(j\omega)^{3} + \sin(p_{1}p_{2}) \cdot (j\omega)^{2} + p_{1}^{2} \cdot (j\omega) + p_{1}p_{2} = 0$$

$$\Leftrightarrow \quad -j\omega^{3} - \sin(p_{1}p_{2}) \cdot \omega^{2} + jp_{1}^{2} \cdot \omega + p_{1}p_{2} = 0$$

$$\Leftrightarrow \quad \begin{cases} -\sin(p_{1}p_{2}) \cdot \omega^{2} + p_{1}p_{2} = 0 \\ -\omega^{2} + p_{1}^{2} = 0 \end{cases}$$

Stability analysis of linear systems Minimal contractors

Minimal contractors Asymptotic minimality Results

Stability analysis of linear systems

Minimal contractors Asymptotic minimality Results

Linear systems with delays

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Periodic system

$$x(t+1) - x(t) = 0$$

The characteristic function is

$$\theta(s)=e^s-1$$

The roots are

$$s = 2\pi kj, k \in \mathbb{N}$$

Turkulov system. Consider the system [7]:

$$\ddot{x}(t) + 2\dot{x}(t - p_1) + x(t - p_2) = 0$$

Its characteristic function is

$$\boldsymbol{\theta}(\mathbf{p},s) = s^2 + 2se^{-sp_1} + e^{-sp_2}.$$

We define

$$\mathscr{P} = \{ \mathbf{p} \, | \, \exists \boldsymbol{\omega} > 0, \, \boldsymbol{\theta}(\mathbf{p}, j\boldsymbol{\omega}) = 0 \}.$$

Now

$$\begin{array}{rcl} \theta(p_1,p_2,j\omega) \\ = & -\omega^2 + 2j\omega e^{-j\omega p_1} + e^{-j\omega p_2} \\ = & -\omega^2 + 2j\omega(\cos(\omega p_1) - j\sin(\omega p_1)) \\ & +\cos(\omega p_2) - j\sin(-\omega p_2) \\ = & -\omega^2 + 2\omega\sin(\omega p_1) + \cos(\omega p_2) \\ & +j \cdot (2\omega\cos(\omega p_1) - \sin(\omega p_2)) \end{array}$$

◆□ → ◆御 → ◆臣 → ◆臣 → □臣

We have

$$\Leftrightarrow \underbrace{\begin{pmatrix} \theta(p_1, p_2, j\omega) = 0 \\ (-\omega^2 + 2\omega \sin(\omega p_1) + \cos(\omega p_2) \\ 2\omega \cos(\omega p_1) - \sin(\omega p_2) \end{pmatrix}}_{\mathbf{f}(p_1, p_2, \omega)} = \mathbf{0}$$

With $[p_1] = [0, 2.5]$, $[p_2] = [1, 4]$, $[\omega] = [0, 10]$, with a Matlab implementation, with a forward-backward contractor, and $\varepsilon = 2^{-8}$, [2] got:

https://youtu.be/DaR2NZZIV10?t=2453

Stability analysis of linear systems

Minimal contractors Asymptotic minimality Results

 $arepsilon=2^{-8}$, Codac [6] generated 43173 boxes.

We still have a Clustering effect a term a second

2. Minimal contractors

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Given a function $\mathbf{f}:\mathbb{R}^n\mapsto\mathbb{R}^p.$ An inclusion function for \mathbf{f} is minimal if

 $[\mathbf{f}]([\mathbf{x}]) = [\![\{\mathbf{y} = \mathbf{f}(\mathbf{x}) \,|\, \mathbf{x} \in [\mathbf{x}]\}]\!].$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

With a minimal inclusion, the clustering effect may exist, when solving $\boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{0}$

イロト イロト イヨト イヨト 三日

A contractor associated to the set $X \subset \mathbb{R}^n$ is a function $\mathscr{C} : \mathbb{IR}^n \mapsto \mathbb{IR}^n$ such that

$$\begin{array}{ll} \mathscr{C}([\mathbf{x}]) \subset [\mathbf{x}] & \quad \mbox{(contraction)} \\ [\mathbf{x}] \cap \mathbb{X} \subset \mathscr{C}([\mathbf{x}]) & \quad \mbox{(consistency)} \end{array}$$

It is minimal if $\mathscr{C}([\mathbf{x}]) = \llbracket [\mathbf{x}] \cap \mathbb{X} \rrbracket$.

Tree matrices

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Consider the interval linear system:

$$\left(\begin{array}{ccc} d_{11} & d_{12} & 0 \\ 0 & d_{22} & d_{23} \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} b_1 \\ b_2 \end{array}\right)$$

where

$$d_{ij} \in [d_{ij}], x_j \in [x_j], b_i \in [b_i]$$

The optimal contraction can be obtained by a simple interval propagation [3].

No cycle for:

$$\begin{pmatrix} d_{11} & d_{12} & 0 & 0 \\ 0 & d_{22} & d_{23} & 0 \\ 0 & 0 & d_{33} & d_{34} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

A matrix **D** such that $\mathbf{D} \cdot \mathbf{x} = \mathbf{b}$ has no cycle is a *tree matrix*.

We a Gauss Jordan transformation:

 $\mathbf{A}\mathbf{x} = \mathbf{c} \Leftrightarrow \mathbf{Q} \cdot \mathbf{A} \cdot \mathbf{x} = \mathbf{Q} \cdot \mathbf{c}$

we may get a tree matrix: $\mathbf{D} = \mathbf{Q} \cdot \mathbf{A}$.

Simplex contractor

For the linear system

$$\mathbf{A}\mathbf{x} = \mathbf{c}, \mathbf{x} \in [\mathbf{x}], \mathbf{c} \in [\mathbf{c}]$$

we can use the simplex algorithm to build the minimal contractor. Guarantee can be obtained with an inflation [5]

(日) (종) (종) (종) (종) (종)

3. Asymptotic minimality

Proximity. Denote by $L(\mathbf{a}, \mathbf{b})$ a distance between \mathbf{a} and \mathbf{b} of \mathbb{R}^n induced by the *L*-norm (L_{∞} or L_2). The *proximity* of \mathbb{A} to \mathbb{B} is

$$h(\mathbb{A},\mathbb{B}) = \sup_{\mathbf{a}\in\mathbb{A}} L(\mathbf{a},\mathbb{B})$$

where

$$L(\mathbf{a},\mathbb{B}) = \inf_{\mathbf{b}\in\mathbb{B}} L(\mathbf{a},\mathbf{b}).$$

Proximity of $\mathbb A$ to $\mathbb B$

◆□ ▶ ◆□ ▶ ◆□ ▶ ▲□ ▶ ◆□ ♥

Definition. The pessimism of an inclusion function $[\mathbf{f}]$ is

 $\eta([\mathbf{x}]) = h([\mathbf{f}]([\mathbf{x}]), [\![\mathbf{f}([\mathbf{x}])]\!])$

Definition [4]. An inclusion function $[\mathbf{f}]$ is of order j if

 $\boldsymbol{\eta}([\mathbf{x}]) = o(w^j([\mathbf{x}]))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シへで

Definition. [f] is convergent if it is of order j = 0:

 $\eta([\mathbf{x}]) = o(w^0([\mathbf{x}])) = O(w([\mathbf{x}]))$

Definition. [f] is asymptotically minimal if it is of order j = 1:

 $\eta([\mathbf{x}]) = o(w([\mathbf{x}]))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proposition [4]. The centered form

$$[f]([x]) = f(m) + [f']([x]) \cdot ([x] - m)$$

where $\mathbf{m} = \text{center}([\mathbf{x}])$ is asymptotically minimal.

Definition. The pessimism of a contractor ${\mathscr C}$ for ${\mathbb X}$ at [x] is

 $\eta([\mathbf{x}]) = h(\mathscr{C}([\mathbf{x}]), \llbracket [\mathbf{x}] \cap \mathbb{X} \rrbracket)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition. A contractor \mathscr{C} for \mathbb{X} is of order j if

 $\boldsymbol{\eta}([\mathbf{x}]) = o(w^j([\mathbf{x}]))$

Proposition. Consider a set $\mathbb{X} = \{x \in \mathbb{R}^n | f(x) = 0\}$. Take [x] with center m. Define Q s.t. $Q \cdot \frac{df}{dx}(m)$ is a tree matrix. An interval propagation on;

$$\begin{aligned} \mathbf{Q} \cdot \mathbf{f}(\mathbf{m}) + \mathbf{Q} \cdot \mathbf{A} \cdot (\mathbf{x} - \mathbf{m}) &= \mathbf{0} \\ \mathbf{A} \in [\frac{d\mathbf{f}}{d\mathbf{x}}]([\mathbf{x}]) \\ \mathbf{x} \in [\mathbf{x}] \end{aligned}$$

イロト 不得 トイヨト イヨト 三日

yields an asymptotically minimal contractor for X.

Proof....

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 めんの

Centered contractor

Input:	f, [x]
1	$\mathbf{m} = center([\mathbf{x}])$
2	Compute the Gauss-Jordan matrix Q for $\frac{d\mathbf{f}}{d\mathbf{x}}(\mathbf{m})$
3	Define $\mathbf{g}(\mathbf{x}) = \mathbf{Q} \cdot \mathbf{f}(\mathbf{x})$
4	For $i \in \{1, \dots, p\}$
5	For $j \in \{1,\ldots,n\}$
6	$[\mathbf{a}] = [\frac{\partial g_i}{\partial \mathbf{x}}]([\mathbf{x}])$
7	$[s] = \sum [a_k] \cdot ([x_k] - m_k)$
	k eq j
8	$[x_j] = [x_j] \cap (-g_i(\mathbf{m}) - [s])$
9	Return [x]

```
def GaussJordan(A):
   n=A.shape[0]
   m=A.shape[1]
   P,L,U = lu(A)
   Q=inv(P@L)
   for i in range(n-1, 0, -1):
      p=m-n
      K=U[i,i+p]*np.eye(n)
      K[0:i,i] = -U[0:i,i+p]
      Q=K@Q
      U=Q@A
   return Q
```

4. Results

With a forward-backward contractor and $arepsilon=2^{-8}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

With the centered contractor $arepsilon=2^{-4}$

◆□ ▶ ◆□ ▶ ◆□ ▶ ▲□ ▶ ◆□ ♥

Blue:
$$arepsilon=2^{-4}$$
 ; Thin: $arepsilon=2^{-8}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ● ●

Gray:
$${m arepsilon}=2^{-8}$$
 ; Magenta: ${m arepsilon}=2^{-12}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Contributions

Notion of asymptotic minimal contractor Link between the preconditioning and acyclic constraint networks Better results than the basic affine arithmetic No use of guaranteed linear programming

Perspectives

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○○○

Compare with modern affine-arithmetic approaches Improve the tree preconditioning Use linear programming with an order 1 inflation Implement in codac.io

L. Jaulin.

Solution globale et garantie de problèmes ensemblistes ; application à l'estimation non linéaire et à la commande robuste.

PhD dissertation, Université Paris-Sud, Orsay, France, 1994.

- R. Malti, M. Rapaić, and V. Turkulov.
 A unified framework for robust stability analysis of linear irrational systems in the parametric space.
 Automatica, 2022.
 Second version, under review (see also https://hal.archives-ouvertes.fr/hal-03646956).
- U. Montanari and F. Rossi. Constraint relaxation may be perfect. Artificial Intelligence, 48(2):143–170, 1991.
- 📄 R. Moore.

Methods and Applications of Interval Analysis. Society for Industrial and Applied Mathematics, jan 1979.

A. Neumaier and O. Shcherbina. Safe bounds in linear and mixed-integer linear programming. Math. Program., 99(2):283-296, 2004.

S. Rohou.

Codac (Catalog Of Domains And Contractors), available at http://codac.io/. Robex, Lab-STICC, ENSTA-Bretagne, 2021.

V. Turkulov, M. Rapaić, and R. Malti. Stability analysis of time-delay systems in the parametric space.

Automatica, 2022.

Provisionally accepted. Third version submitted (see also https://arxiv.org/abs/2103.15629).