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1. Underwater navigation
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Explore and return in a minimalist environment
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Modern navigation: high cost (computation, infrastructure)
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Route-based navigation
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Submeeting 2018
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Find the route without GPS, compass, clocks, computer with wa`a

kaulua
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Follow a route
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Given a function h : R2 7→ R, a route in de�ned by h(p) = 0.
h could be the temperature, the radiation, the pressure, the
altitude, the time shift between two periodic events.
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When one star sets the other rises
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2. Stable bouncing (phd of
Quentin Brateau)
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No route exists
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Contraction of the distance
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Contraction if sinβ

sinα
< 1
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Experiment (phd of Quentin
Brateau)
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3. Proving the stability
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Consider the robot 
ẋ1 = cosx3
ẋ2 = sinx3
ẋ3 = u

with the heading control u = sin(ψ̄ − x3).
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Interval arithmetic
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[−1,3]+ [2,5] =?,
[−1,3] · [2,5] =?,
abs([−7,1]) =?
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[−1,3]+ [2,5] = [1,8],
[−1,3] · [2,5] = [−5,15],
abs([−7,1]) = [0,7]
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The interval extension of

f (x1,x2) = x1 · x2 − (x1 + x2) · cosx2 + sinx1 · sinx2 +2

is

[f ]([x1], [x2]) = [x1] · [x2]− ([x1]+ [x2]) · cos[x2]

+sin[x1] · sin[x2]+2.
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Theorem (Moore, 1970)

{f (x1,x2) |x1 ∈ [x1],x2 ∈ [x2])} ⊂ [f ]([x1], [x2])
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Tubes
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x(t) ∈ [x](t)
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The hovercraft
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The state equations are given by

ẋ1 = v1 cosψ − v2 sinψ

ẋ2 = v1 sinψ + v2 cosψ

v̇1 = u1 +ωv2
v̇2 = −ωv1
ψ̇ = ω

ω̇ = u2
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An integral formulation of the hovercraft is

(
x1
x2

)
=

(
x1(0)
x2(0)

)
+

( ∫
(cosψ · v1 − sinψ · v2)∫
(sinψ · v1 + cosψ · v2)

)
(

v1
v2

)
=

(
cosψ sinψ

−sinψ cosψ

)((
a1(0)
a2(0)

)
+

( ∫
(u1 cosψ)∫
(u1 sinψ)

))
ψ = ψ(0)+

∫
ω

ω = ω(0)+
∫

u2

where (
a1(0)
a2(0)

)
=

(
cosψ(0) −sinψ(0)
sinψ(0) cosψ(0)

)(
v1(0)
v2(0)

)
.
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Take

u(t) =
(

u1(t)
u2(t)

)
∈
(

[u1](t)
[u2](t)

)
=

(
e−t

e−t

)
+

(
[−0.01,0.01]
[−0.01,0.01]

)

x(0) ∈ [x](0) =



0
0
2
0
1
0

+



[−0.001,0.001]
[−0.001,0.001]
[−0.001,0.001]
[−0.001,0.001]

[−0.2,0.2]
[−0.001,0.001]


The interval trajectory in the (x1,x2)-space is obtained by

Luc Jaulin Explore and return for an underwater robot in a minimalist environment and with few computation



50 / 77

Underwater navigation
Stable bouncing

Proving the stability

In: [x](0), [v](0), [ψ](0), [ω](0), [u](t)

[a](0) =

(
cos([ψ](0)) −sin([ψ](0))
sin([ψ](0)) cos([ψ](0))

)
· [v](0)

[a](t) = [a](0)+
( ∫ t

0[u1](τ) · cos([ψ](τ)) ·dτ∫ t
0[u1](τ) · sin([ψ](τ)) ·dτ

)
[ω](t) = [ω](0)+

∫ t
0[u2](τ)dτ

[ψ](t) = [ψ](0)+
∫ t

0[ω](τ)dτ

[v](t) =

(
cos([ψ](t)) sin([ψ](t))
−sin([ψ](t)) cos([ψ](t))

)
· [a](t)

[x](t) = [x](0)+
(

cos([ψ](t)) −sin([ψ](t))
sin([ψ](t)) cos([ψ](t))

)
· [v](t)
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Stability with Poincaré map
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System: ẋ = f(x)
How to prove that the system has a cycle ?
How to prove that the system is stable ?
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System: ẋ = f(x)
Poincaré section G : g(x) = 0
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We de�ne

p :
G → G
a 7→ p(a)

where p(a) is the point of G such that the trajectory initialized at a
intersects G for the �rst time.
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The Poincaré �rst recurrence map is de�ned by

a(k+1) = p(a(k))
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With hybrid systems
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Systems: ẋ = fi(x), i ∈ {1, . . . ,m}
Section i: gi(x) = 0
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Consider the discrete time system

xk+1 = f(xk)

with f(0) = 0.

Luc Jaulin Explore and return for an underwater robot in a minimalist environment and with few computation



65 / 77

Underwater navigation
Stable bouncing

Proving the stability

Luc Jaulin Explore and return for an underwater robot in a minimalist environment and with few computation



66 / 77

Underwater navigation
Stable bouncing

Proving the stability

Luc Jaulin Explore and return for an underwater robot in a minimalist environment and with few computation



67 / 77

Underwater navigation
Stable bouncing

Proving the stability

Luc Jaulin Explore and return for an underwater robot in a minimalist environment and with few computation



68 / 77

Underwater navigation
Stable bouncing

Proving the stability

We have to �nd
Ex : xT ·P ·x ≤ ε

Such that
f(Ex)⊂ Ex

For this, we solve the axis-aligned Lyapunov equation

AT ·P ·A−P =−ATA
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Stability of cycles
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The Poincaré �rst recurrence map is de�ned by

a(k+1) = p(a(k))
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