Explore and return for an underwater robot in a
minimalist environment and with few computation
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Modern navigation: high cost (computation, infrastructure)



Route-based navigation
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Submeeting 2018



https://www.ensta-bretagne.fr/jaulin/submeeting2018.html

Underwater navigation

Find the route without GPS, compass, clocks, computer with wa’a
kaulua







Follow a route



Underwater navigation

Given a function : R?+— R, a route in defined by i(p) = 0.
h could be the temperature, the radiation, the pressure, the
altitude, the time shift between two periodic events.



Underwater navigation

When one star sets the other rises
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Stable bouncing

2. Stable bouncing (phd of
Quentin Brateau)



Stable bouncing

No route exists

A .



Stable bouncing
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Contraction of the distance
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Contraction if 28 1
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Stable bouncing

Experiment (phd of Quentin
Brateau)
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3. Proving the stability



Proving the stability

Consider the robot

X] = CO0SXx3
Xy = SiHX3
X3 = u

with the heading control u = sin(y —x3).
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ing the stability

Interval arithmetic



>
X
H
©
b
»
[
<
=
b0
c
>
o
=
o






Proving the stability

The interval extension of

f(x1,x2) =x1-x2 — (x1 +x2) - cosxy + sinx; - sinxy +2

(], bal) = - el = (] + [x]) - coslx]
+sin[x] - sin[x;] 4+ 2.



Proving the stability

Theorem (Moore, 1970)

{f(x1,x2) [x1 € [x1],%2 € [x2])} C [f]([xa], [x2])
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Tubes



Proving the stability
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ing the stability

The hovercraft



Proving the stability
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Proving the stability

The state equations are given by

X1 = vicosy —wsiny
X = wvisiny+vycosy
Vi = ur+ow

V), = —@0vp

VvV o= o

O = u



Proving the stability
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tegral formulation
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Proving the stability
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Proving the stability

Take
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The interval trajectory in the (xj,x2)-space is obtained by
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Proving the stability




Stability with Poincaré map



Proving the stability

System: x =f(x)
How to prove that the system has a cycle 7
How to prove that the system is stable 7
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Proving the stability

System: x =f(x)
Poincaré section ¢: g(x) =0



Proving the stability

We define

g - 9

a — p(a)

where p(a) is the point of ¢ such that the trajectory initialized at a
intersects ¢ for the first time.

pP:
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Proving the stability

The Poincareé first recurrence map is defined by

a(k+1) = p(a(k))



With hybrid systems



Proving the stability

Systems: x = f;(x),i € {1,...,m}
Section i: gi(x) =0



Proving the stability

92(x)=0
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Proving the stability

Consider the discrete time system

X1 = f(xz)

with £(0) = 0.
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Proving the stability

L2







Proving the stability

We have to find
& :xP.x<eg

Such that
f(&%) C &

For this, we solve the axis-aligned Lyapunov equation

AT.PA-P=-ATA



ing the stability

Stability of cycles



Proving the stability

The Poincareé first recurrence map is defined by

a(k+1) = p(a(k))



Proving the stability

9(x)=0
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