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1 Shape detection problem



Sauc'isse robot swimming inside a pool



A spheric buoy seen by Sauc'isse
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2 Set estimation



An implicit parameter set estimation problem amounts to
characterizing

P= () {peR"3yelyl@) f(p,y)=0}
ie{l,....m} I?PZ

where p is the parameter vector, [y](%) is the ith measure-
ment box and f is the model function.




Example: Find the set of all p = (p1,p2)" such that
20 exp(—p1t) — 8 exp(—pot) goes through all ten boxes
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For this problem, the model function is

f(P,y) =20exp(—p1y1) — 8exp(—p2y1) — ¥2,

and the boxes [y](1), ..., [y](10) are those represented on
the figure.



3 Shape extraction as a set estima-

tion problem



Consider the shape function f (p,y), where y € R? corre-
sponds to a pixel and p is the shape vector.



The shape associated with p is
def

S(p) = {y e R*f(p,y) = 0} .

Consider a set of (small) boxes in the image

Y =lyl),.. ., [yl(m)} .

Each of this box is assumed to intersect the edge of the
shape we want to extract.



In our buoy example,
e Y corresponds to edge pixel boxes.

e f(p,y)=(y1—p1)*+ (v2 — p2)* — p3.

e p— (pl,pz,p3)T where p1, po are the coordinates of
the center of the circle and p3 its radius.



Now, in our shape extraction problem, a lot of [y](7) are
outlier.



4 Robust set estimation



{a}
The g-relaxed intersection denoted by ﬂ X; is the set of

all x which belong to all X;'s, except ¢ at most.






The g relaxed feasible set is

o} def g} ) | B
= (1 {p€eR"3yelyl@),f(p,y)=0}.
ie{1,...,m}



5 Interval propagation



An optimal contractor for the set

{p € Pl 3y €] (v —p1)* + (32— p2)* — P = 0}

FB(in: [y], [p]. out: [p])
1 [d1] == [y1] — [pa];
2 [do] := yz. — [p2];
3 [e1] := [da]?;
4 eo] = d2:2;
E oal i Tpa]2
c3] := [p3]*;
6 [e] :=10,0] N ([e1] +- [e2] — [e3]);
7 a] =[] N ([e] = [e2] + [e3]);
8 [eo] == [ca] N ([e] = [ea] + [e3]);
9 es] :=[es] N ([ea] + [ea] — [e])
10 [73] := [p3] N y/[esl;
11 [do] := [do] N y/[e2];
12 [dy] := [d1] N y/[ex]:
13 [p2] := [p2] N ([y2] — [d2]);
14 [p1] := [pi N ([ya] — [d1]);




5.1 Relaxed intersection

Computing the g relaxed intersection of m boxes is tractable.
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The black box is the 2-intersection of 9 boxes



5.2 Algorithm
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Algorithm Enclose(in: [p], [y](1),...,[y](m),q, out: L)
L= 1lpl};

repeat

pull ([p],.£) ;

while the contraction are significant

for i = 1 to m, compute [p](%) enclosing [p] N P;

{a}
6 bl:=| N [Pl6)
ie{l,....m}
7 end repeaf
8 bisect [p] and push the resulting boxes into £
9 until all boxes of £ have a width smaller than €.
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6 Results



q = 0.70 m (i.e. 70% of the data can be outlier)



q = 0.80 m (i.e. 80% of the data can be outlier)



q = 0.81 m (i.e. 81% of the data can be outlier)



O’Gorman and Clowes (1976), in the context of the Hough
transform (1972):

the local gradient of the image intensity is orthogonal to

the edge.






Now, y = (yl,yz,y3)T where y3 is the direction of the
gradient.



The gradient condition is

of Egp,y)
Y
det | 5r(p.y)

Oy2

cos (y3)
sin (y3)



For £ (p,y) = (y1 — p1)* + (y2 — p2)° — P3, we get

_ (y1 — p1)° + (v2 — p2)° — P} )
f(p,y)= ( (y1 — p1)sin (y3) — (y2 — p2) Cog(ys) |



New outliers: the edge points that are on the shape, but
that do not satisfy the gradient condition.

The computing time is now 2 seconds instead of 15 seconds.



7/ Hough transform



The Hough transform is defined by

n(p) =card{t € {1,...,m}, 3y € [y](:),f (p,y) = 0},
Hough method keeps all p such that nn(p) > m — q.

Instead, our approach solves 1 (p) > m — q.



8 Perspective









