Image Shape Extraction using Interval Methods

L. Jaulin, S. Bazeille ENSIETA, Brest

Groupe de travail *calcul ensembliste* du GDR Macs Jeudi 13 novembre 2008 de 10h-17h

1 Shape detection problem

Sauc'isse robot swimming inside a pool

A spheric buoy seen by Sauc'isse

2 Set estimation

An *implicit parameter set estimation problem* amounts to characterizing

$$\mathbb{P} = \bigcap_{i \in \{1,...,m\}} \underbrace{\{\mathbf{p} \in \mathbb{R}^n, \exists \mathbf{y} \in [\mathbf{y}](i), \mathbf{f}(\mathbf{p}, \mathbf{y}) = \mathbf{0}\}}_{\mathbb{P}_i}$$

where \mathbf{p} is the parameter vector, $[\mathbf{y}](i)$ is the *i*th measurement box and \mathbf{f} is the model function.

Example: Find the set of all $\mathbf{p} = (p_1, p_2)^{\mathsf{T}}$ such that $20 \exp(-p_1 t) - 8 \exp(-p_2 t)$ goes through all ten boxes

For this problem, the model function is

$$f(\mathbf{p}, \mathbf{y}) = 20 \exp(-p_1 y_1) - 8 \exp(-p_2 y_1) - y_2,$$

and the boxes $[y](1), \ldots, [y](10)$ are those represented on the figure.

3 Shape extraction as a set estimation problem Consider the shape function f(p, y), where $y \in \mathbb{R}^2$ corresponds to a pixel and p is the shape vector.

The shape associated with $\ensuremath{\mathbf{p}}$ is

$$\mathcal{S}\left(\mathbf{p}
ight)\stackrel{\mathsf{def}}{=}\left\{\mathbf{y}\in\mathbb{R}^{2},\mathbf{f}\left(\mathbf{p},\mathbf{y}
ight)=\mathbf{0}
ight\}.$$

Consider a set of (small) boxes in the image

$$\mathcal{Y} = \{ [\mathbf{y}](1), \ldots, [\mathbf{y}](m) \}$$
.

Each of this box is assumed to intersect the edge of the shape we want to extract.

In our buoy example,

• $\mathcal Y$ corresponds to edge pixel boxes.

•
$$f(\mathbf{p}, \mathbf{y}) = (y_1 - p_1)^2 + (y_2 - p_2)^2 - p_3^2$$
.

• $\mathbf{p} = (p_1, p_2, p_3)^{\mathsf{T}}$ where p_1, p_2 are the coordinates of the center of the circle and p_3 its radius.

Now, in our shape extraction problem, a lot of [y](i) are outlier.

4 Robust set estimation

The q-relaxed intersection denoted by $\bigcap^{\{q\}} X_i$ is the set of all x which belong to all X_i 's, except q at most.

The \boldsymbol{q} relaxed feasible set is

$$\mathbb{P}^{\{q\}} \stackrel{\text{def}}{=} \bigcap_{i \in \{1,...,m\}}^{\{q\}} \left\{ \mathbf{p} \in \mathbb{R}^n, \exists \mathbf{y} \in [\mathbf{y}](i), \mathbf{f}(\mathbf{p}, \mathbf{y}) = \mathbf{0} \right\}.$$

5 Interval propagation

An optimal contractor for the set

$$\left\{\mathbf{p} \in [\mathbf{p}], \exists \mathbf{y} \in [\mathbf{y}], (y_1 - p_1)^2 + (y_2 - p_2)^2 - p_3^2 = \mathbf{0}\right\}.$$

5.1 Relaxed intersection

Computing the q relaxed intersection of m boxes is tractable.

The black box is the 2-intersection of 9 boxes

5.2 Algorithm

Algorithm Enclose(in: $[\mathbf{p}], [\mathbf{y}](1), \dots, [\mathbf{y}](m), q$, out: \mathcal{L}) $\mathcal{L} := \{ [\mathbf{p}] \}$; 1 2 repeat 3 pull $([\mathbf{p}], \mathcal{L})$; 4 while the contraction are significant for i = 1 to m, compute $[\mathbf{p}](i)$ enclosing $[\mathbf{p}] \cap \mathbb{P}_i$ 5 $\left[\mathbf{p}
ight] := \left[igcap_{i \in \{1,...,m\}}^{\{q\}} \left[\mathbf{p}
ight](i)
ight]$ 6 7 end repeat bisect $[\mathbf{p}]$ and push the resulting boxes into \mathcal{L} 8 until all boxes of \mathcal{L} have a width smaller than ε . 9

6 Results

q= 0.70 m (i.e. 70% of the data can be outlier)

q= 0.80 m (i.e. 80% of the data can be outlier)

q= 0.81 m (i.e. 81% of the data can be outlier)

O'Gorman and Clowes (1976), in the context of the Hough transform (1972):

the local gradient of the image intensity is orthogonal to the edge.

Now, $\mathbf{y} = (y_1, y_2, y_3)^T$ where y_3 is the direction of the gradient.

The gradient condition is

$$\det \left(egin{array}{c} rac{\partial f(\mathbf{p},\mathbf{y})}{\partial y_1} & \cos\left(y_3
ight) \ rac{\partial f(\mathbf{p},\mathbf{y})}{\partial y_2} & \sin\left(y_3
ight) \end{array}
ight) = 0.$$

For
$$f(\mathbf{p}, \mathbf{y}) = (y_1 - p_1)^2 + (y_2 - p_2)^2 - p_3^2$$
, we get

$$\mathbf{f}(\mathbf{p}, \mathbf{y}) = \begin{pmatrix} (y_1 - p_1)^2 + (y_2 - p_2)^2 - p_3^2 \\ (y_1 - p_1)\sin(y_3) - (y_2 - p_2)\cos(y_3) \end{pmatrix}.$$

New outliers: the edge points that are on the shape, but that do not satisfy the gradient condition.

The computing time is now 2 seconds instead of 15 seconds.

7 Hough transform

The Hough transform is defined by

$$\eta$$
 (**p**) = card { $i \in \{1, ..., m\}, \exists$ **y** \in [**y**](i), **f** (**p**, **y**) = **0**},

Hough method keeps all \mathbf{p} such that $\eta(\mathbf{p}) \geq m - q$.

Instead, our approach solves $\eta(\mathbf{p}) \geq m - q$.

8 Perspective

