Sub-meeting 2019

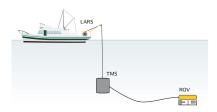
Underwater umbilical management between two robots

Vincent Hugel Matheus Laranjeira - Ornella Tortorici - Nicolas Gartner

Laboratoire COSMER EA 7398 - since 2015 Université de Toulon

June 14, 2019

Context


Cables such as tethers and umbilicals used for the execution of underwater missions

Advantages:

- Data transfer
- Power supply
- Mechanical support

Disadvantages:

- Impact on ROV motion/ loss of maneuverability
- Limited range if no winch
- Possible entanglement

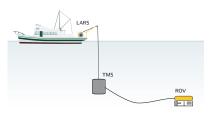
Context

Cables such as tethers and umbilicals used for the execution of underwater missions

Advantages:

- Data transfer
- Power supply
- Mechanical support

Objective


 Exploration of shallow water and confined environments by mini-ROVs

Challenges

- Strong perturbations
- Low power of mini-ROVs
- Risk of cable entanglement

Disadvantages:

- Impact on ROV motion/ loss of maneuverability
- Limited range if no winch
- Possible entanglement

Research focus on two systems

1st focus: chain of mini-ROVs

- passive cable between two consecutive robots
- how to control the position of the follower robot w.r.t. the leading one through ROV-embedded sensing of the cable
- PhD M. Laranjeira 2016 2019

Research focus on two systems

1st focus: chain of mini-ROVs

- passive cable between two consecutive robots
- how to control the position of the follower robot w.r.t. the leading one through ROV-embedded sensing of the cable
- PhD M. Laranjeira 2016 2019

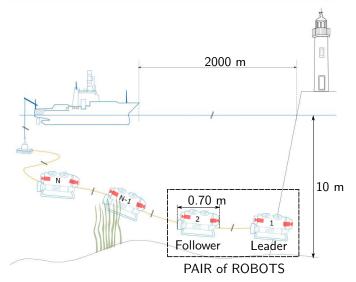
2nd focus: tether management between ROV and USV

- Cable rolling up/unwinding thanks to smart winch on USV
- how to reduce the dynamical impact of the cable onto the ROV and to have the USV assist the ROV
- PhD O. Tortorici 2017 2020

Research focus on two systems

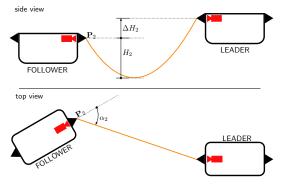
1st focus: chain of mini-ROVs

- passive cable between two consecutive robots
- how to control the position of the follower robot w.r.t. the leading one through ROV-embedded sensing of the cable
- PhD M. Laranjeira 2016 2019

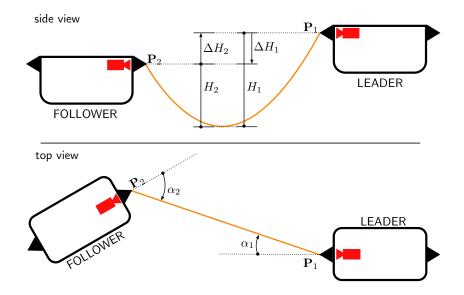

2nd focus: tether management between ROV and USV

- Cable rolling up/unwinding thanks to smart winch on USV
- how to reduce the dynamical impact of the cable onto the ROV and to have the USV assist the ROV
- PhD O. Tortorici 2017 2020

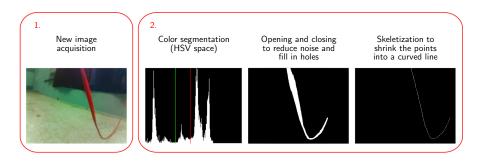
Low cost mini-ROVs


1st focus: Chain of mini-ROVs (PhD M. Laranjeira)

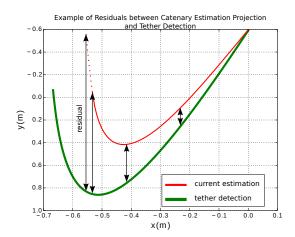
Control the shape of tye umbilical linking two robots, a leader and a follower, through visual sensory feedback



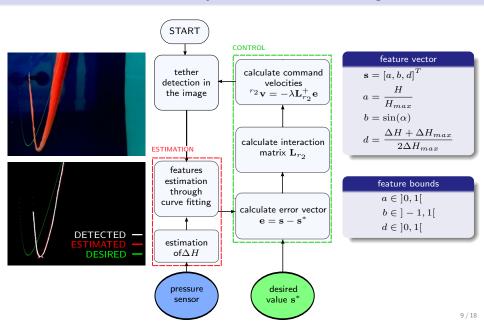
Cable: assumptions


- 1. The cable has a fixed and known length, uniform color
- 2. The cable can be modeled by a vertical catenary (slightly negative buoyancy): 3 parameters: height, height difference, and orientation angle.
- 3. Cameras and attachment points are fixed
- 4. Robots remain horizontal
- 5. Pressure sensors give the depth difference between the robots

Cable Modeling: Shape Parameters Symmetry



Cable Detection


Cable Parameters Etimation: Catenary Curve Fitting

- Fitting procedure based on Gauss-Newton algorithm
- Feature vector: $\mathbf{s} = [a, b]^T \in]0, 1[\times]0, 1[$, with $a = \frac{H}{H_{max}}$ and $b = \sin \alpha$
- Cost function: $\Gamma(\mathbf{s}) = \frac{1}{M} \sum_{i=1}^{M} r_i^2(\mathbf{s})$, with $r_i(\mathbf{s}) = y_i y(\mathbf{s}, x_i)$

Next

Control scheme: Catenary-based visual servoing

Leader and Follower Features Regulation

The feature vector (normalized) is:

$$\mathbf{s}_{f} = \begin{bmatrix} a_{2} \\ b_{2} \\ d_{2} \\ b_{1} \end{bmatrix} = \begin{bmatrix} H_{2}/H_{max} \\ \sin(\alpha_{2}) \\ (\Delta H_{2} + \Delta H_{max})/(2\Delta H_{max}) \\ \sin(\alpha_{1}) \end{bmatrix}$$

Interaction matrix obtained from the kinematics relationship between the motion of the cable attachment point and the variations of the cable features:

$$\dot{\mathbf{s}}_{f} = egin{bmatrix} \mathbf{L}_{r_{2},1} \ \mathbf{L}_{r_{2},2} \end{bmatrix}^{r_{2}} \mathbf{v} = \mathbf{L}_{r_{2},f}{}^{r_{2}} \mathbf{v}$$

The follower robot velocity commands are calculated through:

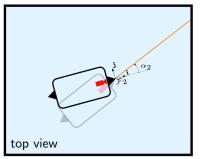
$${}^{r_2}\mathbf{v} = -\lambda \mathbf{L}_{r_2,f}^+ \mathbf{e}_f$$

where $\mathbf{e}_f = \mathbf{s}_f - \mathbf{s}_f^*$ and \mathbf{s}_f^* is the desired feature vector

Research focus

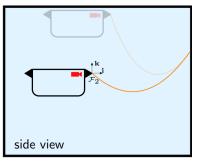
Chain of mini-ROVs

USV-to-ROV umbilica

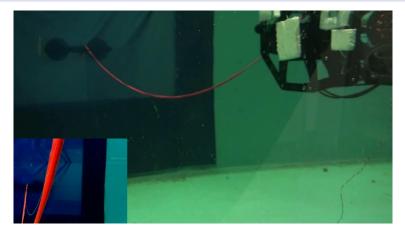

Other activities

Next

Experimental Setup



 $\begin{array}{c} \text{tether prototype} \\ L=1.50 \mathrm{m}, \ \emptyset=0.01 \mathrm{m}, \ \mathrm{mass}=50 \mathrm{g} \end{array}$



experimental platform BlueROV1, 6DOF

max velocities 0.3 m/s, 0.2 rad/s

Experiments: regulation of follower features only

PI controller: ${}^{r_2}\mathbf{v} = -\lambda_P \mathbf{L}_{r_2,2}^+ \mathbf{e}_2 - \lambda_I \mathbf{L}_{r_2,2}^+ \sum \mathbf{e}_2$

	$H_2(m)$	α_2	$\Delta H_2(m)$
desired	0.25	25°	0.10

USV-to-ROV umbilica

Experiments: regulation of follower and leader features

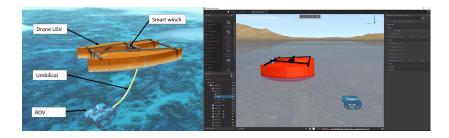
PI controller: ${}^{r_2}\mathbf{v} = -\lambda_P \mathbf{L}^+_{r_2,f} \mathbf{e}_2 - \lambda_I \mathbf{L}^+_{r_2,f} \sum \mathbf{e}_2$

	$H_2(m)$	α_2	$\Delta H_2(m)$	α_2
desired	0.2	-20°	0.10	-20°

Research focus	Chain of mini-ROVs	USV-to-ROV umbilical	Other activities	Next
Discussion				

Results

- Feasibility OK
- Residual oscillation
 - Thruster deadband / water disturbances
 - Single thruster for lateral motion (straight configuration)
 - $\bullet\,\Rightarrow\,$ use of vectorial thruster configuration
 - $\bullet\,\Rightarrow\,$ use of predictive controller with hydrodynamics model


Applications

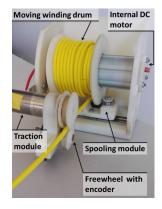
- Tethering positioning w.r.t. offshore structures/ tank edges
- Exploration of
 - coastal zones
 - cluttered areas: underwater caves and submerged mining sites

Extension

- Extension of the cable model
- Use of additional sensors such as 3-D accelerometers
- Extension to more than two robots
- High level navigation controller trajectory planning

2nd focus: USV-ROV cable length management

choice of cable: identification of bending and torsion stiffness weighing cable: semi-stretched configuration


Simulation of cable dynamic impact onto ROV with VortexTM (CM labs) \Rightarrow evaluate the dynamical impact of the differents types of cable onto the ROV

2nd focus: USV-ROV cable length management

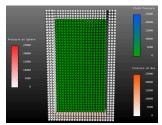
Challenges

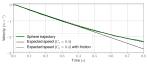
- Low cost force sensor
 - at cable attachment point to the ROV
 - at the winch
- Smart winch with control of cable length
- Wire cable adapted sheath for rolling up

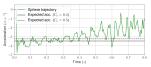
prototype built with additive manufacturing

USV-to-ROV umbilica

Next


Other activities: simulation


Use of adapted smoothed particle hydrodynamics (SPH) methods


SSSPH project: Submerged Solid using SPH Cooperation with Centroid PIC company (USA)

- simulate realistic movements of underwater vehicles taking into account fluid-solid interaction
- vehicle's hydrodynamic parameter estimation
 - added mass, linear/quadratic damping coefficients
- check hydrostatics: pressure with depth, pressure around solid,
- check hydrodynamics: sphere fall into water, velocity, acceleration over time.

open software architecture for swarm robotics

What's next?

- Propose research projects in the idea of the Mundus master project titled **MIR Marine and Maritime Intelligent Robotics** (submitted in Feb.)
 - knowledge in marine processes
 - dynamical modeling of marine mobile systems
 - artificial intelligence to develop behaviour autonomy of marine systems
 - non linear control techniques applied to marine sytems
 - 3 labs of the University of Toulon involved: LIS, MIO, Cosmer 4 main MIR partners: Univ. Toulon, NTNU, IST, UJI More than 50 associate partners around the world. Strong support from IFREMER, Pole Mer and local companies.
- Develop cooperation with foreign research institutes/companies in marine robotics
- O develop decision-making autonomy of marine robots
- esign of bio-inspired amphibious robots

http://cosmer.univ-tln.fr/en/