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Basic notions on set theory

(Luc Jaulin, Monday, 10h00-10h30)



Basic operation on sets

xny % {x|x € Xand x €Y}
xuy & {r|zeXorxe Y}
X\Y € (z|zeXandz¢Y)

XxyY & {(z,y) |z €eXand y € Y}

If Z = X X Y, then the projection of a subset Z1 of Z
onto X (with respect to Y) is defined as

projx (Z1) def {x € X | Jy € Y such that (x,y) € Z1}.



XuY




Example 1: If X = {a,b,¢,d} and Y = {b, ¢, z,y},
then

XNY = {b,c}

XUY {a,b,c,d, x,y}

X\Y {a,d}

XxY = {(a,b),(a,c),(a,z),(a,y),
...,(d,b),(d,c),(d,x),(d,y)}

if Z1 © {(a,¢),(a,v),(b,¢),(dy)} C XxY, we

have

projx (Z1) = {a,b,d},
projy (Z1) {c,y}-



Example 2: If

S ={(z,y,2) €[1,5] x [2,4] x [6,10] | z = = + y}

then
pI’OjX (S) — :67 9:
prOjY (S) — :27 4:
proj7 (S) = [2,5].




Relation (or binary constraint)

A relation in X is a subset of X x X.



Example 1: Consider the relation in X = {a,b,c,d}
given by

C= {(av CL), (CL, b)? (b7 CL), (b7 C)a (d7 d)}
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Example 2: The set

C = {(az,y) e R?|y = sin(a:)}

is a relation in R.

This relation can be written as "y = sinz", or "sin(y, x)"

or "sin",



Example 3: The set

C={(z,y) € R%ly < o}

is a relation in R.

This relation can be written as "y < z", or "< (y, z)"
or ||<||.



Example 4: The set

C ={(z,y) € R?|sin(z +y) = 0}

is a relation in R.

This relation can be written as "sin(xz + y) = 0".



Constraints

A constraint in X is a subset of X X X X -+ X X.



Example 1: If X = {a,b, c,d}, the set

C ={(a,a,a),(a,b,c),(c,c,a)}

is a ternary constraint in X.



Example 2: The set

C = {(a:,y,z) E]R3|z:a:—|—y}

is a ternary constraint in RR.

It can be written as "z = x + y", or "4+(z,y,x)" or
||_|_||.



Consider a function f : X — Y. If Xy C X, the direct
image of X1 by f is

def

F(Xy) = {f(z) |z € X1}
If Y1 C Y, the reciprocal image of Y1 by f is

(YY)

(@ eX| f(x) € Y1}



If X1 and X5 are subsets of X and if Y1 and Y» are
subsets of Y, then

fX1NXp) C f(Xy)N f(Xp),

fX1UXp) = f(X)U f(Xp),
FHY1NYo) = 1Y) Nt (Yo),
FHY1uYo) = (Y u i (Yo),

F(rt ) ey,
Xy CFHY) = F7H(f (X)) DXy
X1 CXo= f(Xy) Cf(Xp),
Y1 CYo= fH(Y1) C o (Y),



Example 1: If f is defined as follows

A B
a o1
b I
c 3. 3
de | » 4
e -5

then

f(A) = {2,3,4} =Im(f).

F~Y(B) = {a,b,c,e} = dom(f).

FH(f(4) = {a,b,c,e}C A
FHf(b,e})) = {a,b,c}



Example 2: If f(z) = x, then

f([2,3]) = [4,9]
f_l([47 9]) — [—3, —2] U [27 3]

This is consistent with the property

rrtm) ey



Example 3: If f(x) = log, then

(-3 -2)) = 0.
Correct the error in the book page 13, line 6 of (2.10).



Interval computation

(Luc Jaulin , Monday, 11h45-12h15).



Intervals

A (closed) interval is a connected, closed subset of R.

For example [1, 3], {1}, ] — o0, 6], R and @ are consid-
ered as intervals whereas |1, 3[, [3,2] and [1, 2] U[3, 4]

are not.

The lower bound of [x] is defined by

x = Ib([z]) = inf {x|z € [z]}.



The upper bound of [x] is defined by

T = ub([x]) = sup {z|z € [x]}.
By convention, ub(0)) = —oco and Ib(0) = +oc.



The width of [x] is
w([z]) =& — z.

The midpoint of [z] is

muppzf;?




The enveloping interval associated X C R is the small-
est interval [X] containing X. For instance

[[1,3]U6,7[] =[1,7].

The interval union of [x] and [y] is defined by

[zl U [y] = [l=] U [y]]-



Binary operators

If o € {+, —, %, /,max, min}, where x is the multipli-
cation, and if [x] and [y] are two intervals, we define

2] o [y] € [z oy | = € [2],y € [W]}]-
Therefore,

[273_3] + [%g] — [§+Q7§3+§]
[z, Z] - [% yl = [min(&g, Ty, 2y, Ty),
max(zy, Ty, 2, Z7)]
max ([z, 7], [y, 7]) = [max(z, y), max(Z, 7))



For instance,

[—1,3] +[2,5] =11,8],
[—1,3].[2,5] = [-5,15]
[-1,3]/[2,5] = %7%

max ([—1,3],[2,5]) = [2,5]

We have

([17 2] T [_374]) * [_17 5] — [_276] * [_175]
[—10, 30].



Subdistributivity

[z] * ([y] 4 [2]) C [2] * [y] + [] * [2]

Example:

[0, 1]([—1, —1]+[1,1]) C [0, 1]*[—1, —1]+[O, 1]*[1, 1])



Elementary functions

If f € {cos, sin, sqr, sqrt, log, exp, ...}, its interval
extension is

£ ([2]) € {f (@) |2 € 2]}




For instance

sin ([0, 7]
sqr ([—1, 3]
abs ([—7, 1]

sqrt ([—10, 4

log ([—2, —1]

N N N N N

0, 1],
:_17 3]2 — [07 9]7
0, 7],

VI-10,4] = [0,2],

0.




Interpretation

If f is an expression (such as xy + x.sin ) then

f([z], [y]) = [2] = Vz € [z],Vy € [y], Tz € [2], 2 = f(z,v)



Modal intervals : handle proper intervals (such as
[1,2]) and improper intervals (such as [2,1]).

For instance,
[1,4] + [2,1] = [3, 5]
should be interpreted as
Ve € [1,4],3y[1,2],3z € [3,5],z=x +y
and
[4,1] + [1,2] = [5, 3]
should be interpreted as

Vy € [1,2],Vz € [3,5],3x € [1,4],z = = + y.



Modal interval analysis can be useful to prove proposi-

tions such as

Vry € [z1], Vo € [z2],
Elyl S [y1]7 Ely2 S [y2]7 dz € [Z]a
2 = sin(2122) + T2y1 — Y213.



Boxes

A box is the Cartesian product of n intervals

(x| = [z1, B1] X - X [zp, Tn] = [21] X - -+ X [@n].

The set of all boxes of R™ will be denoted by TR".

The width w ([x]) of a box [x] is the length of its largest
side

w(lx)) = fpax W ([z:]) -

For instance

If w([x]) = 0, [x] is said to be degenerated.



The principal plane of [x] is the symmetric plane [x]
perpendicular to its largest side.




To bisect a box [x] means to split it in two parts.

The bisection of [x] = [1,2] x [—1, 3] generates the
boxes:

Left ([x]) = [1,2] x [-1,1]

Right ([x]) = [1,2] x[1,3].



Set inversion

(Luc Jaulin, Tuesday, 9h30-10h15).



Subpavings

A subpaving of R™ is a set of non-overlapping boxes of
R™.

Compact sets X can be bracketed between inner and
outer subpavings:

X" cXcXT.



The set
X =A{(z1,x2) ‘ x3 + 25 € [1,2]}

can be bracketed between subpavings as follows.

vvvvvvvvv

Set operations such as
Z:=X+Y, X:=f1(Y),z:=XnY...

can be approximated by subpaving operations.



Stack-queue

A queue is a list on which two operations are allowed :

e add an element at the end (push)

e remove the first element (pull).



A stack is a list on which two operations are allowed :

e add an element at the beginning of the list (stack)

e remove the first element (pop).



Example: Let £ be an empty queue.

operation result

L=10
push (L,a) L = {a}
push (L£,6) L = {a,b}
z:=pull (L) z=a,L={b}
x:=pull(L) z=05bL=10.

A ODNEOF



If £ is a stack, the table becomes

k operation result

0 L=10

1 stack(L,a) L =A{a}

2 stack(L£,b) L ={a,b}

3 z:=pop(L) z=0b,L=A{a}
4 r:=pop(L) z=a,L=0.



Set inversion
Characterize the set

X = {x e R"|f(x) € Y} = f~}(Y),
where Y C R™. and f : R" — R™,

Two subpavings X~ and X such that
X~ cXcXT,

can be obtained with the algorithm Sivia.



To test if a box [x] is inside or outside X, we shall use
the following tests.

() [f]([x]) CY = [x]CX
() F(x)NY=0 = [x]NnX=0.



Show the demo of N. Delanoue.



lgo Sivia(in: [x]; out: £, L)

A
1 L:={[x]}; L~ =0, LT :=0;

2 if L.A#D, [x]:=pop(L), else end;

3 if [f]([x]) C Y, push(£™, [x]);push(LT, [x]); goto 2;
4 if [fl([x]) NY = 0, goto 2;

5 if w([x]) < e, push(LT, [x]); goto 2;

6 stack(L,Left([x]),Right([x])); goto 2.




Define
x— {x] e}
Xt U{[x] et}
We have
X~ cXcCXT.



Contractors

The operator Cg : IR"™ — [R" is a contractor for S C
R™ if V[x] € IR",

{ Cs([x]) C [x] (contractance),
Cs([x]) NS =[x] NS (correctness),



Cg is monotonic iff

[x] C [y] = Cs(lx]) € Cs(lyl)

Cg is minimal iff

vIx], Cs([x]) = [[x] N S]

Cs is thin iff

vx € R", Cg(x) = {x} NS

Cg is idempotent iff

v[x], Cs (Cs([x])) = Cs([x])




Sivia with contractors

The constraint f(x) € Y defining X def f~1(Y) can be
translated into nonlinear inequalities:

IA

gl(x].?a;??"'?xn) 07

0.

gm(x1, T2, ..., xn)

Thus

X = {xeR"| max(g1(x),...,gm(x)) < 0}
-X = {xeR"| max(g1(x),...,g9m(x)) > 0}.



lgorithm SiviaC(in: [x]; out: £7, L)

A
1 L:={[x]}; L =0; LT :=0;
2 if L # ( then [x] := pop (L) else end;
3 [x] :=Cx([x]); if [x] =0, goto 2
4 [a] = C (X))

5 if [a] # [x], push(L, [x]\[a]);push(LT, [x]\[a]);
6 if (w([a]) < €), push(LT,[a]); goto 2;

7 stack(L,Left([a]) ,Right([a])); goto 2.




Unconstrained global
optimization

(Luc Jaulin, Tuesday, 11h30-12h15).



Constraints propagation (reminder)

Consider the three following constraints

(C1) @ y=2°
(C2) : zy=1
(C3) : y=-2x+1
To each variable, we associate the domain | — oo, col.

A constraint propagation consists in projecting all con-
straints until equilibrium.
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For more complex constraints, a decomposition is re-

quired. For instance, the CSP

x + sin(y) — xz <0,
S [_17 1]7y < [_171]72 S [_171]

can be decomposed into the following one.

r € [-1,1] a €] — oo, 00|

[ a = sin(y)
b=x+4a y €[-1,1] b€]— oo, 00]
c=u1xz  ze[-1,1] c€]— oo,
|l b—c=d d €] — 00, 0]

The decomposition introduces pessimism, and should

be avoided, if possible.



Constraints propagation can be used to solve nonlinear
equations.

Consider the system

y = 3sin(x)
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Minimization

Minimize f(x) over a box [x] C R™:
def

f= min f(X)

XEX



Igorithm Minimize(in: [x]; out: £)

A

1 L:={[x]}; fT = oo;

2 ifV[x] € L, w([x]) < &, return(L);
3 [x]:=pull(L);

4 T = min (f+, localmin (f, [X])) :
5 [xi=Cx ) <+, v £(x)=0,H, (x) =0} (X))
6
/

if (w([x]) < €) then push(L, [x]) ; goto 2;
push(L,Left([x]) ,Right([x])); goto 2.




Example (Collaboration with D. Henrion)

Consider the three-hump camel function

6
x
f(x) = 228% — 1.05z% + El — x1Tp + a:%

lts gradient is
of

Vi) = | B | = (A a2mA2eita )
oJ 209 — X
05 2 1

Its Hessian is

41524 —12.62° —1
H(X)I( 1_1 - 5 )



After decomposition, the constraints f(x) < fT, Vf(x) =
0, H¢(x) = 0 become

(i)x12 = az%; (i)xr13 = az%;5

(iil)z14 = :U‘ll; (iv)x1s = =3;
(V)x16 = 22; (vi)z2n = 25; (vii)a = z122

( 2210 — 1.05 33144—%—&4—:622 < fT
4r1 — x9p — 4.2 x13 + T 15 = 0
(Viii) < 2r9 — 1 = 0
4 4+ 5x14 —12.610 —1
.
\ ( —1 2 ~ 0




Note that the eigen values of the Hessian matrix are
given by:

5 1
A2 = 53314 —6.3x10 +3 £ 5(203314 — 50.4x19

1
—126x10214 + 158.76x%, + 2527, + 8)2.

should be positive. Since the 7 variables constraint
(viii), is an LMI, it can be projected and should not
be decomposed.



LMIs

A linear matrix inequality/

AX)® Ag - 21A; + -+ 2mAm = O,

where x € R is a vector of variables and the A; are

symmetric matrices.
An LMI set is a subset X of R" defined by an LMI.

Computing [X] is tractable.



Example 1. A set of linear constraints (equalities or
inequalities) is an LMI:

ai11x1 +appxp +b1 >0
ap1x1 + axxp +bp >0

Is equivalent to

a11T1 + a12x2 + b1 0 _
0 az1r1 + axpxy +by | —

I.e.,



Example 2. An ellipsoid of R™ is an LMI set :

3x% + 233% —2x1290 < b

<~
1 x1 xo
ry 2 1 ~ 0
xo 1 3
<~
1 00 010 00
021|421 0O0]|+x22] 00
01 3 0 0O 1 0

oo

1Y



Minimax Optimization

(Luc Jaulin, Tuesday, 12h15-13h00).



Perturbed minimization

Consider the function

g(x) = min_ f(x,y).
yEly]

We need an inclusion function [g]([x]) for g(x).

The real number T represents the best known upper
bound for g([x]).












Recall that

min([3, 7], [2, 9], [4,5]) = [2, 5]).



Igorithm PertMin(in: [x], [y],[f],; out: [g]([x]))

A

I L:={yI} JT = ooey = w([x]) + &

2 ifV[y] € £, w([y]) < ey, return(L);

3 [y]:=pull(£);

4+ =min (£, ub([f]([x],center ([y]))))
> LN IY]) > 7 goto 2

i

if (w([y]) < ey, push(L, [y]), goto 2;
push(L, Left ([y]) , Right ([x])); goto 2.




The perturbed maximization problem can be solved us-
ing PertMin: since

h‘(X) — max f(X7 y) — — min o f(X7 Y)a
yEly] yEly]

an inclusion function for A(x) can be obtained by

[A]([x]) = —PertMin([x], [y],[—f])-



Perturbed minimization with constraints

The function

g(x)= min  f(x,y)
y€Ely]
s.t. h(x,y)<0

can be rewritten as
g(x) = min  f(x,y) + n(h(x,y)),
yE[y]

where

0 ifv<o
oo otherwise

n(v) = {



The minimal inclusion function for n is [n] = [n(v), n(v)].

For instance

n(—-1,-3,-2) = 0;
n(—1,-3,2) = oo;
[7]([-3, —1],[-3,2],[-2,5]) = [0,0];
[nI([—3,-1],[-3,—2],[-2,-1]) = [0,0];
[n]([—3,—1],[1,2],[-2,5]) = [oo,0q];




An inclusion function for f(x,y) + n(h(x,y)) is
LI [y]) + [l ([hl (], [y]))-

PertMin can thus be used to get an inclusion function

[g]([x]) for

9(x) & min {f(x,¥),y € [y], h(x,y) < 0}

if inclusion functions for f(x,y) and h(x,y) are avail-
able.



Minimax optimization

Consider the problem of computing an enclosure for

f3 =
min max min T1To + 3.
x3 € [z3] w2 €fz2] =z € [m]

sinz3z < 0 m%—l—xz <0 az%azgaz3§0

fo (x1,x2,z3)

N 7

f1 (w2, x3)

f2 (23)




It can be rewritten as

f3 = min (77 (sinx3z) + max {—n <x:2)) -+ azz) -+
z3€[23] zo€[22]

min (n(z3war3) + T122 + 23) }>
z1€[z1]
An enclosure for the real number f3 can thus be ob-

tained using PertMin.



Remark: The operators min and max cannot commute
in general. For instance,

max min xy = 177
xe{—1,1} ye{-1,1}
min max xy = 177

ye{—1,1} ze{-1,1}



Remark: The operators min and max cannot commute

in general. For instance,

max min xy = max x.(—sign(xz)) = —1
rxe{—-1,1} ye{-1,1} Y rxe{—1,1} ( gn(z))

min max xy = min  sign(y).y = 1.
sl e ™ =y snlw)y

We always have

max min f(x,y) < min max f(z,y).
zelz] yely] yelyl z€lz]



Set projection

Problems involving 3 and V are closely related to mini-
max problems. For instance,

\V/p3 S [1,3],3]92 S [172]7
Vp1 € [0,1],p1 + pop3 <1
Is equivalent to

77,



Set projection

Problems involving 3 and V are closely related to mini-
max problems. For instance,

\V/p3 S [1,3],3]926 [172]7
Vp1 € [0,1],p1 +pop3 <1

Is equivalent to

max min max p1 + pop3 < 1.
p3€[1,3] p2€[1,2] p1€[0,1]



Consider the set
S = {xe[x]|Ty € lyl.f(x,y) <0}
= {xe bl min max(a(e ). Sn(xv) 0]
yE[y]
From PertMin, an inclusion function [g] (x) for
g9(x) = min max(f1(x,y),....fm(x,¥)).
yE[y]

can be obtained and SIVIA can thus be used to charac-
terize S.



Epigraphs (Collaboration with M. Dao, M. Lhommeau)

Consider the optimization problem:

min f(x) s.t. g(x) <0.
xeR™

Define its epigraph as
S ={(x,a) e R" xR | a > f(x) and g(x) < 0}.
The ith profile of S is defined by

Si: {(azi,a) eER xR | El(azl,...,xi_l,x,,;,...,xn)
| a > f(x) and g(x) < 0} |



Consider, for instance, the following problem
min sinzixs s.t. 7 + x5 € [1,2].
XERM

The profiles S1 (and also S») below, has been obtained
by Proj2d.




Example: For

— max |e Pt 1 1.01.e P2t _
f(p) ) Yt

where
Yy — 0.504, Yo — 0.153 and Y3z = 0.052.

the problem corresponds to an estimation problem where
the model is almost non-identifiable.

lts profiles can be obtained by the following Proj2d pro-
gram.



Variables
pl in [-3,3]
p2 in [-3,3]
a in [0,1]
Constraints
max (abs (exp(-pl*1)+1.01*exp(-p2*%1)-0.504),
abs (exp(-p1*2)+1.01*exp(-p2%2)-0.153),
abs (exp(-p1*3)+1.01*exp(-p2*3)-0.052))
-a in [-1000,0]
Projected variables
pl;a;
Epsilon
0.05
EndOfFile



The picture on the (p1, a) space shows a unique global
minimizer p ~ (1,2) and a quasi-global one ~ (2,1).




Interval hull

Given a set X, compute two boxes [X;,] and [Xout] such
that

[xin] C [X] C [Xout]-




Since
[X] = |min zq, maxa:1] X +ee X [min T, MaX Tn| ,
xeX xeX xeX xeX

we can compute the enclosure

[z, z{ 1% X[z, zh] C[X] C [2, 271 x[Z,, T]-



Example: Assume that

X = {(5131,322) S [075]2 | Vit € [07 1]7
t2 + 2t + 1 — zqe¥2t| < 1},




Constraints propagation for
estimation

(Luc Jaulin, Wednesday, 14h30-15h45).

Constraint propagation (remainder)

A CSP is composed of

1) a set of variables V = {z1,...,zn},
2) a set of constraints C = {c1,...,cm} and
3) a set of interval domains {[x1], ..., [zn]}

Principle of propagation techniques: contract [x] =
[£1] X - - - X [zp] as follows:

(((((([x]Mc1) Mex) M) TTem) Mey) Mep) - .

until a steady box is reached.



Constraint propagation for estimation (Collaboration
with |. Braems, M. Kieffer, E. Walter)




Assume that
E € [23V,26V], I € [4A,8A], Uy € [10V,11V],
Uy € [14V,17V], P € [124W,130W/],
where P is the power delivered by the battery. The
constraints are

P = FEI, E=(R1+ Ry) I;

Ui = Ril; Up= Rol; E=U;+ Us.



IntervalPeeler gets

1.8492,2.31Q], R, € [2.58,3.354)]
4.769A,5.417A], U € [10V;11V],
14V;16V], E € [24V;26V],
1241, 130W] .

5
Mm M M M



Question:

Is the contraction optimal ?

How can we check it 7



\ 43




It is known that

U, €6V, 7V],r € [7,8]Q,Uy € [6,6.2]V
R € [100,110]Q, E € [18,20]V, I € [0.001, c0] A
I €] —o0,0[A, I €] — 00, 00[A, Rc € [50, 60]2.

The constraints are

Zener diode I, = max(0, @)
Ohm rule U, = Rcle,

Current rule I = 1.+ 1,

Voltage rule E = RI + U,.



IntervalPeeler contracts the domains into:

U, € [6,007;6,518],r € [7, 8]Q,

Up € [6,6.2]V, R € [100, 110]€2,

E € [18,20]V, I, € [0.001,0.398] A
I €[0.11;0.14]A, I. € [0.1;0,13]A,
R¢ € [50, 60]Q2



Forward-backward propagation

Select the primitive constraints in an optimal order.

Consider the constraint

f(x) € [yl

where

f(x) = z1 exp(z2) + sin(z3).



First write an algorithm that computes y = f(x), by a
finite sequence of elementary operations.

ap = exp(z2);
ay = x1a1;

az := sin(z3);
Yy = a2+ as.



Write an interval counterpart to this algorithm:

1 [a1] == exp([z2]);
ap] = [z1] * [aq];
a3] := sin ([z3]) ;
yl = [yl 0 az] + [as].

A~ 0PN



5 [a] := ([y] — [a3]) O [a2];
6 [as) = (y] — [aa]) N [a3]
7 23] 1= si_n_l([a3]) N [z3];
8  [a1] == ([a2]/[=1]) N [a1];
9  [z1] := ([a2]/[a1]) O [za];

10 xo] := log([a1]) N [x2].

At Step 8, sin~!([a3])N[x3] returns [{z3 € [z3] | sin(z3) € [a3]}






The final contractor is given below

Algorithm C,+(inout: [x])

1 [ai1] := exp([z2]);

2 [ag] := [z1] * [a1];

3 [az] :=sin ([x3]);

4 [y] == [yl N ([az] + [a3]);
5 [ag] == ([y] — [a3]) N [az];
6 [az] := ([y] = [a2]) N ag];
7 [z3] := sin~*([a3]) N [z3];
8 [a1] := ([az]/[z1]) N [aa];
9 [z1] == ([a2]/[a1]) N [1];
10 [xg] := log([ai]) N [=2].




Application to state estimation
Consider the nonlinear discrete-time system
(
( z1 (k) ) [t (k = 1) ers(h=D
2 (k) X1 (k — 1)+ x2(k 1 +sink )
|y (k) z2 (k) /z1(k),
with k € {1,...,15}.

7\

Simulation: x*(0) = (—1 0)"and a random output
error with a uniform distribution in [—e, €].



Algo ¢(in: x1(0), x2(0); out: y(1),..., y(15))

1 for k:=1to 15,

2 x1 (k) :=0.121(k—1)4+x2(k —1).exp(x1 (k —1));
3 zp(k):=x1(k—1)+0.123(k— 1) +sin(k);

4 y(k) ==z (k) /z1(k).




This simulator is decomposed

Algo ¢(in: x1(0), x2(0); out: y(1),..., y(15))

1 for k:=1 to 15,

21 (k) := exp(z1 (k — 1));

2 (k) = w2 (k — 1) x 21 (k);

x1 (k) :=01xx1(k—1)+2(k);
z3 (k) := 0.1xsqr(zo (k — 1));

z4 (k) := z3 (k) + sin(k);

x2 (k) == x1(k — 1) +24 (k);

y (k) := z2 (k) /z1(k).

O NO Ol B~ WD







Algo CX(O)(in: [y(1)],..., [9(15)]; inout: [x1(0)], [z2(0)])

1 fork:=1to 15

[1(k)] := [—00, 00]; [z2(k)] := [—00, 0] ;
[21(k)] := [—o00, 00] ; [22(k)] := [—00, 0] ;
[23(k)] := [—00, 00]; [24(k)] := [—00, 0] ;

26

do
for

k:=1 to 15,

21 (k)] := [21 (k)] N exp([a1 (k — 1))

22 (B)] 1= [22 (B)] N (2 (k — 1)] = [21 (B)])

w1 (k)] = [ (k)] N (0.1 [1 (k — 1)]+[z2 (K)])
23 (k)] := [23 (k)] N (0.1 sar([2 (k — 1)]));

24 (k)] := [z4 (k)] N ([23 (k)] + sin(k))

25 (k)] = [ (k)] N (f1 (k — 1)] + [24 (k)]

for

y (k)] == [y (k)] N ([z2 (k)]/[z1(k)]) ;

k := 15 down to 1,

22 (k)] := [x2 (B)] N ([y (k)] * [z1(k)]);

21 (k)] = [x1 (k)] N ([ (0)]/[y (B)])

21 (k — 1)] := [e1 (k — )] N ([22 (k)] — [24 (R)])
24 (k)] = [za ()] 1 ([22 (k)] — [21 (k — 1))

23 (k)] := [23 (k)] N ([z4 (k)] — sin(k)) ;

z (k —1)] := [z2 (K — 1) N 0.1 y/[23 (K)]);

21 (k —1)] := [21 (k — 1)] 110 ([e1 (k)]—[z2 (R)])
20 (k)] = [22 (k)] A ([ (k)] — 0.1 % [y (k — 1)]):
25 (k — 1)] := [e2 (k — )] N ([22 (k)]/[1 (K)])
21 (k)] == 21 (k)] N ([22 (K)]/[z2 (K — 1)]);

z1 (k= 1)]:= [z1 (k — 1)] Nlog([21 (K)]);

27 while contraction is significant.




The prior domains for the initial state vector are

[#1(0)] = [~1.2, —0.8], [z2(0)] = [~0.2,0.2].
40 4
|
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Estimation of the bathymetry of the ocean (Col-
laboration with M. Legris)

Consider an autonomous underwater vehicle (AUV) with

two lateral sonars.
At each sample, the sonar measures an echo signal.




The sonar has three antennas Ag, A1, A». The wave
emitted by Ag is s(t) = e27/ot,
We have ¢ = 1500 ms_l, A =3 mm, fo =455 kHz.






The sensors Ay, m = 0,1, 2 receive the signal

Mmax

N - : T : dpn sin O,
sm(t) = ) el 2T ot 32T foctien 01 2m foTHG

n=1

Y

where nmax is the number of existing obstacles at a
distance r = ct from Ap.

@, (1) results from the superposition of microscopic re-
flections.

dog = 0,d1 = 4.94mm, dy = 13.187 mm.



Fresnel transformation:

Nmax j27Tf £—|—j '27Tf dm, sin Op,
Sm(’l") — Z ane 0c Sone] 0 C

n=1

M'max

n=1
where p,(r) = 27Tf0£ + n(r).

For each r, we have 6 equations with 3nmax unknowns
(the ap's, the 65's and the p,,'s).



When nmax = 1, an analytical resolution can be ob-

tained:
dm sin 0
Re(sm) = «qcos (p1+27rf0 m 50 1)
c
dm sin 0
Im(s;;,) = «jsin <p1—|—27rf0 m =0 1)
c

From sy (7) for m = 1,2 we obtain a1(7), p1(7), 01(r).






In practice, more that one obstacle should be consid-

ered.

Data given by the GESMA (Groupe d'Etudes Sous Marines
de I'Atlantique).

Sonar: Klein 5000 with fg = 455 kHz.



L
No echo
| | l |

surface of the sea

L | 1

surface and bottom
L

No more echo

of the sea
L 1

can be detected



For nmax = 2, the equations to be solved for each

r € {15m, 15.03m, 15.06m, ..., 150m}

are:



(v]1 COS p1 + (¥ COS Pr
a1 sin p1 + aosin py

dysinf
Q] COS <p1 + 27rf0%)

dysinf
+Qp COS (p2 + 27Tf0%)
d1 sin 91)

c
_ dysinf

+ao sin (p2 + 27rf0%)

do sin (91)

C

dp sin 6
~+ap cos (,02 + 27Tf0%>

d2 sin (91)
C

do sin 92>

Q1 Sin (pl + 27 fo
Qv COS (,01 + 27 fo

Q1 sin (,01 + 27 fo

4o sin (p2 + 27 fo
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T~ ‘
R <~
s
B - y
>
o
| RS
0‘ S )
: L TR e T e
N \ T T TR e -

This estimation amounts to solving 4500 systems of 6
nonlinear equations with 6 unknowns (= 1 hour).



Sety = (sORe, sbm, ise, sllm, 32Re, s|2m) ,and x = (601, 02),
we have the state equations
x(r+dr) = x(r) 4+ bx(r)

Cos p1 \
sin pq

cos (p + 27Tf0d1 sin 901)
Y(T) - O] sin (,0 + 27Tf0d1 sin xl)

Ccos (p i 27Tf0d2 sin 27
\ Q1 Sin (Pl + 27Tfodz sin :c1>

c
/
[ COS 2 \
sin po
CcOS ( Po + 27Tf0d1 sin 902)

sin (p + >
cos ( 27Tf0d2 sin 962)
! )

K sin (p

27Tf0d1 sin o

27Tf0d2 sin o

/



Robust stability of linear
systems

(Luc Jaulin, Thursday, 10h00-11h00).



Stability domain

The stability domain of

P(s,p) = s"+an_1(p)s" t+...+a1(p)s +ao(p)

is the set of all p such that P(s,p) is stable.



The Routh table of

P(s,p) = s34 (p1+p2+2)s®+ (p1+p2 +2)s
+2p1ps + 6p1 + 6po + 2 + 02,

is given by
1 p1+p2+2
p1+p2+2 2p1p2 + 6p1 + 6pp +2 + 0°
(p1—1)*+(p2—1)°—0* 0
p1+po+2
2(p1 + 3)(p2 + 3) — 16 + 0* 0




lts stability domain is thus

Sp = {p € B" [ r(p) > 0} = r* (]0, +00[") .
where

p1 + p2 + 2
r(p) = | (p1—1)°+(p2—1)* —0?
2(p1 + 3)(p2 + 3) — 16 + o2




Robust stability of a controlled motorbike (Collab-
oration with M. Christie, L. Granvilliers, X. Baguenard)

A CSP is infallible if any arbitrary instantiation of the
variables is a solution.

Consider the CSP

V = {z,y}

D = {l=].lv]}

C = { f(z,y) <0, g(=,y) <0}.
The CSP is infallible if

Vo € [z],Vy € [y], f(z,y) <0and g(z,y) <O,
& {(z,y) €lz] x[y] | f(z,y) >00rg(xz,y) >0} =10
& {(z,y) € [z] x [y] | max(f(z,y),g9(z,y)) >0} = 0.



Consider a motorbike with a speed of 1m/s.
Angle of the handlebars: 6.

Rolling angle: ¢

Wanted rolling angle: ¢4

Measured rolling angle: ¢,,.

da(s)| + oy +azs | 0(s) 1

_ Ts+1 s2 — oy

(1 —|—23+ks2) «




The input-output relation of the closed-loop system is :
o + 3s
(8 — al) (7s+ 1) + (ap + a3s) (1 + 25 + ks

Its characteristic polynomial is thus

)¢d(8)’

P(s) = (32 — oq) (7s + 1) + (o + a3s) (1 + 2s + k's2)
= a3s3 -+ CL282 + ai1s + agp,
with

a3 = T + azk ar» = ask +2a3 +1
a1 = a3z — a1T + 29 ag = —o] + 9.



The Routh table is :

as ai
a ag
aaj—azag

an O
ag 0

azai—asag
a2

The closed-loop system is stable if a3, as,
and ag have the same sign.



Assume that it i1s known that

a1 €[8.8,9.2] apc[2.8;3.2]
a3z € [0.8;1.2] 7 €[1.8;2.2]
ke[-3.2,-2.38].

The system is robustly stable if.,

Vag € [Oé]_] , Vap € [052] ,\V/Oé3 S [043] , VT € [T] , Vk € [k] '
as, ay, a2a1a_2a3a0 and ag have the same sign.




Now, we have the equivalence

b1, by, bz and bg have the same sign
< max (min (b1, by, b3, bg) , — max (b1, b2, b3, b)) > 0

The robust stability condition amounts to proving that

Jai € [aa],Fan € [ag], a3 € [ag], 3T € [7], Tk € [K],

: apa1—azag
max( min (a3, as, - ,ao) :

- max(a3, az, a2a1a_2a3a07 aO) ) <0

Is false,. ..



I.e., that the CSP

YV = {ag,a1,a2,a3,a1,a2, 23,7, k},

D = {leol, [l ezl [as], [a2] s as], [7], [k]}

a3 =T+ a3k ; a» = ark +
a1 = a3 — a1T + 2000,

ag = —o1 + Qa9 ;
a2a1—asaq

mi1 — min (CL3, an, as

203 + 1 ;

)

mo> — maX (&3, an, an

max (mq, —my) < 0.

\

has no solution.

a2a31—as3ag
a0)




This task has been performed using IntervalPeeler

Interval Peeler,

Fie Edt Run Help

| 1|
2
Add a new variable Add a new constraint _&
View E ?J _UJ _‘J
Variables Conslraints
0 [abhalin[88.92] a8=tau+alphas™ |
alpha2in(2.8.3.2] a2=apha2*k+2"alphad+1
_XJ Alpha3in [08.1 7] A1=Apha3-alphal*tau+2*alpha? .l‘
_M a0=apha2-alphal M
Kin [-3.2.-28] a2*al-as’a0)/a2
_E_QJ rin [-an,0] _Eﬁ‘
L L]

£ start Contraction
Results

lemoty box: there is no solution in interval's domains




Analysis of a time-delay system (Collaboration with
M. Dao, M. Di Loreto, J.F. Lafay and J.J. Loiseau)

Consider the linear system

y(t) =yt — 1) +2y(t) — (¢t — 1) + y(t) = u(?).

The Laplace transform of this equation is

s?y(s)—se Sy(s)+2sy(s)—se *y(s)+y(s) = u(s)
Its transfer function is

y(s) _ !
u(s) 82— s2e75 4+ 25— se Sy(s) + 1
1

(s+1)(s(l —e5)+1)

H(s) =




lts magnitude function is

Glw) = [H(jw)|
1 1

Z\/(1 —wsinw)? + w? (1 — cosw))2.




The Bode diagram is
S = {(w,h) € R*|G(w) = h}.
The Bode diagram has picks every 27.



Matlab has some difficulties, even for a very high pre-
cision.

28

b5

0 [ T
-1000 -300 -600 -400 =200 a 200 400 600 a0 1000

Bode diagram h = G(w) with Matlab with
Aw = 0.1rad.s™1



oa8r
0.6~

n4-

ogzr
I I L I L !

0 I I L I
-1000: -800 -600 -400 -200 0 200 400 600 800 1000

Bode diagram h = G(w) with Matlab with
Aw = 0.001rad.s1



0'5.1005 500 0 500 1000

Bode diagram obtained by Proj2d for
w € [—1000, 1000]



05 0 0

Bode diagram obtained by Proj2d for w € [—50, 50]



The set of all feasible roots (or root locus) of the system
Is given by
S = {seC|(s+1)(s(1-e*)+1) =0}

B : x — (xcosy +ysiny)e ¥ +1 1\
o {x+yy€@|< x + (xsiny —ycosy)e ¥ =0



Re(s)

03

@ e 8 B @ @ © O @ g

Im(s)
80

L]

]

s B8 o @ @ & @ 9 © o o

-80



The robust stability degree 6 5/([p]) is

o) = i

If 07([P]) > 0, all roots of (p) are in C~ and X([p])
is robustly stable.

Im Im
N N

8%([13]) <0

h
L

-

3
il
2
i}

Re

o
AR/




Consider the uncertain system

b2 > )
1+ po

X = X
D2 p1

\ 1+p1 1+p3 )

For [p] = [1, 2] x [0, 0.5], the interval algorithm Pert-
Min finds that the robust stability degree satisfies

—2.01590 < 84([p]) < —2.01451.

The system is thus not robustly stable.



Stability radius

The stability radius of ¥(p) at pY is

sup{n > 0 | X(p) is stable for all p € [p](n)},
min {n > 0 | X(p) is unstable for one p € [p](n)},

def
p p—




Since

p € [pl(n) < Vj € {1,...,n},(pi—n < pj < pi+n)

and since

Y (p) is unstable < i such that r;(p) <

< (ri(p) <0) V- V(Tn(p) 0)
& max(r1(p)),---,mn(P)) <0,

the stability radius can also be defined as

p—gggn,
) dp, max (r1(p)), - .. ,Tn(P))
sit. . p:—n—p; <0
ANV5e{l,...,n},{ "/ J
(J { }{ pj—n+p]<0>




Example 1: Consider the polynomial

P(s,p) = s>+ (p1+p2+2)s®+ (p1+p2 +2)s
+2p1pa + 6p1 + 6py + 2 + 02

For p® = (1.4,0.85)7, we get

o)

101 10 10> 10°¢

Computing time (s)

0.44 0.55 0.44 0.49

Solution boxes

1 5 1 2

Stability radius

0.2727 0.3627 0.3636 0.3636




Example 2: Consider the polynomial

P(s,p) = s> + ap(p)s? + a1(p)s + ao(p),
with

ag(p) sin(p2)eP2 + p1py — 1,
a1(p) 2p1 + 0.2p1eP2?,

az(p) = p1+p2+4
We get p ~ 2.025 at p = (1.5,1.5)".



Nonlinear control of a sailboat

(Luc Jaulin, Thursday, 11h15-11h45).



Projection of an equality.

Consider the set

SE{pecP|3IqecQ, f(p,q)=0}.

where P and Q) are boxes and f is continuous.

Since Q is a connected set and f is continuous, we have

S={p € P |3qi1€ Q, f(p,a1) < 0,3q2€ Q, f(p,q2) > 0}.

l.e.,

S = {peP| (Faie Q, f(p,a1) <0)}
N{p € P | (Ja2€ Q, f(p,a2) > 0)}.

or equivalently

SZ{PEP | 3 (a1, a2) € Q% f(p,q1) <0 and f(P,qz)ZO}



Polar speed diagram of a sailboat (with M. Dao, M.
Lhommeau, P. Herrero, J. Vehi and M. Sainz)

State equations of a sailboat:

y

r = v cos 6,

y = vsinf — BV,

0 = w,

53 — ’U:]_,
< 57" - ug,

. fs sin 53—fr sin 5T—Oéf'v

v = ,

m
. (6—7“3 COoSs 53)]03—7“7“ COoSs 6rfr—a9w

fs = OQOg (VCOS (0‘|‘53) — vsin 53) ,

\ ffr = Olrv sin 5r.

The state vector x = (z,y, 0, ds, Or, v,w)T € R".The
inputs w1 and wuo of the system are the derivatives of
the angles ds and Jy.






The polar speed diagram is the set S of all feasible
(60,v).
6 =0,6s=0,0,=0,0=0,0 =0,

implies that
( 0 — fssinds— frsindp— ozfv
) 0 — (£— rscos53)f3 rrcosérfr

Js = aS(Vcos(0—|—5S)—vsm55)

Ir Qv Sin Op.

\



An elimination of fs, fr and 6, yields

2
((ou,a + 2af) v —2asV cos (0 + ds)sinds + 2asv sin? 53)
2
—- (2‘3‘43 ({ — rscosds) (V cos(0 4 ds) — vsin 53))

=
—a2v® =0




The polar speed diagram can thus be written as
T T
S = {(9,v)|5|53 e [-2. 211 £(0,v,65) = o}.
For the parameters

L = 1,a; = 60,0y =500, as = 500,
aor = 300,5 = 0.0S,TS = 1,
rr = 2.V =10, m = 1000, J = 2000,

the polar speed diagram is given by






Feedback linearization

Consider a normalized version of the sailboat:

6 = w,
bs = uq,
57’ — uz,
§ v = fssinds — frsind, — v,
w = (1—cosds) fs —cosdrfr— w,
fs = cos (0 + ds) — vsinds,
fr = vsin dp.

\

Denote by F(x,u) the set of all variables that are al-
gebraic functions of x and u. We have

(9758757‘77}7(;);]08)]07“) S f(Xa U),
but 85 = 17 ¢ F(x,u).



o
|

S8
|

i
| fr

we have

W,
fS sinds + fsu1 cosos — fr sin 0y — frup cosdy —-

= wysindsfs + (1 — cosds) fs + uo sin &y fr — cos &y fr -

W
— (w4 u1)sin (0 + ds) — vsinds — vuq cosds
v sin 0 + vuo cos dy.

(Hfuw s, fr, '9') e F(x,u).



Denote by F,(x, 1) the variables of F(x, u) which de-
pend on u. We have

(U]_,’UQ, 587 57"767&-)7 j:87 f.7“7 9) S fU(X7 u)'
but w,w & Fu(x,u).

Take two state variables and store them into y. For

instance
y = (0s,0)".
We have (53, 0) € Fu(x,u) :

<.?.).1> = <5S>
Yo 6
1
- ( fssinds 4+ (cosds — 1) (vcosds + sin (6 + ds))
+< 0 0 )(—wsin(9—|—53)—1}

1 —cosds — cosdy, vsin O

= A(x)u+ b(x).



If we take
u=A"}(x)(v—-b(x)),
The closed loop system becomes linear:
{ 55 — 1,
0 = wvo.

This linear and decoupled system should now be stabi-

lized.



Linear control.

Denote by w = (w1, wp) = ((ASS, @) the wanted values

for y = (ds,0). Classical PD™ controllers are given by

vl

v2 = Pp(wp—0)+ Bp (2~ 0) + Bpe (w2 — ).
(1)

If wo is assumed to be constant, the closed loop system

ap (w1 — ds) ,

can be written:

{ 0s = ap(wp—3ds) .
0 = Bp(wa—0)—Bpl— Bp20.

The transfer matrix is

o :
S+«
M(S) — 0 " BP

s34+B25°+Bps+0p



The characteristic polynomial is

P(s) = (s+ap) (s> + Bpas® + Bps + Bp)

If we want all roots to be equal to —1, we should solve:

(s +ap) (53 + Bp2s? + Bps + Bp) = (s +1)*
= (s—l—l)(s3—|-382—|—3



Thus the linear controller to be taken is

V1T — w1 — 53, . B
vy = (wy—0)—30—36.



Control with wanted inputs

The system to be controlled is described by :
x = f(x, u).

For specific output vector y = g(x), feedback lineariza-
tion methods make it possible to find a controller of the
form

u=Ru(x,y),

such that the output y converges to y.



Now, in many cases, the user wants to choose its own

output vector w = h(x).
The problem of interest is to find a controller

u = Ru(x,w)

such that the w converges to the wanted vector w.
The set of all feasible wanted vectors by

W ={w € R"|3x € R",Ju € R™ f(x,u) =0,w = h(x)}.



Methodology:

1) Compute an inner and an outer approximation of W.

2) The user choose any point W inside W.

3) From w, compute X and @i such that f(X, i) = 0, w = h(X).
4) From X, we shall compute y = g(X).

5) The controller R4, (x,¥) will compute u such that

y converges to y. As a consequence, X will tend to X

and w to w.

w9




For the normalized sailboat, with y = (d,,6) a feed-
back linearization method leads to the controller Ry (x,y) =

Ru(x,ds,0) given by

_ s — s
u=A 1(X)<<é—9—3w—3w>_b(x)>

where

1
Alx) = ( fssinds 4+ (vcosds + sin (0 + Js)) (cosds — 1)
0
b(x) = ( (vsinds + wsin (0 4 Js)) (cos ds — 1) — v cos &



Principle of the control

1) Choose w = (77, 9) in the polar speed diagram.

2) Compute y = (Js, 0) such that Ix, f(x,y) = 0 and
w = h(x).

3) Apply the control based on feedback linearization.

1
1
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1

1
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Control of a wheeled
stair-climbing robot

(Luc Jaulin, Thursday, 11h45-12h15).

(Collaboration with students and colleagues from
ENSIETA)



Consider the class of constrained dynamic systems:
(i) x(t) = £(x(¢),u(t))
(i) (x(t),v(t)) €V,

where v(t) € R™ is the viable input vector and V is
the viable set.

\ 4



Assume that the robot has a quasi-static motion.

1) When the robot does not move, we have

y

H
—pi1mj A p1J + pica A f_)- p1m3 A puz] =
—pP2my A o) — P2Co A f.+P2P3 A T3
\ —Pomyg A fig]
— . o
'y — (1 +u3)j+ f
\ To— £ —(uo+ua)j+ T3 =




This system can be written into a matrix form as

Ai(z).y = bi(),

where

T
y = (rlxa’rlya’rZa:ar2y7r3w7r3y7f$7fy7m3£mm4:c) -



2) None of the wheels will slide if all T'; belong to their
corresponding Coulomb cones:
det(T';,u; ) <0 and det(u;r, T;) <0,

where u, and uj’ denote the two vectors supporting
the 2th Coulomb cone C;. These inequalities can be

rewritten into

Ao(z).y <0.






3) There is a relation between y and v of the form
v =c(y).

Finally,

Aq(x).y
As(z).y

b1 ()

I
o






Robot built by the robotics team of the ENSIETA engi-
neering school that has won the 2005 robot cup ETAS.




Robust control

(Luc Jaulin and Michel Kieffer, Thursday,
14h00-15h15).



Robust control of a linear system
p € [p] =[0.9,1.1]*3, [c] = [0, 1]%.

Using the Routh criterion we are able to find r: R? x
R3 — R such that

Y (p,c) is stable < r(c,p) > 0.

2
u |t CyS + ¢ DP1P3 Y

. ; 2 2
[ B ° (pys +1)(s™ + pys + p3)




Finding all robust controllers amounts to characterizing
the set

Te ={cec] | Vp € [p],7(c,p) > 0} .
The complementary set of T¢ in [c]:
—Tc={ce|c]|3Ip € [p],r(c,p) <0}

is thus the projection of a set defined by a nonlinear
inequality.



The transfer function of X(p,c) is

(c2s +c1)p1
B3t + (&+pi§) S+ (p2+—) 2+ (1 +ep1)s+e




The first column of the Routh table is

[

\

pop3 + p3

p3 + cop1p3 —

P2
pop3 +1
 pa(p3+cop1ps)
pap3+l
(p2p3+1)°(c1p1p3)

(p2p3+p3) (p22p3+1)—p2 (p3+cop1p3)
C1P1P3




Since po > 0, the closed-loop system X (p, c) is asymp-

totically stable if and only if

r(c,p) 9 i

(

\

p2p3 + 12 ,
2 _ pa(p5tcop1py)
2 2 (p2p3+1)“(c1p1ps
+c —
P37 C2P1P3 (p2p§+p3)(p22p3+1)—p2(p§+62p1p§
C1P1P3



The complementary set

T & {c €[0,1]? | 3p €[0.9; 1.1]"3,7 (¢, p) < 0}

of the set of robust controller is:




Optimal robust control

Compute of the set Sc of the vectors ¢ that maximize
the stability degree in the worst case.

This set satisfies

Sc = arg max min max 0.
cele] pe[p] r(p,c,6)=0

The rightmost max corresponds to the definition of the
stability degree. The min ensures the worst-case condi-
tions. The leftmost max corresponds to the optimality
requirement.



For the closed-loop system % (p, c) considered imme-
diately before, PertMin gives the results of the table
below. In this table, [65,] is an interval guaranteed to
contain the associated optimal robust stability degree.
The times are indicated for a Pentium 90.

[p] Time (s) [9%]
(1,1,1)7 5.5 0.300, 0.326]
[0.99,1.01]*3 85 0.288, 0.299]
[0.95,1.05]*3 | 339 | [0.261,0.282]
[0.9,1.1]%3 345 | [0.230,0.246]




Control of a time-delay system (With M. Dao, M.
Di Loreto, J.F. Lafay and J.J. Loiseau)

Consider the unstable system

z(t) = x(t) + u(t — 1).

Let us try to stabilize this system using the following

control law:

u(t) = ax(t) + Bz(t — 1).
We have

z(t) = z(t) + ax(t — 1) 4+ Bx(t — 2).



The characteristic equation is
s—1—qae 5 —Be %5 =0.
The stability domain is
S = {(a,ﬁ)ﬂs cCT s—1—ae ®— Be % = O} .

Proving that a box is inside S can be performed using
Proj2d.

04 =

0.3 o
-1.72 -1.565 141




Robot Calibration

(Luc Jaulin and Nacim Ramdani, Friday,
14h00-14h30).



Presentation of the robot (Staubli RX90). (With X.
Baguenard, P. Lucidarme and W. Khalil)




lts configuration vector is

q. — (q17 °° q6) E R67

where the g;'s are the angles of the articulations.

The tool, is represented by 3 points A, Ay, A3 forming
the vector

1 1 .1 2 2 2 3 3 3\t 9
X — (am, Ay, Ay O, gy O, A7y Ay az) e R”.



The parameter vector of the robot is given by

P = (T0,0(l,d]_,T‘]_,...,Oé5,d5,7“5,046,d6,90,9(]?,
1 ;1 ;1 ;2 32 32 13 ;3 ;3
08,6 b1 BL b2 82 12,03, b3 13)

contains all geometric constants which characterize the
robot. For instance, d; correspond to the length of the

1th arm.

The direct geometric model is given by

x = f(p,q).

where . ..



Algorithm f

inputs : q :(C]L ---aCI6)Tv
o e 0 90 bl bl bl T
P = (oz], VERNERA L =y? ’) '

-
outputs : X = (a%,aé,al a%,ag,az CL%,GJS,GJ?’) :

1 0 0 de

1M o= 0 cos ag —sinag O
0 sinag cosa6 O
0 0
10
1M o= 0 cosag —sinag O M
0 sinag cosa6
0 0

2 | for g ;=5 to 1,
3 9::9§+Qj;

cos —sinf 0 O )
d;

sinf cosf 0 O
4 M = 0 0 1 7, M
0 0 01
10 0 ]
M — 0 cos a; —sina; 0 M
~ | 0 sina; cosa; O |
00 0 1
5 | endfor
cosfg —sinfgy O
6 M — (1) (1) 8 8 sinfg cosfg O
0 010 0 0 L
0 0 0
T

7|fori:=1t03, bi=(b} b b 1)

MO0 O bl
8l x:=| 0 M 0 b2 | .
0 0 M b3

o




Principle of the calibration

1. Choose r different configuration vectors q(1), ..., q(r).

2. Measure the coordinates of : x(1), ..., x(r),

3. Generate the constraints

x(k) = f(p,q(k)), k={1,....,r}.

4. Contract the prior domains for all variables p, q(k), x(k)
k=A{1,..r}



DAG (Directed Acyclic Graph)

Our problem is a CSP with a huge number of vari-
ables and constraints. It is important to rewrite our
constraints in an optimal way in order to make the
propagation more efficient. Consider for instance the

constraints

y1 = cos(i1 + i2).sin(i1 + i),
13. Sin2(i1 + i9).

Y2 =
They can be decomposed into primitive constraints as
follows

a1 = 11 + 19,

ap = cos (a1), as = 11 + 19,

a3z = 11 + 12, ag = sin(asg),

a4 = sin(a3), a7 = a%,

Y1 = a9.04. Yo = 13.07.



A more efficient representation is

a1 = 11 + 19,
ap = cos (ay),
as = Si — a2
4 = sin(aq), a7 = ay,
Y1 = a9.04. Yo = 13.a7.

which is associated to the following DAG

An automatic way to get an optimal decomposition use
the notions of DAG (Directed Acyclic Graph) and hatch-
ing table.



Generation of simulated measurements

The nominal values chosen for the geometric parame-
ters of the robot STAUBLI RX90 are

Jleg|dj |6y
0- |- |5 |05
11010 |0 |0
2210 [0 ]0
310 (050 |0
4T [0 [0 |05
5210 [0]0
62 [0 |- |-

The three points of the tool with coordinates b&, bz and
b?i/ in the terminal arm frame are chosen as



bl | bl | bl
0.1]02]0.1
0.1]0.1]0.2

0.2]0.1|0.1

W[ N = =

For 50 random configuration vector q(k), we computes
x(k) = f(p,a(k)) + e(k) where e(k) is a random
bounded noise.



Results

The file containing all constraints takes about 837Ko.
The results obtained are given below.



initial domains

contracted domains

ro || [0.4,0.6] 0.494046,0.50101]
dy | [0,0.1] 0,0.000558009]

r1 || [0,0.1] 0,0.00693694]

dz || [0.49,0.51] 0.498385, 0.501133]
r4 || [0.49,0.51] 0.499216, 0.50114]
by || [0,0.2] 0.0996052, 0.100629]
by || [0.1,0.3] 0.199502, 0.200455]
b: || [0,0.2] 0.0997107,0.100714]
bz || [0,0.2] 0.0996747,0.100712]
b; | [0,0.2] 0.0994585, 0.10031]
b< || [0.1,0.3] 0.199535, 0.200642]
b> || [0.1,0.3] 0.199689, 0.200578]
b; | [0,0.2] 0.0997562, 0.100319]
b> || [0,0.2] 0.0995661, 0.100557]




Path planning

(Luc Jaulin, Friday, 15h15-16h00).



Graph discretization of the configuration space

pz A
6
4 by ) [p]
2

[PG]

[ ] [PS]

p
g ) b —

[Pg]
-2 L .
-2 "1 4 7 10 g

"



Test case

2| T | =

Initial configuration: ' = (0 0)" Goal configuration: 7 = (17 0)"



NE

=13
i~
V+—t

Room

Configuration space



Vi € I,\V/] cJ, [SiasfH—l] M [ajabj] =0
PES S ( and a; and b; are outside the object '















Computing the number of connected components
of a set (Collaboration with N. Delanoue and B. Cot-

tenceau)

The point visa star for S C R"ifVx € S, Va € [0, 1],
av+ (1 —a)x €S.

For instance, in the figure below vy is a star for S

whereas vs is not.

The set S C R" is star-shaped is there exists v such
that v is a star for S.



Theorem: Define

s ¥ {x € [x]|f(x) <0}

where f is differentiable. We have the following impli-
cation

{xe[x]| f(x) =0,Df(x).(x —v) <0} =0 = vis a star for

Df(x) T —v



If v is a star for S7 and a star for S, then it is a star
for S1 NSy and for S;1 U Sy. Thus, one can be used
to prove that a point v is a star for a set defined by a

conjunction or a disjunction of inequalities.

Consider a subpaving P = {[p4], [P5]; - - -} covering S.
The relation 'R defined by

[PIR[a] < SN [p]N[q] # 0
is star-spangled graph of S if

V[p] € P, SN[p] is star-shaped.



For instance, a star-spangled graph for the set

( x2—|—4y2—16
def 2 - 2 3
S =< (z,y) € R | 2sint —cosy + Yy~ — 5 <0,,
2
\ ~(@+3)?-4y-8+3 )

obtained using the solver CIA (http://www.istia.univ-angers.

IS




Theorem: The number of connected components of the
star-spangled graph of S is equal to that of S.

An extension of this approach has also been developed

by N. Delanoue to compute a triangulation homeomor-
phic to S.




