Capture basin

Dominique Monnet, Luc Jaulin, Jordan Ninin LAB-STICC / ENSTA-Bretagne

System S defined by:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}),$$
 $\mathbf{f} : \mathbb{R}^n \times \mathbb{U} \to \mathbb{R}^n$ 

Capture basin

A state x is viable if at least one evolution of S from x can stay indefinitely in a set of constraint  $\mathbb{K}$ .

The viability kernel of  $\mathbb{K}$  under  $\mathcal{S}$  noted  $Viab_{\mathcal{S}}(\mathbb{K})$  is the set that contains every viable state.



## Why viability?

Example: management of renewable resources, economics, robotics,...

Is it possible to avoid the wall?





## Why viability?

Example: management of renewable resources, economics, robotics,...

Is it possible to avoid the wall?



- Polygon expansion technique
- Capture basin
- 4 Examples
  - Car on the hill
  - Double integrator
- Conclusion

- Attraction domains
- Polygon expansion technique
- Capture basin
- 4 Examples
  - Car on the hill
  - Double integrator
- Conclusion

### Attraction domain of a system

Attraction domains of  $\mathcal S$  are interesting for viability, if they are located in  $\mathbb K$ .



### $\mathsf{Theorem}$

We consider a dynamical system  $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$ ,  $\mathbb{U}$  the set of possible control and  $\mathbb{K}$  a closed subset of  $\mathbb{R}^n$ .

Capture basin

Let  $L \in \mathcal{C}^1(\mathbb{K}, \mathbb{R})$ , and  $\mathbb{B}_L(r) = \{ \mathbf{x} \in \mathbb{R}^n | L(\mathbf{x}) \leq r \}$ , with  $r \in \mathbb{R}^+$ . If  $\mathbb{B}_{I}(r) \subseteq \mathbb{K}$  and  $\forall \mathbf{x} \in \overline{\mathbb{B}_{I}(r)}, \exists \mathbf{u} \in \mathbb{U}$  such as  $\langle \mathbf{f}(\mathbf{x}, \mathbf{u}), \nabla L(\mathbf{x}) \rangle \leq 0$ , then  $\mathbb{B}_{I}(r) \subseteq Viab_{\mathcal{S}}(\mathbb{K})$ .

### Illustration of the theorem



### Definition

A function  $L: \mathbb{R}^n \to \mathbb{R}$  is said to be of Lyapunov for the dynamical system  $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$  if:

Capture basin

- V(0) = 0.

We choose a particular control  $\mathbf{u} \in \mathbb{U}$ .  $\mathcal{S}_{\mathbf{u}}$ :  $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$  is an autonomous system.

 $\mathbf{x}^*$  is an equilibrium point of  $\mathcal{S}_{\mathbf{u}} \iff \mathbf{f}(\mathbf{x}^*,\mathbf{u}) = \mathbf{0}$ .

- Linearize  $S_{\mathbf{u}}$  around  $\mathbf{x}^*$ , we get  $S_{\mathbf{u}}^{\mathbf{x}^*}$  defined by  $\tilde{\mathbf{x}} = A\tilde{\mathbf{x}}, \tilde{\mathbf{x}} = \mathbf{x} - \mathbf{x}^*.$
- Solve  $A^TW + WA = -I$ , where W is the unknown amount.

Capture basin

- Check whether W is positive definite.
- If W is positive definite, then  $\frac{1}{2}\tilde{\mathbf{x}}^T W \tilde{\mathbf{x}}$  is a Lyapunov function for the linear system, and  $\mathbf{x}^*$  is stable.

If we do not find a Lyapunov function for  $S_{\mu}^{x^*}$ , we compute the linear system  $S_{ctrl}$  for which  $\mathbf{x}^*$  is a stable equilibrium point.

# Lyapunov function and linearized system $\mathcal{S}_{\mathbf{u}}^{\mathbf{x}^*}$



# Lyapunov function and autonomous system $\mathcal{S}_{\boldsymbol{u}}$



# Lyapunov function and system ${\cal S}$



Capture basin

Attraction domains

- Choose a control  $\mathbf{u} \in \mathbb{U}$ .
- Find an equilibrium point  $\mathbf{x}^* \in \mathbb{K}$ .
- Linearize  $S_{\mathbf{u}}$  around  $\mathbf{x}^*$ .
- Try to compute a Lyapunov function of  $S_{"}^{x^*}$ .
- If no function found, compute  $S_{ctrl}$ .
- Try to compute a Lyapunov function of  $S_{ctrl}$ .
- Find  $r \in \mathbb{R}^+$  such as conditions of the theorem are met.

- Polygon expansion technique
- - Car on the hill
  - Double integrator

#### $\mathsf{Theorem}$

Let  $P = \{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n\}$  be a polygon included in  $\mathbb{K}$ . We suppose  $\{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n\}$  sorted in clockwise order. lf  $\forall i, \forall x \in segment [\mathbf{p}_i, \mathbf{p}_{i+1}], \exists \mathbf{u} \in \mathbb{U},$ 

Capture basin

 $det(\mathbf{p}_{i+1} - \mathbf{p}_i, \mathbf{f}(\mathbf{x}, \mathbf{u})) < 0.$ 

Then  $P \subseteq Viab_{\mathcal{S}}(\mathbb{K})$ 

### Theorem illustration





Capture basin

## Polygon expansion algorithm

- **1** Find a polygon  $P \subseteq Viab_{\mathcal{S}}(\mathbb{K})$ .
- $\bigcirc$  Compute a larger polygon P'.
- $\bullet$  If  $P' \subseteq Viab_{\mathcal{S}}(\mathbb{K})$ , P = P', go to 1.
- 4 Else compute another polygon P', go to 3.













Capture basin

- Attraction domains
- Polygon expansion technique
- Capture basin
- - Car on the hill
  - Double integrator

#### Capture basin problem

The capture basin of a set  $\mathbb{T} \subset \mathbb{K}$  viable in  $\mathbb{K}$  noted  $Capt_S(\mathbb{K}, \mathbb{T})$  is composed of every states  $\mathbf{x}$  such as  $\mathcal{S}$  can reach  $\mathbb{T}$  from  $\mathbf{x}$  in a finite time without leaving  $\mathbb{K}$ .



#### $\mathsf{Theorem}$

Attraction domains

Let S a dynamical system,  $\mathbb{K}$  a closed subset of the state space of  $\mathcal{S}$  and  $\mathbb{T} \subset \mathbb{K}$ .

Capture basin

If  $\mathbb{T}$  is viable in  $\mathbb{K}$ ,

then  $Capt_S(\mathbb{K}, \mathbb{T})$  is viable in  $\mathbb{K}$ .

The set  $\mathbb{V}_{in} = \mathbb{T} \cup Capt_S(\mathbb{K}, \mathbb{T})$  is an inner approximation of  $Viab_{\mathcal{S}}(\mathbb{K}).$ 

• We try to find an over approximation of  $Viab_{\mathcal{S}}(\mathbb{K})$  to get an enclosure of  $Viab_{\mathcal{S}}(\mathbb{K})$ .

Capture basin

• If  $\forall \mathbf{u} \in \mathbb{U}$ ,  $\mathcal{S}$  cannot stay in  $\mathbb{K}$  from a state  $\mathbf{x} \in \mathbb{K}$ , then  $\mathbf{x} \notin Viab_{\mathcal{S}}(\mathbb{K}).$ 





Capture basin









































- Attraction domains
- Polygon expansion technique
- 4 Examples
  - Car on the hill
  - Double integrator

Examples •0000000000

- Attraction domains
- Polygon expansion technique
- Capture basin
- 4 Examples
  - Car on the hill
  - Double integrator
- Conclusion

Examples

00000000000

# Car on the hill problem

The landscape is represented by the parametric function

$$g: s \to \frac{\frac{-1.1}{1.2}cos(1.2s) + \frac{1.2}{1.1}cos(1.1s)}{2}$$

- State vector:  $\mathbf{x} = \begin{pmatrix} s \\ \dot{s} \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
- Evolution function:

$$\begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = -9.81 sin(\frac{dg}{dx_1}(x_1)) - 0.7x_2 + u \end{cases}$$

$$u \in [-2, 2]$$

• The car must stay on the landscape, i.e  $s \in [0, 12]$ 





Viable sets computed with u = 0. Computation time: 25 sec.

# Result explained



# Result of polygon expansion algorithm

Polygons are initialized with viable sets computed previously.



Computation time: 45 sec.



## Result of inner approximation algorithm



Computation time  $\approx$  60 minutes

# Result of over approximation algorithm



Computation time  $\approx$  30 minutes

Plan

- Attraction domains
- Polygon expansion technique
- Capture basin
- 4 Examples
  - Car on the hill
  - Double integrator
- Conclusion

Examples

00000000000

# Double integrator equations

Evolution function: 
$$\begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = u \end{cases} \quad u \in [-1, 1]$$

Constraints:

- $x_1 \in [-5, 5]$
- $x_2 \in [-5, 5]$

#### Results of viable set characterization algorithm



Viable sets computed with u = 0. Computation time: 40 sec.

Computation time: 5 minutes.

Double integrator

### Result of over approximation algorithm



Computation time: 7 minutes.

- Attraction domains
- Polygon expansion technique
- - Car on the hill
  - Double integrator
- Conclusion

Attraction domains

 We are able to deal with many viability problems in a guaranteed way.

Capture basin

- The system must have at least one equilibrium point.
- We can deal with 2D problems, but inner and over approximation algorithms are not efficient for higher dimensional problems
- We approached viability problem with new methods based on the study of the frontier of closed sets.