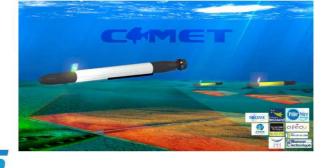
Separator Algebra for State Estimation

SMART 2015 Manchester, September 16-17, 2015 Luc Jaulin ENSTA Bretagne, LabSTICC.

http://www.ensta-bretagne.fr/jaulin/

1 Context



2 Problem

(i)
$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)), t \in \mathbb{R}$$

(ii) $\mathbf{g}(\mathbf{x}(t_k)) \in \mathbb{Y}(k), k \in \mathbb{N}$

Find an inner-outer approximation of the set $\mathbb{X}(t)$ of feasible states

We define by flow map φ_{t_1,t_2} :

$$\left(\mathbf{x}\left(t_{1}\right) = \mathbf{x}_{1} \text{ and } \dot{\mathbf{x}}\left(t\right) = \mathbf{f}\left(\mathbf{x}\left(t\right)\right) \Rightarrow \mathbf{x}_{2} = \varphi_{t_{1},t_{2}}\left(\mathbf{x}_{1}\right)\right).$$

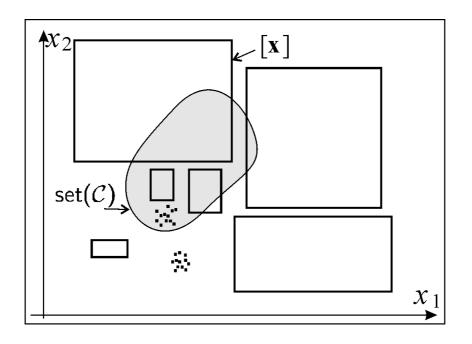
The set of all *causal feasible states* at time t is

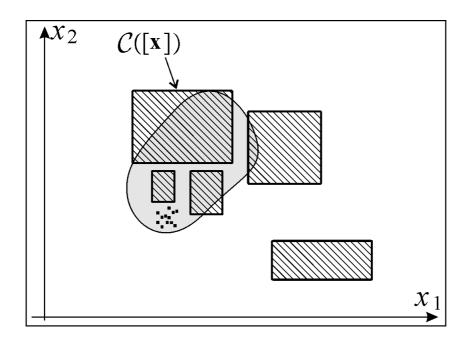
$$\mathbb{X}(t) = \bigcap_{t_k \leq t} \varphi_{t_k,t} \circ \mathbf{g}^{-1}(\mathbb{Y}(k)).$$

Contractors

$\mathcal{C}(\mathbf{[x]}) \subset \mathbf{[x]}$ $[\mathbf{x}] \subset [\mathbf{y}] \implies \mathcal{C}([\mathbf{x}]) \subset \mathcal{C}([\mathbf{y}]) \quad \text{(monotonicity)}$

(contractance)





Inclusion

 $\mathcal{C}_1 \subset \mathcal{C}_2 \Leftrightarrow \forall \, [\mathbf{x}] \in \mathbb{IR}^n$, $\mathcal{C}_1([\mathbf{x}]) \subset \mathcal{C}_2([\mathbf{x}])$.

A set $\mathbb S$ is consistent with $\mathcal C$ (we write $\mathbb S\sim \mathcal C)$ if

 $\mathcal{C}(\mathbf{[x]}) \cap \mathbb{S} = \mathbf{[x]} \cap \mathbb{S}.$

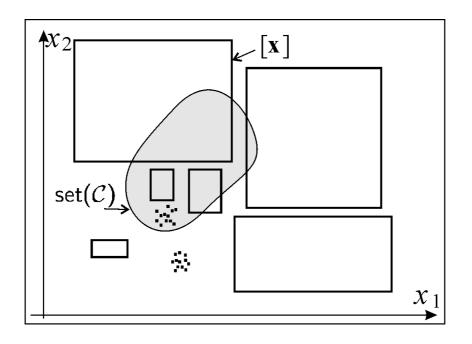
 ${\mathcal C}$ is minimal if

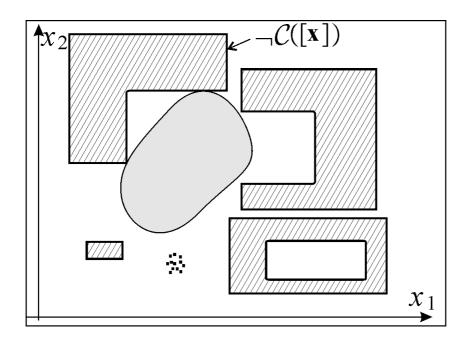
$$\left. \begin{array}{c} \mathbb{S} \sim \mathcal{C} \\ \mathbb{S} \sim \mathcal{C}_1 \end{array} \right\} \ \Rightarrow \mathcal{C} \subset \mathcal{C}_1.$$

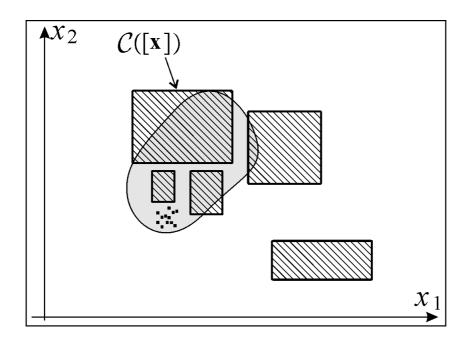
The negation $\neg \mathcal{C}$ of \mathcal{C} is defined by

$$\neg \mathcal{C}(\mathbf{[x]}) = \{\mathbf{x} \in \mathbf{[x]} \mid \mathbf{x} \notin \mathcal{C}(\mathbf{[x]})\}.$$

It is not a box in general.







4 Separators

A separator ${\cal S}$ is pair of contractors $\left\{ {\cal S}^{\text{in}}, {\cal S}^{\text{out}} \right\}$ such that

 $\mathcal{S}^{\mathsf{in}}([\mathbf{x}]) \cup \mathcal{S}^{\mathsf{out}}([\mathbf{x}]) = [\mathbf{x}] \quad \text{(complementarity)}.$

A set $\mathbb S$ is *consistent* with $\mathcal S$ (we write $\mathbb S\sim\mathcal S$), if

 $\mathbb{S}\sim\mathcal{S}^{\mathsf{out}} \text{ and } \overline{\mathbb{S}}\sim\mathcal{S}^{\mathsf{in}}.$

The *remainder* of \mathcal{S} is

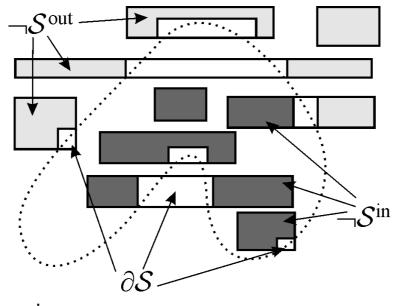
$$\partial \mathcal{S}(\mathbf{[x]}) = \mathcal{S}^{\mathsf{in}}(\mathbf{[x]}) \cap \mathcal{S}^{\mathsf{out}}(\mathbf{[x]}).$$

 $\partial \mathcal{S}$ is a contractor, not a separator.

We have

 $eg \mathcal{S}^{\mathsf{in}}([\mathbf{x}]) \cup
eg \mathcal{S}^{\mathsf{out}}([\mathbf{x}]) \cup \partial \mathcal{S}([\mathbf{x}]) = [\mathbf{x}].$

Moreover, they do not overlap.



 $eg \mathcal{S}^{\sf in}([\mathbf{x}]), \
eg \mathcal{S}^{\sf out}([\mathbf{x}]) \ {\sf and} \ \partial \mathcal{S}([\mathbf{x}])$

Inclusion

 $\mathcal{S}_1 \subset \mathcal{S}_2 \Leftrightarrow \mathcal{S}_1^{\text{in}} \subset \mathcal{S}_2^{\text{in}} \text{ and } \mathcal{S}_1^{\text{out}} \subset \mathcal{S}_2^{\text{out}}.$

Here \subset means *more accurate.*

 ${\cal S}$ is minimal if

$$\mathcal{S}_1 \subset \mathcal{S} \Rightarrow \mathcal{S}_1 = \mathcal{S}.$$

i.e., if \mathcal{S}^{in} and \mathcal{S}^{out} are both minimal.

5 Paver

We want to compute $\mathbb{X}^-,\mathbb{X}^+$ such that

 $\mathbb{X}^{-} \subset \mathbb{X} \subset \mathbb{X}^{+}.$

Algorithm Paver(in: [x], S; out: X^- , X^+) $1 \quad \mathcal{L} := \{ [\mathbf{x}] \}$;

- 2 Pull [x] from \mathcal{L} ;
- $\left\{ [\mathbf{x}^{\mathsf{in}}], [\mathbf{x}^{\mathsf{out}}] \right\} = \mathcal{S}([\mathbf{x}]);$ 3
- Store $[\mathbf{x}] \setminus [\mathbf{x}^{in}]$ into \mathbb{X}^- and also into \mathbb{X}^+ ; $[\mathbf{x}] = [\mathbf{x}^{in}] \cap [\mathbf{x}^{out}]$; 4
- 5
- 6 If $w([\mathbf{x}]) < \varepsilon$, then store $[\mathbf{x}]$ in \mathbb{X}^+ ,
- 7 Else bisect [x] and push into \mathcal{L} the two childs
- 8 If $\mathcal{L} \neq \emptyset$, go to 2.

6 Algebra

Contractor algebra does not allow decreasing operations, i.e.,

$$\forall i, \mathcal{C}_i \subset \mathcal{C}'_i \Rightarrow \mathcal{E}(\mathcal{C}_1, \mathcal{C}_2, \dots) \subset \mathcal{E}(\mathcal{C}'_1, \mathcal{C}'_2, \dots).$$

The complementary $\overline{\mathcal{C}}$ of a contractor \mathcal{C} , the restriction $\mathcal{C}_1 \setminus \mathcal{C}_2$, etc. cannot be defined.

Separators extend the operations allowed for contractors to non monotonic expressions.

The *complement* of $S = \{S^{\text{in}}, S^{\text{out}}\}\$ is $\overline{S} = \{S^{\text{out}}, S^{\text{in}}\}.$ If $\mathcal{S}_i = \left\{\mathcal{S}_i^{\sf in}, \mathcal{S}_i^{\sf out}
ight\}, i \geq 1$, are separators, we define

$$\begin{array}{lll} \mathcal{S}_{1} \cap \mathcal{S}_{2} &=& \left\{ \mathcal{S}_{1}^{\text{in}} \cup \mathcal{S}_{2}^{\text{in}}, \mathcal{S}_{1}^{\text{out}} \cap \mathcal{S}_{2}^{\text{out}} \right\} & (\text{intersection}) \\ \mathcal{S}_{1} \cup \mathcal{S}_{2} &=& \left\{ \mathcal{S}_{1}^{\text{in}} \cap \mathcal{S}_{2}^{\text{in}}, \mathcal{S}_{1}^{\text{out}} \cup \mathcal{S}_{2}^{\text{out}} \right\} & (\text{union}) \\ & \left\{ q \right\} & \left\{ q \right\} & \left\{ q \right\} & \left\{ q \right\} & \left\{ m - q - 1 \right\} & \left\{ q \right\} \\ & \bigcap & \mathcal{S}_{i}^{\text{in}}, \bigcap & \mathcal{S}_{i}^{\text{out}} \end{array} \right\} & (\text{relaxed intersection}) \\ & \mathcal{S}_{1} \backslash \mathcal{S}_{2} &=& \mathcal{S}_{1} \cap \overline{\mathcal{S}_{2}}. & (\text{difference}) \end{array}$$

Theorem. If \mathbb{S}_i are subsets of \mathbb{R}^n , we have

7 Transformation of separators

A transformation is an invertible function ${\bf f}$ such as an inclusion function is known for both ${\bf f}$ and ${\bf f}^{-1}.$

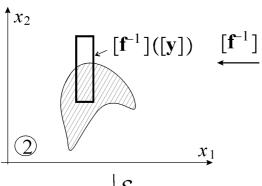
The set of transformation from \mathbb{R}^n to \mathbb{R}^n is a group with respect to the composition \circ . Symmetries, translations, homotheties, rotations, ... are linear transformations.

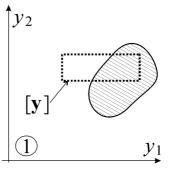
The flow φ_{t_1,t_2} is a transformation. Indeed:

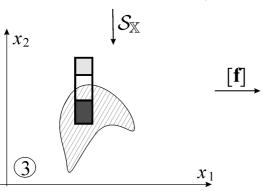
$$arphi_{t_2,t_1}^{-1} = arphi_{t_1,t_2}.$$

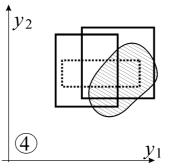
Theorem. Consider a set X and a transformation f. If S_X is a separator for X then a separator S_Y for Y = f(X) is

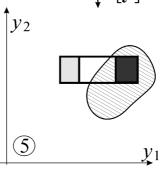
$$[\mathbf{f}] \circ \mathcal{S}_{\mathbb{X}} \circ \left[\mathbf{f}^{-1}
ight] \cap \mathsf{Id}.$$











Example. Consider the constraint

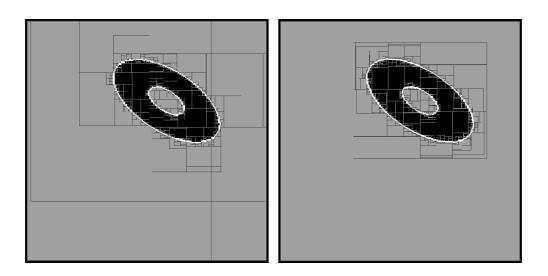
$$\left\| \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} y_1 - 1 \\ y_2 - 2 \end{pmatrix} \right\| \in [1, 3].$$

Define

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

The constraint can be rewritten as

$$\mathbf{y}=\mathbf{f}\left(\mathbf{x}
ight), \ \mathsf{and} \ \left\|\mathbf{x}
ight\|\in\left[1,3
ight].$$



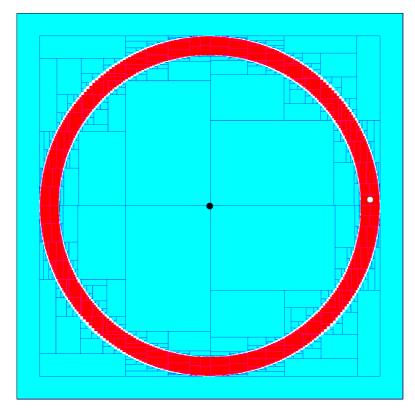
8 State estimation

If $\mathcal{S}_{\mathbb{Y}(k)}$ are separators for $\mathbb{Y}(k)$, then a separator for the set $\mathbb{X}(t)$ is

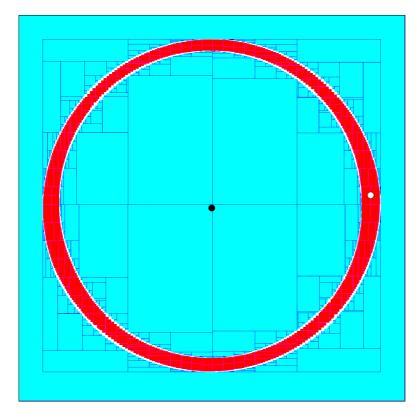
$$\mathcal{S}_{\mathbb{X}(t)} = igcap_{t_k \leq t} arphi_{t_k,t} \circ \mathbf{g}^{-1} \left(\mathcal{S}_{\mathbb{Y}(k)}
ight).$$

Example

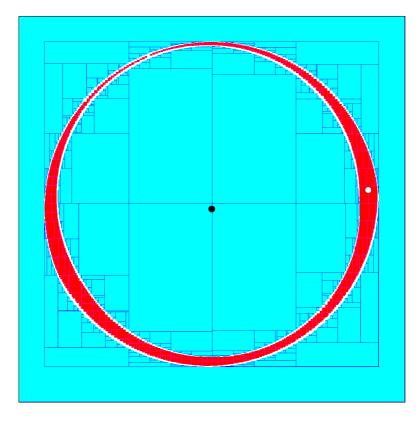
$$\begin{cases} \dot{\mathbf{x}}(t) = \begin{pmatrix} v(t)\cos\theta(t) \\ v(t)\sin\theta(t) \end{pmatrix} \\ \|\mathbf{x}(t_k)\| \in y(t_k) + [-0.3, 0.3], t_k = 0.1 \cdot k, \ k \in \mathbb{N} \end{cases}$$



 $t = \mathbf{0}$



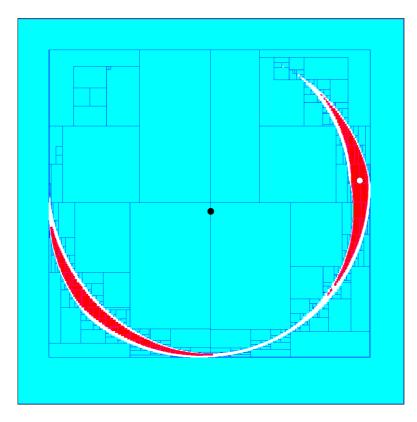
t = 0.1



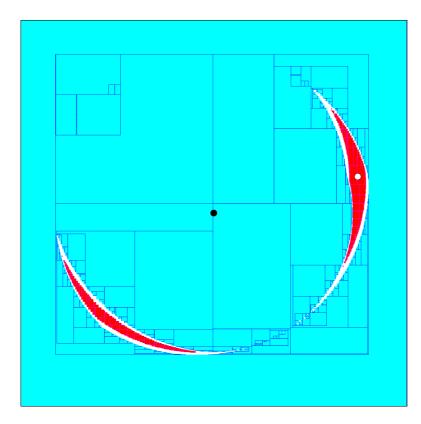
t = 0.2



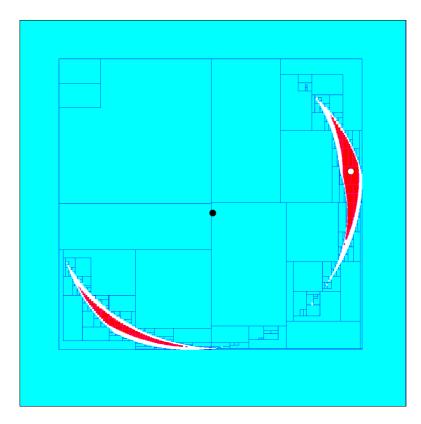
t = 0.3



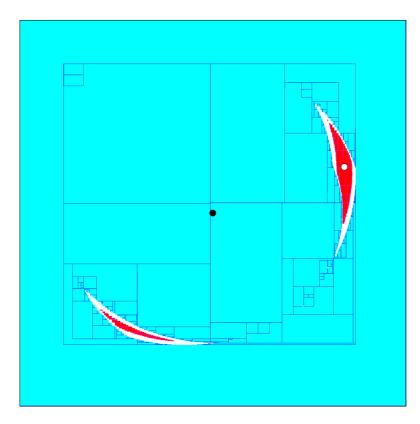
t = 0.4



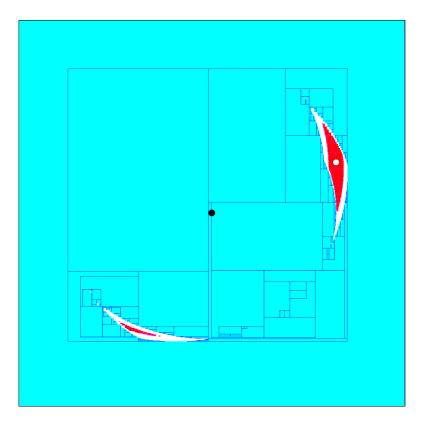
t = 0.5



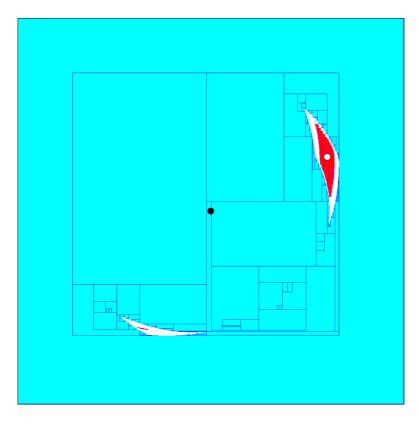
t = 0.6



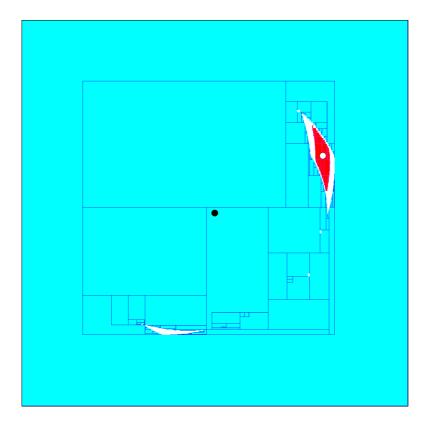
t = 0.7



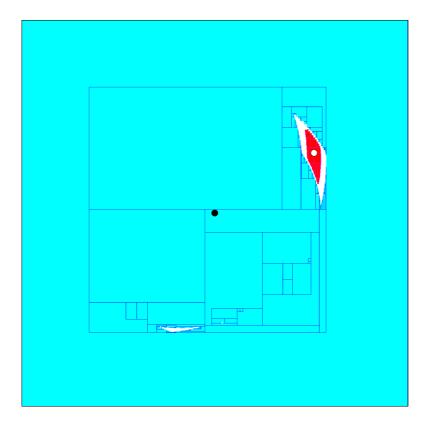
t = 0.8



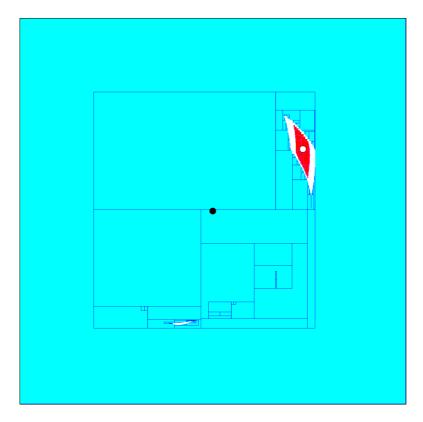
t = 0.9



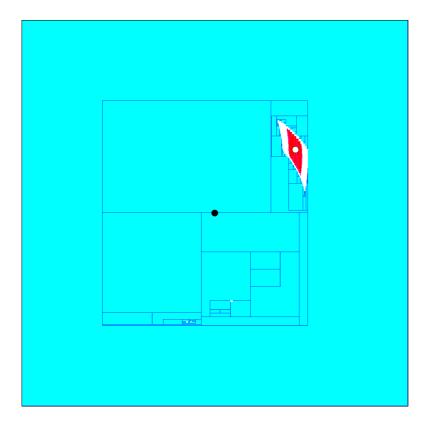
t = 1.0



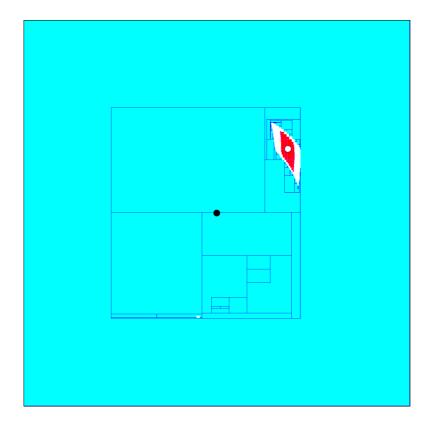
t = 1.1



t = 1.2



t = 1.3



t = 1.4