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1 Contractors



The operator C : IRn → IR
n is a contractor for the

equation f (x) = 0, if
�
C([x]) ⊂ [x] (contractance)
x ∈ [x] and f (x) = 0⇒ x ∈ C([x]) (consistence)



Example. Consider the primitive equation:

x2 = sinx1.







More generally, C : IRn → IR
n is a contractor if

(i) C([x]) ⊂ [x] (contractance)
(ii) (a ∈ [x] , C({a}) = {a})⇒ a ∈ C([x]) (consistence)

The set associated to C is

set (C) = {a ∈ Rn, C({a}) = {a}} .







C is monotonic if [x] ⊂ [y]⇒ C([x]) ⊂ C([y])
C is minimal if C([x]) = [[x] ∩ set (C)]
C is idempotent if C (C([x])) = C([x])
C is continuous if C (C∞([x])) = C∞([x]).



Contractor algebra

intersection (C1 ∩ C2) ([x]) def= C1 ([x]) ∩ C2 ([x])
union (C1 ∪ C2) ([x]) def= [C1 ([x]) ∪ C2 ([x])]
composition (C1 ◦ C2) ([x]) def= C1 (C2 ([x]))
reiteration C∞ def

= C ◦ C ◦ C ◦ . . .



Dealing with outliers

C = (C1 ∩ C2) ∪ (C2 ∩ C3) ∪ (C1 ∩ C3)



Contractor on images

The robot with coordinates (x1, x2) is in the water.







Building contractors for equations

Consider the primitive equation

x1 + x2 = x3

with x1 ∈ [x1], x2 ∈ [x2], x3 ∈ [x3] .



We have

x3 = x1 + x2⇒ x3 ∈ [x3] ∩ ([x1] + [x2]) // forward
x1 = x3 − x2⇒ x1 ∈ [x1] ∩ ([x3]− [x2]) // backward
x2 = x3 − x1⇒ x2 ∈ [x2] ∩ ([x3]− [x1]) // backward



The contractor associated with x1 + x2 = x3 is thus

C



[x1]
[x2]
[x3]


 =



[x1] ∩ ([x3]− [x2])
[x2] ∩ ([x3]− [x1])
[x3] ∩ ([x1] + [x2])






Forward-backward contractor (HC4 revise)

For the equation

(x1 + x2) · x3 ∈ [1, 2] ,
we have the following contractor:

algorithm C (inout [x1] , [x2] , [x3])
[a] = [x1] + [x2] // a = x1 + x2
[b] = [a] · [x3] // b = a · x3
[b] = [b] ∩ [1, 2] // b ∈ [1, 2]
[x3] = [x3] ∩ [b]

[a]
// x3 =

b
a

[a] = [a] ∩ [b]
[x3]

// a = b
x3

[x1] = [x1] ∩ [a]− [x2] // x1 = a− x2
[x2] = [x2] ∩ [a]− [x1] // x2 = a− x1



2 Solver



Example 1. Solve the system

y = x2

y =
√
x.



We build two contractors

C1 :
�
[y] = [y] ∩ [x]2
[x] = [x] ∩

�
[y]

associated to y = x2

C2 :
�
[y] = [y] ∩

�
[x]

[x] = [x] ∩ [y]2
associated to y =

√
x



Contractor graph





















Note that

C1 is optimal

C2 is optimal

C1 ◦ C2 is not optimal

(C1 ◦ C2)∞ is optimal.



Example 2. Consider the system
�

y = 3 sin(x)
y = x

x ∈ R, y ∈ R.







We converge the largest box [x] such that

C1 ([x]) = C2 ([x]) = [x].



Example 3. Consider the following problem




(C1) : y = x2

(C2) : xy = 1
(C3) : y = −2x+ 1















(C1)⇒ y ∈ [−∞,∞]2 = [0,∞]
(C2)⇒ x ∈ 1/[0,∞] = [0,∞]
(C3)⇒ y ∈ [0,∞] ∩ ((−2) .[0,∞] + 1)

= [0,∞] ∩ ([−∞, 1]) = [0, 1]

x ∈ [0,∞] ∩ (−[0, 1]/2 + 1/2) = [0, 12]
(C1)⇒ y ∈ [0, 1] ∩ [0, 1/2]2 = [0, 1/4]
(C2)⇒ x ∈ [0, 1/2] ∩ 1/[0, 1/4] = ∅

y ∈ [0, 1/4] ∩ 1/∅ = ∅



3 Redundant system of equations



Problem





fi (x,yi) = 0,
x ∈ Rn, yi ∈ [yi] ⊂ Rpi

i ∈ {1, . . . ,m}
.

with m≫ n≫ 1.





4 SLAM



Show the video







Mine detection with SonarPro



Loch-Doppler returns the speed robot vr.

vr ∈ ṽr + 0.004 ∗ [−1, 1] .ṽr + 0.004 ∗ [−1, 1]



Inertial central (Octans III from IXSEA).



φ
θ
ψ


 ∈




φ̃

θ̃

ψ̃


+



1.75× 10−4. [−1, 1]
1.75× 10−4. [−1, 1]
5.27× 10−3. [−1, 1]


 .



Six mines have been detected.

i 0 1 2 3 4 5
τ(i) 7054 7092 7374 7748 9038 9688
σ(i) 1 2 1 0 1 5
r̃(i) 52.42 12.47 54.40 52.68 27.73 26.98

6 7 8 9 10 11
10024 10817 11172 11232 11279 11688
4 3 3 4 5 1

37.90 36.71 37.37 31.03 33.51 15.05



4.1 Constraints



t ∈ {6000.0, 6000.1, 6000.2, . . . , 11999.4},

i ∈ {0, 1, . . . , 11},


px(t)
py(t)

�
= 111120 ·


0 1

cos
�
ℓy(t) · π

180

�
0

�
·


ℓx(t)− ℓ0x
ℓy(t)− ℓ0y

�
,

p(t) = (px(t), py(t), pz(t)),

Rψ(t) =



cosψ(t) − sinψ(t) 0
sinψ(t) cosψ(t) 0
0 0 1


 ,

Rθ(t) =




cos θ(t) 0 sin θ(t)
0 1 0

− sin θ(t) 0 cos θ(t)


 ,



Rϕ(t) =



1 0 0
0 cosϕ(t) − sinϕ(t)
0 sinϕ(t) cosϕ(t)


 ,

R(t) = Rψ(t) ·Rθ(t) ·Rϕ(t),

ṗ(t) = R(t) · vr(t),

||m(σ(i))− p(τ(i))|| = r(i),

RT(τ(i)) · (m(σ(i))− p(τ(i))) ∈ [0]× [0,∞]×2.



4.2 GESMI







5 Sailboat robotics



5.1 Vaimos



Vaimos (IFREMER and ENSTA)



The robot satisfies a state equation

ẋ = f (x,u) .

With the controller u = g (x), the robot satisfies an equa-

tion of the form

ẋ = f (x) .



With all uncertainties, the robot satisfies.

ẋ ∈ F (x)
which is a differential inclusion.



5.2 Line following



Controller of a sailboat robot



Nominal vector field θ∗





Keep close hauled strategy



5.3 V -stability



The system

ẋ = f (x)

is Lyapunov-stable (1892) is there exists V (x) ≥ 0 such

that

V̇ (x) < 0 if x �= 0
V (x) = 0 iff x = 0.



Definition. Consider a differentiable function V (x). The

system is V -stable if we have

V̇ (x) < 0 if V (x) ≥ 0.





Theorem. If the system ẋ = f (x) is V -stable then

(i) ∀x (0) ,∃t ≥ 0 such that V (x (t)) < 0
(ii) if V (x (t)) < 0 then ∀τ > 0, V (x (t+ τ)) < 0.



Theorem. We have
�

∂V
∂x (x) .f (x) ≥ 0

V (x) ≥ 0 inconsistent ⇔ ẋ = f (x) is V -stable.

Interval method could easily prove the V -stability.



Theorem. We have




∂V
∂x (x) .a ≥ 0
a ∈ F (x)
V (x) ≥ 0

inconsistent ⇔ ẋ ∈ F (x) is V -stable



Differential inclusion ẋ ∈ F (x) for the sailboat.
V (x) = x22 − r2max.





5.4 Experimental validation



Brest



Brest-Douarnenez. January 17, 2012, 8am















Middle of Atlantic ocean

350 km made by Vaimos in 53h, September 6-9, 2012.



Consequence.

It is possible for a sailboat robot to navigate inside a cor-

ridor.

Essential, to create circulation rules when robot swarms are

considered.

Essential to determine who has to pay in case of accident.



6 Optimization in robotics



6.1 Path planning





6.2 Control



A mobile robot is described by
�
ẋ = f (x,u)
y = g (x)

where u ∈ Rdimu are the inputs, x ∈ Rdimx the state,

y ∈ Rdimy are the variables to be controlled.

In operating conditions we have ẋ = 0.







ẋ = v cos θ + p1a cosψ
ẏ = v sin θ + p1a sinψ

θ̇ = ω

v̇ = fs sin δs−fr sinu1−p2v
p9

ω̇ =
fs(p6−p7 cos δs)−p8fr cosu1−p3ω

p10
fs = p4a sin (θ − ψ + δs)
fr = p5v sinu1
γ = cos (θ − ψ) + cos (u2)

δs =

�
π − θ + ψ if γ ≤ 0

sign (sin (θ − ψ)) .u2 otherwise.



If dimu > dimy the robot is overactuated.

We then want to maximize some performance criteria h (x).



In operating conditions (ẋ = 0), the optimization problem

is

ĥ (ȳ) = max
ū,x̄

h (x̄) s.t.

�
0 = f (x̄, ū)
ȳ = g (x̄) .



Or equivalently

ĥ (ȳ) = max
ū,x̄

v s.t.





0 = f (x̄, ū)
ȳ = g (x̄)
v = h (x̄)

with dimv = dimu− dimy.



Often x can be eliminated symbolically:




0 = f (x̄, ū)
ȳ = g (x̄)
v = h (x̄)� �� �

dimx+ dimu equations
dimx+ 2dimu variables

⇔ ψ (v̄, ū, ȳ) = 0� �� �
dimu equations
2 dimu variables



We get

ĥ (ȳ) = max
ū,v̄

v̄ s.t. ψ (v̄, ū, ȳ) = 0.



6.3 Resolution

We assume that dim v = 1 (mono-objective case).



ĥ (y) = max
u∈Rdimu,v∈R

v

s.t. ψ (v,u,y) = 0

with dimψ = dimu.





We need an inner test to prove that

[v]× [y] ⊂ {(v,y) ,∃u,ψ (v,u,y) = 0}� �� �
Svy

.



6.4 Newton inner test

Given a box [p], we need to be able to prove that

∀p ∈ [p] ,∃u ∈ [u] ,ψ (u,p) = 0.
with dimψ = dimu.



Parametric interval Newton method

Define

Nψ ([u] , [p]) = �u−
�
∂ψ

∂u
([u] , [p])

�−1
. [ψ] (�u, [p]) .

We have

Nψ ([u], [p]) ⊂ [u] ⇒ ∀p ∈ [p] , ∃!u ∈ [u] ,ψ(u,p) = 0.



Epsilon inflation



6.5 Sailboat



Two inputs: the sail angle u1 and the rudder angle u2.

The output is the heading θ.

The variable to be maximized is v.



The optimization problem is

v̂ (θ) = max
u∈R2,v∈R

v

s.t.

�
0 = sinu1 (cos (θ + u1)− v sinu1)− v sin2 u2 − v

0 = (1− cosu1) (cos (θ + u1)− v sinu1)− vsin 2u22 .
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