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1 Contractors



The operator C : IRn → IR
n is a contractor for the

equation f (x) = 0, if
�
C([x]) ⊂ [x] (contractance)
x ∈ [x] and f (x) = 0⇒ x ∈ C([x]) (consistence)



Example. Consider the primitive equation:

x2 = sinx1.











C is monotonic if [x] ⊂ [y]⇒ C([x]) ⊂ C([y])
C is minimal if C([x]) = [[x] ∩ set (C)]
C is idempotent if C (C([x])) = C([x])
C is continuous if C (C∞([x])) = C∞([x]).



Contractor algebra

intersection (C1 ∩ C2) ([x]) def= C1 ([x]) ∩ C2 ([x])
union (C1 ∪ C2) ([x]) def= [C1 ([x]) ∪ C2 ([x])]
composition (C1 ◦ C2) ([x]) def= C1 (C2 ([x]))
reiteration C∞ def

= C ◦ C ◦ C ◦ . . .



Contractor on images

The robot with coordinates (x1, x2) is in the water.







Building contractors for equations

Consider the primitive equation

x1 + x2 = x3

with x1 ∈ [x1], x2 ∈ [x2], x3 ∈ [x3] .



We have

x3 = x1 + x2⇒ x3 ∈ [x3] ∩ ([x1] + [x2]) // forward
x1 = x3 − x2⇒ x1 ∈ [x1] ∩ ([x3]− [x2]) // backward
x2 = x3 − x1⇒ x2 ∈ [x2] ∩ ([x3]− [x1]) // backward



The contractor associated with x1 + x2 = x3 is thus

C





[x1]
[x2]
[x3]




 =





[x1] ∩ ([x3]− [x2])
[x2] ∩ ([x3]− [x1])
[x3] ∩ ([x1] + [x2])








2 Solver



Example 1. Solve the system

y = x2

y =
√
x.



We build two contractors

C1 :
�
[y] = [y] ∩ [x]2
[x] = [x] ∩

�
[y]

associated to y = x2

C2 :
�
[y] = [y] ∩

�
[x]

[x] = [x] ∩ [y]2
associated to y =

√
x



Contractor graph





















Example 2. Consider the system
�
y = 3 sin(x)
y = x

x ∈ R, y ∈ R.







We converge the largest box [x] such that

C1 ([x]) = C2 ([x]) = [x].



Example 3. Consider the following problem





(C1) : y = x2

(C2) : xy = 1
(C3) : y = −2x+ 1















(C1)⇒ y ∈ [−∞,∞]2 = [0,∞]
(C2)⇒ x ∈ 1/[0,∞] = [0,∞]
(C3)⇒ y ∈ [0,∞] ∩ ((−2) .[0,∞] + 1)

= [0,∞] ∩ ([−∞, 1]) = [0, 1]
x ∈ [0,∞] ∩ (−[0, 1]/2 + 1/2) = [0, 12]

(C1)⇒ y ∈ [0, 1] ∩ [0, 1/2]2 = [0, 1/4]
(C2)⇒ x ∈ [0, 1/2] ∩ 1/[0, 1/4] = ∅

y ∈ [0, 1/4] ∩ 1/∅ = ∅



3 SLAM with point marks



Show the video







Mine detection with SonarPro



Loch-Doppler returns the speed robot vr.

vr ∈ ṽr + 0.004 ∗ [−1, 1] .ṽr + 0.004 ∗ [−1, 1]



Inertial central (Octans III from IXSEA).




φ
θ
ψ




 ∈





φ̃

θ̃

ψ̃




+





1.75× 10−4. [−1, 1]
1.75× 10−4. [−1, 1]
5.27× 10−3. [−1, 1]




 .



Six mines have been detected.

i 0 1 2 3 4 5
τ(i) 7054 7092 7374 7748 9038 9688
σ(i) 1 2 1 0 1 5
r̃(i) 52.42 12.47 54.40 52.68 27.73 26.98

6 7 8 9 10 11
10024 10817 11172 11232 11279 11688
4 3 3 4 5 1

37.90 36.71 37.37 31.03 33.51 15.05



3.1 Constraints



t ∈ {6000.0, 6000.1, 6000.2, . . . , 11999.4},

i ∈ {0, 1, . . . , 11},


px(t)
py(t)

�

= 111120 ·



0 1

cos
�
ℓy(t) · π

180

�
0

�

·


ℓx(t)− ℓ0x
ℓy(t)− ℓ0y

�

,

p(t) = (px(t), py(t), pz(t)),

Rψ(t) =





cosψ(t) − sinψ(t) 0
sinψ(t) cosψ(t) 0
0 0 1




 ,

Rθ(t) =






cos θ(t) 0 sin θ(t)
0 1 0

− sin θ(t) 0 cos θ(t)




 ,



Rϕ(t) =





1 0 0
0 cosϕ(t) − sinϕ(t)
0 sinϕ(t) cosϕ(t)




 ,

R(t) = Rψ(t) ·Rθ(t) ·Rϕ(t),

ṗ(t) = R(t) · vr(t),

||m(σ(i))− p(τ(i))|| = r(i),

RT(τ(i)) · (m(σ(i))− p(τ(i))) ∈ [0]× [0,∞]×2.



3.2 GESMI







4 Vaimos



Vaimos (IFREMER and ENSTA)



The robot satisfies a state equation

ẋ = f (x,u) .

With the controller u = g (x), the robot satisfies an equa-

tion of the form

ẋ = f (x) .



Brest



Brest-Douarnenez. January 17, 2012, 8am















Middle of Atlantic ocean

350 km made by Vaimos in 53h, September 6-9, 2012.



5 Range-only SLAM



�
ẋ (t) = f (x (t) ,u (t)) (evolution equation)
z (t) = d (x (t) ,M) (map equation)

where t ∈ R, x ∈ Rn, u ∈ Rm, M ∈ C (Rq) is the
occupancy map.

Unknown: the map M and the trajectory x.



Assumption. d corresponds to a rangefinder, i.e.,
�
d (x,M1 ∪M2) = min {d (x,M1) , d (x,M2)}
d (x, ∅) = +∞.



Impact, covering and dug zones



Define the function δx : Rq → R as

δx (a) = d (x, {a}) .
For given x and z, we define

covering zone δ−1x ([0,∞[) = {a, δx (a) <∞}
impact zone δ−1x ({z}) = {a, δx (a) = z}
dug zone δ−1x ([0, z[) = {a, δx (a) < z}



The dug zone does not intersect M, i.e.,

z = d (x,M)⇒ δ−1x ([0, z[) ∩M = ∅.

The set D =
�
t∈[t] δ

−1
x(t)

([0, z(t)[) is called the dug space.

We have

D ∩M = ∅.
.



For all x, the impact zone intersects the map, i.e,

z = d (x,M)⇒ δ−1x ({z}) ∩M �= ∅.





The range-only SLAM problem is a hybrid CSP.

Variables: x(t), M and D.

Constraints:

(1) ẋ (t) = f (x (t) ,u (t))

(2) D =
�
t∈[t] δ

−1
x(t) ([0, z(t)[)

(3) D ∩M = ∅
(4) δ−1

x(t) ({z(t)}) ∩M �= ∅.





: z (t) = d (x (t) ,M)

Domains: [M] = [D] = [∅,Rq], [x] (t) = Rn for t > 0

and [x] (0) = x (0).



Constraint diagram of the range only SLAM problem



6 Hybrid intervals



A closed interval (or interval for short) [x] of a complete

lattice E is a subset of E which satisfies

[x] = {x ∈ E | ∧ [x] ≤ x ≤ ∨[x]}
Both ∅ and E are intervals of E.



Lattice (P (Rn) ,⊂)



Interval in the lattice (P (Rn) ,⊂)



An interval function (or tube) and a set interval



Hybrid intervals. If [x] ∈ IEx, [y] ∈ IEy then [x]× [y] is
a hybrid interval.



6.1 Interval arithmetic



[A],[B], [A] ∩ [B], [A] ∪ [B], [A] \ [B], ([A]∪ [B]) \ ([A] ∩ [B]).



Intersection.

[A] ⊓ [B] = {X,X ∈ [A] and X ∈ [B]}
=

�
A
− ∪ B−,A+ ∩ B+

�
.







6.2 Contractors





Example
�

A ⊂ B
A ∈ [A] ,B ∈ [B] .

The optimal contractor is
�
(i) [A] := [A] ⊓ ([A] ∩ [B])
(ii) [B] := [B] ⊓ ([A] ∪ [B])



void Set_Contractor_Subset(paving& A,paving& B)

{ paving Z=A&B;

A=Sqcap(A,Z);

Z=B|A;
B=Sqcap(B,Z);

}



Hybrid contractor

Hybrid contractor C1



6.3 Propagation



Consider the following CSP





(i) X ⊂ A
(ii) B ⊂ X
(iii) X ∩ C = ∅
(iv) f (X) = X,

where X is an unknown subset of R2, f is a rotation with

an angle of −π6 , and





A =
�
(x1, x2) , x

2
1 + x

2
2 ≤ 3

�

B =
�
(x1, x2) , (x1 − 0.5)2 + x22 ≤ 0.3

�

C =
�
(x1, x2) , (x1 − 1)2 + (x2 − 1)2 ≤ 0.15

�



(a) [A]

(b) [B]

(c) [C]

(d) X ⊂ A

(e) B ⊂ X

(f) X ∩ C = ∅

(g) f (X) = X

(h) (f (X) = X)∞



7 SLAM



Range-only SLAM equations





ẋ1(t) = u1(t) cos (u2(t))
ẋ2(t) = u1(t) sin (u2(t))
z (t) = d (x (t) ,M) .

Actual trajectory and dug space







Width of the tubes [x] (t)
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