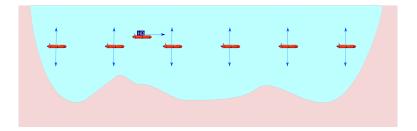

### Muling

### Architecture robotique https://www.ensta-bretagne.fr/jaulin/archirob.html Sept 2021- Feb 2022








Youtube

https://www.frwiki.org/wiki/Relais\_de\_poste https://en.wikipedia.org/wiki/Post\_riders https://en.wikipedia.org/wiki/Optical\_telegraph



# Thermoelectric generator

Between 300m deep to 1000m, the temperature varies of about 20 degrees.

```
https://en.wikipedia.org/wiki/Thermocline
```

A thermocouple is an electrical device consisting of two dissimilar conductors.

It produces voltage which depends of  $\Delta \mathcal{T}$  due to the Seebeck effect.

A thermoelectric generator converts heat flux directly into electrical energy using the Seebeck effect.

# Stirling motor

The produced energy is

$$Q = PV \frac{\Delta T}{T} \cdot \ln\left(\frac{V_{max}}{V_{min}}\right)$$
  

$$\simeq 10 \cdot 10^5 * 10^{-3} \frac{10}{300} \cdot \ln(10)$$
  

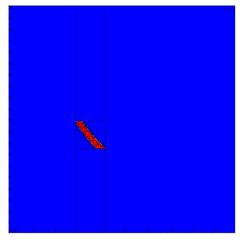
$$= 20W$$

▲日▼▲国▼▲田▼▲田▼ あるの

# Dimensioning

We take the following coefficients

| Drag                | $C_x$            | [0.5,0.6]                  |
|---------------------|------------------|----------------------------|
| Front surface       | S <sub>x</sub>   | [0.01,0.011]m <sup>2</sup> |
| Water density       | $ ho_{water}$    | 1000kg.m <sup>-3</sup>     |
| Energy of batteries | E <sub>bat</sub> | [10,11]MJ                  |
| Mule number         | N                | [100,110]                  |
| Distance            | D                | $5000000 \cdot [1, 1.1]$   |


▲日▼▲国▼▲田▼▲田▼ あるの

| Ρ | Power for propulsion       |  |
|---|----------------------------|--|
| V | Work speed                 |  |
| d | Work distance for one mule |  |
| Τ | Total time                 |  |

If we are interested by the pair  $(v, T_{day})$ , where  $T_{day} = \frac{T}{86400}$ , we have

$$v^{2} = \frac{E_{bat}N}{\frac{1}{2}C_{x}S_{x}\rho_{water}D}$$
$$T_{day} \quad v = \frac{D}{86400}$$

We get the following feasible set for  $(T_{day}, v)$ . We estimate the travel time of about 6 days for a speed of the hard disk of about  $10 m \cdot s^{-1}$ .



The program is available at: https://replit.com/@aulin/mulingdim

# Transmission rate

Assume that each mule can carry M = 20 Tbyte. What is the transmission rate ?

Using a thermoelectric generator, each mule can recharge its own battery at p = 10 W.

The time to get the batteries fully charged is

$$\delta = rac{E}{p} = rac{10^7\,J}{10\,W} = 10^6\, sec = 11 \, days.$$

A new hard-disk can be send every 11days. The rate is thus

$$\tau = \frac{M}{\delta} = \frac{20 \cdot 10^{12}}{10^6} = 2 \cdot 10^7 \, bytes/sec$$