

Dominique Monnet, Luc Jaulin, Jordan Ninin LAB-STICC / ENSTA-Bretagne

SMART 2015

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
	2			
VVhat is viabilit	\mathcal{N}			

System \mathcal{S} defined by:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}),$$

 $\mathbf{f} : \mathbb{R}^n imes \mathbb{U} \to \mathbb{R}^n$

A state **x** is viable if at least one evolution of S from **x** can stay indefinitely in a set of constraint \mathbb{K} .

The viability kernel of \mathbb{K} under S noted $Viab_{S}(\mathbb{K})$ is the set that contains every viable state.

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Why viability?				

Example: management of renewable resources, economics, robotics,...

Is it possible to avoid the wall?

Example: management of renewable resources, economics, robotics,...

Is it possible to avoid the wall?

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

2 Polygon expansion technique

3 Capture basin

4 Examples

- Car on the hill
- Double integrator

5 Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Plan				

1 Attraction domains

2 Polygon expansion technique

3 Capture basin

- 4 Examples
 - Car on the hill
 - Double integrator

5 Conclusion

Attraction domains of ${\mathcal S}$ are interesting for viability, if they are located in ${\mathbb K}.$

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Theorem on viability

Theorem

We consider a dynamical system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$, \mathbb{U} the set of possible control and \mathbb{K} a closed subset of \mathbb{R}^n . Let $L \in C^1(\mathbb{K}, \mathbb{R})$, and $\mathbb{B}_L(r) = {\mathbf{x} \in \mathbb{R}^n | L(\mathbf{x}) \leq r}$, with $r \in \mathbb{R}^+$. If $\mathbb{B}_L(r) \subseteq \mathbb{K}$ and $\forall \mathbf{x} \in \overline{\mathbb{B}_L(r)}$, $\exists \mathbf{u} \in \mathbb{U}$ such as $\langle \mathbf{f}(\mathbf{x}, \mathbf{u}), \nabla L(\mathbf{x}) \rangle \leq 0$, then $\mathbb{B}_L(r) \subseteq \text{Viab}_S(\mathbb{K})$.

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Illustration of the	e theorem			

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Lyapunov function

Definition

A function $L: \mathbb{R}^n \to \mathbb{R}$ is said to be of Lyapunov for the dynamical system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ if:

1
$$V(0) = 0.$$

$$2 \forall \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, V(\mathbf{x}) > 0.$$

3
$$\forall \mathbf{x} \in \mathbb{R}^n, \langle \mathbf{f}(x), \nabla V(\mathbf{x}) \rangle \leq 0.$$

We choose a particular control $u\in\mathbb{U}.$ $\mathcal{S}_u{:}$ $\dot{x}=f(x,u)$ is an autonomous system.

 \mathbf{x}^* is an equilibrium point of $\mathcal{S}_{\mathbf{u}} \iff \mathbf{f}(\mathbf{x}^*, \mathbf{u}) = \mathbf{0}$.

- Linearize $S_{\mathbf{u}}$ around \mathbf{x}^* , we get $S_{\mathbf{u}}^{\mathbf{x}^*}$ defined by $\dot{\tilde{\mathbf{x}}} = A\tilde{\mathbf{x}}, \tilde{\mathbf{x}} = \mathbf{x} \mathbf{x}^*$.
- Solve $A^T W + W A = -I$, where W is the unknown amount.
- Check whether W is positive definite.
- If W is positive definite, then $\frac{1}{2}\tilde{\mathbf{x}}^T W \tilde{\mathbf{x}}$ is a Lyapunov function for the linear system, and \mathbf{x}^* is stable.

If we do not find a Lyapunov function for $S_u^{x^*}$, we compute the linear system S_{ctrl} for which x^* is a stable equilibrium point.

Lyapunov function and linearized system $\mathcal{S}_{\mu}^{x^*}$

12 / 66

2

Examples 000000000000

Lyapunov function and autonomous system \mathcal{S}_u

Lyapunov function and system ${\cal S}$

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Viable set charac	terization algorithm			

- Choose a control $\mathbf{u} \in \mathbb{U}$.
- Find an equilibrium point $\mathbf{x}^* \in \mathbb{K}$.
- Linearize $S_{\mathbf{u}}$ around \mathbf{x}^* .
- Try to compute a Lyapunov function of $\mathcal{S}_{u}^{x^{*}}$.
- If no function found, compute \mathcal{S}_{ctrl} .
- Try to compute a Lyapunov function of \mathcal{S}_{ctrl} .
- Find $r \in \mathbb{R}^+$ such as conditions of the theorem are met.

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Plan				

1 Attraction domains

2 Polygon expansion technique

3 Capture basin

4 Examples

- Car on the hill
- Double integrator

5 Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Theorem

Theorem

Let $P = \{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n\}$ be a polygon included in \mathbb{K} . We suppose $\{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n\}$ sorted in clockwise order. If $\forall i, \forall x \in segment [\mathbf{p}_i, \mathbf{p}_{i+1}], \exists \mathbf{u} \in \mathbb{U},$ $det(\mathbf{p}_{i+1} - \mathbf{p}_i, \mathbf{f}(\mathbf{x}, \mathbf{u})) \leq 0.$ Then $P \subseteq Viab_s(\mathbb{K})$

Then $P \subseteq Viab_{\mathcal{S}}(\mathbb{K})$

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion
Theorem illustra	ation			

Attraction don	nains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Theorem illustration

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Dil	New Street Articles			
Polygon expans	sion algorithm			

イロト 不得下 イヨト イヨト 二日

- Find a polygon $P \subseteq Viab_{\mathcal{S}}(\mathbb{K})$.
- **2** Compute a larger polygon P'.
- If $P' \subseteq Viab_{\mathcal{S}}(\mathbb{K})$, P = P', go to 1.
- Else compute another polygon P', go to 3.

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Polygon expans	ion algorithm			

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Polygon expans	ion algorithm			

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Polygon expans	ion algorithm			

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Polygon expans	ion algorithm			

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion
Polygon expans	ion algorithm			

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion
Polygon expans	ion algorithm			

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Plan				

Attraction domains

2 Polygon expansion technique

3 Capture basin

- 4 Examples
 - Car on the hill
 - Double integrator

5 Conclusion

The capture basin of a set $\mathbb{T} \subset \mathbb{K}$ viable in \mathbb{K} noted $Capt_{\mathcal{S}}(\mathbb{K}, \mathbb{T})$ is composed of every states \mathbf{x} such as \mathcal{S} can reach \mathbb{T} from \mathbf{x} in a finite time without leaving \mathbb{K} .

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Theorem on the	viability of a capture ba	sin		

Theorem

Let S a dynamical system, \mathbb{K} a closed subset of the state space of S and $\mathbb{T} \subset \mathbb{K}$. If \mathbb{T} is viable in \mathbb{K} , then $Capt_{S}(\mathbb{K},\mathbb{T})$ is viable in \mathbb{K} .

The set $\mathbb{V}_{in} = \mathbb{T} \cup Capt_{\mathcal{S}}(\mathbb{K}, \mathbb{T})$ is an inner approximation of $Viab_{\mathcal{S}}(\mathbb{K})$.

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < 29 / 66

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion
Over approximation	on of the viability kernel			

- We try to find an over approximation of Viab_S(K) to get an enclosure of Viab_S(K).
- If $\forall u \in \mathbb{U}$, S cannot stay in \mathbb{K} from a state $x \in \mathbb{K}$, then $x \notin Viab_{S}(\mathbb{K})$.

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Plan				

1 Attraction domains

2 Polygon expansion technique

3 Capture basin

- 4 Examples
 - Car on the hill
 - Double integrator

5 Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples ●00000000000	Conclusion
Car on the hill				
Plan				

- 1 Attraction domains
- 2 Polygon expansion technique
- 3 Capture basin
- Examples
 Car on the hill
 Double integrator

Attraction domains	Polygon expansion technique	Capture basin	Examples o●ooooooooo	Conclusion
Car on the hill				
Car on the hill p	problem			

• The landscape is represented by the parametric function

$$g: s \to \frac{\frac{-1.1}{1.2}cos(1.2s) + \frac{1.2}{1.1}cos(1.1s)}{2}$$

• State vector: $\mathbf{x} = \begin{pmatrix} s \\ \dot{s} \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

• Evolution function:

$$\begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = -9.81 sin(\frac{dg}{dx_1}(x_1)) - 0.7x_2 + u \end{cases}$$

 $u \in [-2, 2]$ • The car must stay on the landscape, i.e $s \in [0, 12]$

Viable sets computed with u = 0. Computation time: 25 sec.

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion
Car on the hill				
Result explained				

Polygons are initialized with viable sets computed previously.

Computation time: 45 sec.

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Car on the hill				
Result of inner ap	proximation algorithm			

Computation time ≈ 60 minutes

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Car on the hill				
Result of over a	approximation algorithm			

Computation time ≈ 30 minutes

Attraction domains	Polygon expansion technique	Capture basin	Examples ○○○○○○●○○○○	Conclusion
Double integrator				
Plan				

- 1 Attraction domains
- 2 Polygon expansion technique
- 3 Capture basin
- 4 Examples• Car on the hill
 - Double integrator

5 Conclusion

Attraction domains	Polygon expansion technique	Capture basin	Examples 000000000000	Conclusion
Double integrator				
Double integrate	or equations			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

61/66

Evolution function:
$$\begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = u \end{cases} \quad u \in [-1, 1]$$

Constraints:

- $x_1 \in [-5, 5]$
- $x_2 \in [-5, 5]$

Attraction domains	Р	olygon expa	ansion techni		Capture	basin	Exampl	es 00000●00	Conclusion
Double integrator									
Results of via	able set	charac	terizatio	on algo	rithm				

Viable sets computed with u = 0. Computation time: 40 sec.

Attraction domains	Polygon expansio	on technique	Capture basin	Examples 0000000000000	Conclusion
Double integrator					
Result of inner	approximation	algorithm			
				299	

Computation time: 5 minutes.

Computation time: 7 minutes.

Attraction domains	Polygon expansion technique	Capture basin	Examples 00000000000	Conclusion
Plan				

- 1 Attraction domains
- 2 Polygon expansion technique
- 3 Capture basin
- 4 Examples
 - Car on the hill
 - Double integrator

- We are able to deal with many viability problems in a guaranteed way.
- The system must have at least one equilibrium point.
- We can deal with 2D problems, but inner and over approximation algorithms are not efficient for higher dimensional problems
- We approached viability problem with new methods based on the study of the frontier of closed sets.