Programmation par contraintes appliquée à la robotique mobile.

Montpellier, November 21, 2013. L. Jaulin ENSTA-Bretagne, IHSEV, OSM, LabSTICC.

http://www.ensta-bretagne.fr/jaulin/

1 Interval arithmetic

Problem. Given $f : \mathbb{R}^n \to \mathbb{R}$, a box $[\mathbf{x}] \subset \mathbb{R}^n$, prove that

$$\forall \mathbf{x} \in [\mathbf{x}], f(\mathbf{x}) \geq \mathbf{0}.$$

Interval arithmetic can solve efficiently this problem.

Interval arithmetic

$$\begin{array}{ll} [-1,3]+[2,5] &= [1,8], \\ [-1,3]\cdot [2,5] &= [-5,15], \\ & {\rm abs}\left([-7,1]\right) &= [0,7] \end{array}$$

If f is given

Algorithm $f(\text{in: } \mathbf{x} = (x_1, x_2, x_3), \text{ out: } y)$ 1 $z := |x_3| + x_1;$ 2 for k := 0 to 100 3 $z := (\cos x_2) \cdot (\sin (z) + kx_3);$ 4 next; 5 $y := \sin(z \cdot x_1);$ Its interval extension is

Algorithm
$$[f](in: [x] = ([x_1], [x_2], [x_3]), \text{ out: } [y])$$

1 $[z] := |[x_3]| + [x_1];$
2 for $k := 0$ to 100
3 $[z] := (\cos [x_2]) \cdot (\sin ([z]) + k * [x_3]);$
4 next;
5 $[y] := \sin([z] \cdot [x_1]);$

Theorem (Moore, 1970)

 $[f]([\mathbf{x}]) \subset \mathbb{R}^+ \Rightarrow \forall \mathbf{x} \in [\mathbf{x}], f(\mathbf{x}) \ge \mathbf{0}$

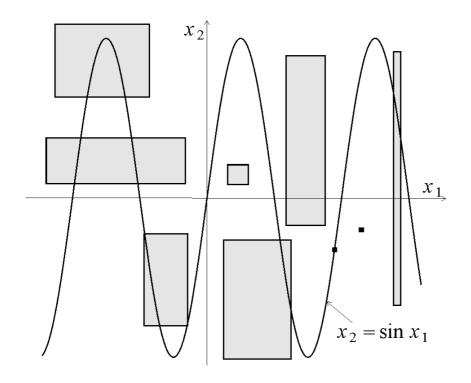
2 Contractors

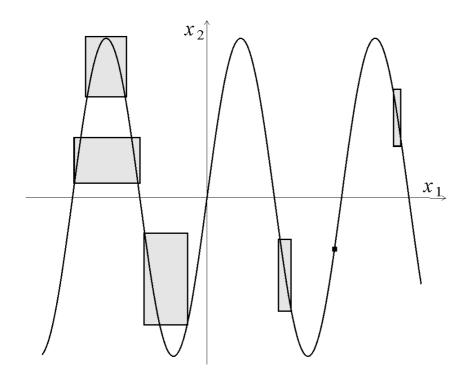
The operator \mathcal{C} : $\mathbb{IR}^n \to \mathbb{IR}^n$ is a *contractor* for the equation $f(\mathbf{x}) = 0$, if

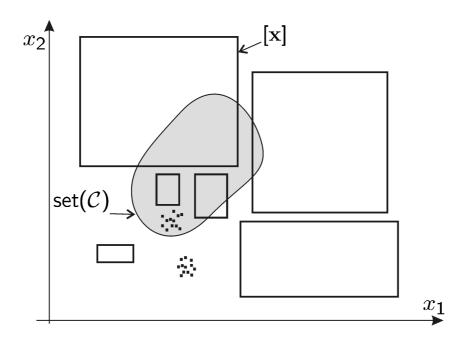
 $\left\{ \begin{array}{ll} \mathcal{C}([\mathbf{x}]) \subset [\mathbf{x}] & (\text{contractance}) \\ \mathbf{x} \in [\mathbf{x}] \text{ and } f(\mathbf{x}) = \mathbf{0} \Rightarrow \mathbf{x} \in \mathcal{C}([\mathbf{x}]) & (\text{consistence}) \end{array} \right.$

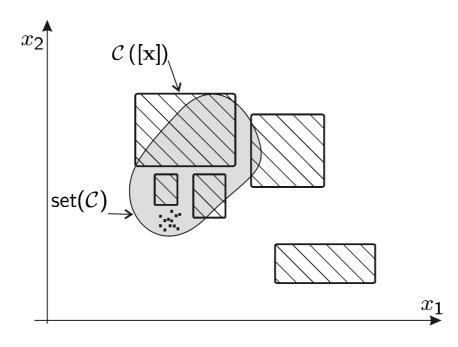
Example. Consider the primitive equation:

$$x_2 = \sin x_1.$$









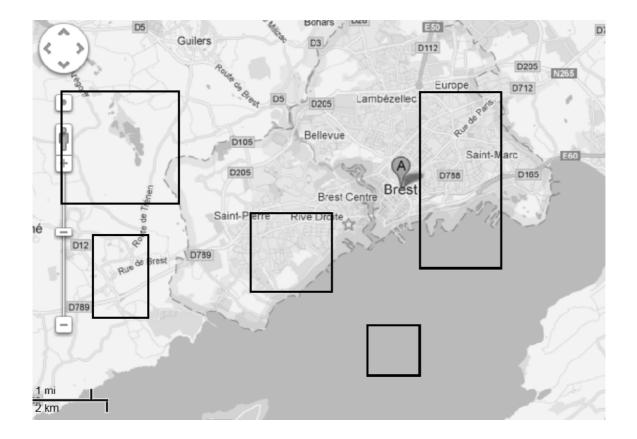
$\begin{array}{lll} \mathcal{C} \text{ is monotonic if } & [\mathbf{x}] \subset [\mathbf{y}] \Rightarrow \mathcal{C}([\mathbf{x}]) \subset \mathcal{C}([\mathbf{y}]) \\ \mathcal{C} \text{ is idempotent if } & \mathcal{C}\left(\mathcal{C}([\mathbf{x}])\right) = \mathcal{C}([\mathbf{x}]) \end{array}$

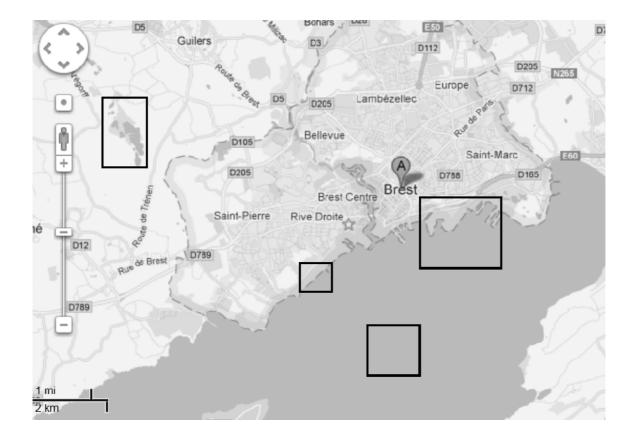
Contractor algebra

intersection	$\left(\mathcal{C}_{1}\cap\mathcal{C}_{2}\right)\left(\left[\mathbf{x}\right]\right)\overset{def}{=}\mathcal{C}_{1}\left(\left[\mathbf{x}\right]\right)\cap\mathcal{C}_{2}\left(\left[\mathbf{x}\right]\right)$
union	$\left(\mathcal{C}_{1}\cup\mathcal{C}_{2} ight)\left(\left[\mathbf{x} ight] ight)\stackrel{def}{=}\left[\mathcal{C}_{1}\left(\left[\mathbf{x} ight] ight)\cup\mathcal{C}_{2}\left(\left[\mathbf{x} ight] ight) ight]$
composition	$(\mathcal{C}_1 \circ \mathcal{C}_2)([\mathbf{x}]) \stackrel{def}{=} \mathcal{C}_1(\mathcal{C}_2([\mathbf{x}]))$
reiteration	$\mathcal{C}^{\infty} \stackrel{def}{=} \mathcal{C} \circ \mathcal{C} \circ \mathcal{C} \circ \ldots$

Contractor associated with a database

The robot with coordinates (x_1, x_2) is in the water.





Building contractors for equations

Consider the primitive equation

 $x_1 + x_2 = x_3$

with $x_1 \in [x_1]$, $x_2 \in [x_2]$, $x_3 \in [x_3]$.

We have

 $\begin{array}{rcl} x_3 = x_1 + x_2 \Rightarrow & x_3 \in & [x_3] \cap ([x_1] + [x_2]) & // \text{ forward} \\ x_1 = x_3 - x_2 \Rightarrow & x_1 \in & [x_1] \cap ([x_3] - [x_2]) & // \text{ backward} \\ x_2 = x_3 - x_1 \Rightarrow & x_2 \in & [x_2] \cap ([x_3] - [x_1]) & // \text{ backward} \end{array}$

The contractor associated with $x_1 + x_2 = x_3$ is thus

$$\mathcal{C}\begin{pmatrix} [x_1]\\ [x_2]\\ [x_3] \end{pmatrix} = \begin{pmatrix} [x_1] \cap ([x_3] - [x_2])\\ [x_2] \cap ([x_3] - [x_1])\\ [x_3] \cap ([x_1] + [x_2]) \end{pmatrix}$$

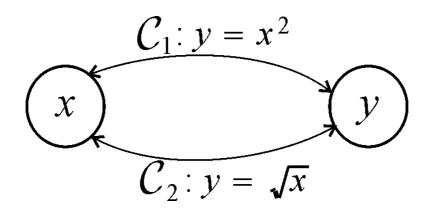
3 Solver

Example. Solve the system

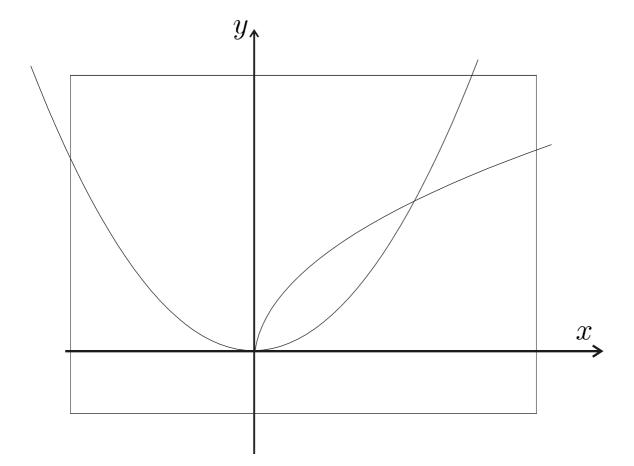
$$y = x^2$$
$$y = \sqrt{x}.$$

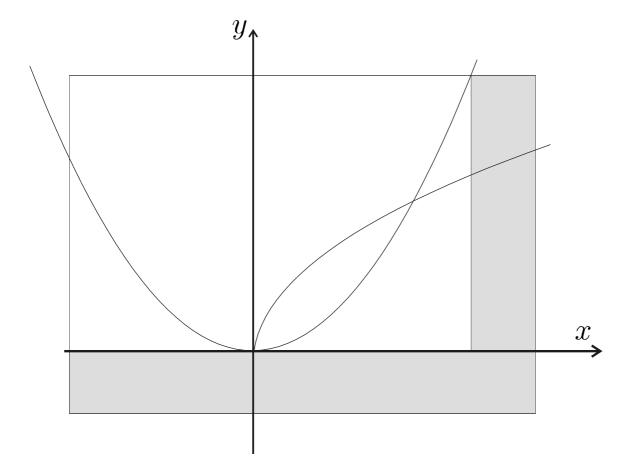
We build two contractors

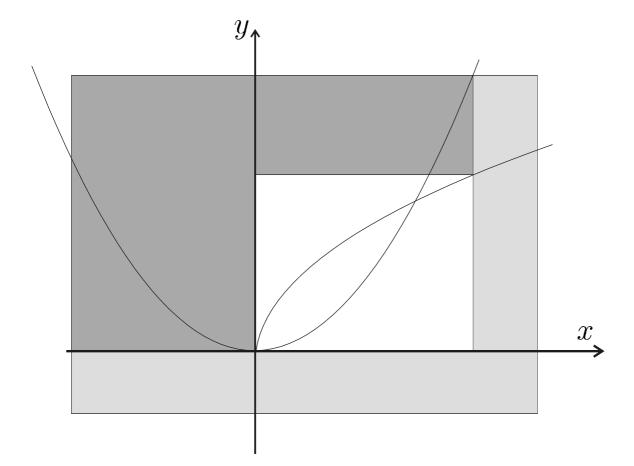
$$\mathcal{C}_{1}: \begin{cases} [y] = [y] \cap [x]^{2} \\ [x] = [x] \cap \sqrt{[y]} \end{cases} \text{ associated with } y = x^{2} \\ \mathcal{C}_{2}: \begin{cases} [y] = [y] \cap \sqrt{[x]} \\ [x] = [x] \cap [y]^{2} \end{cases} \text{ associated with } y = \sqrt{x} \end{cases}$$

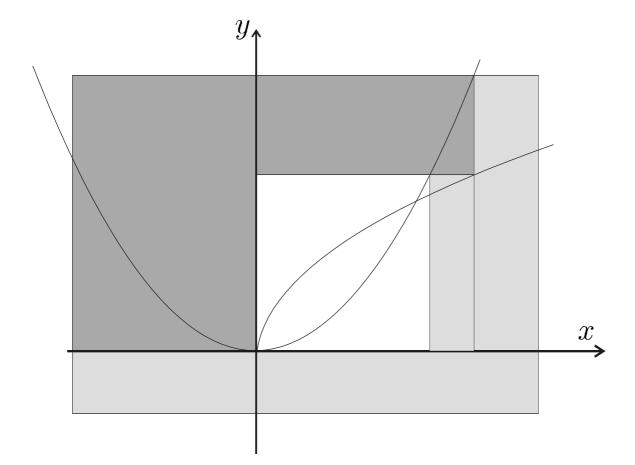


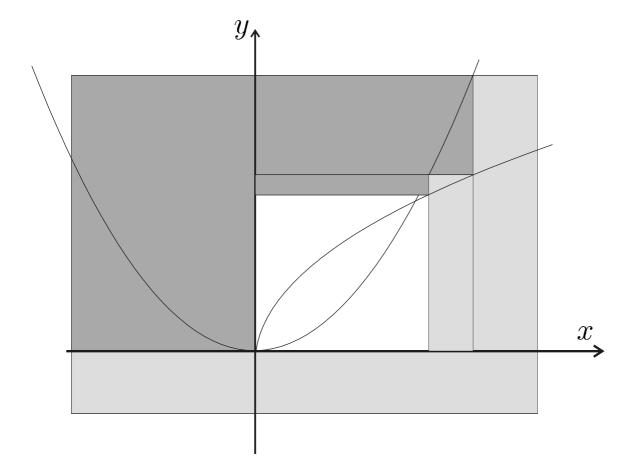
Contractor graph

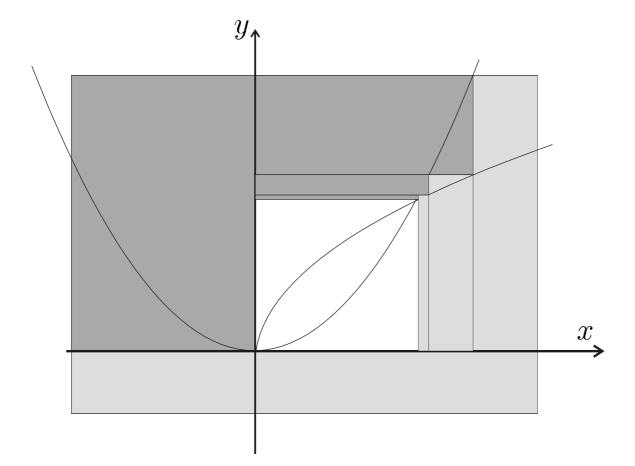


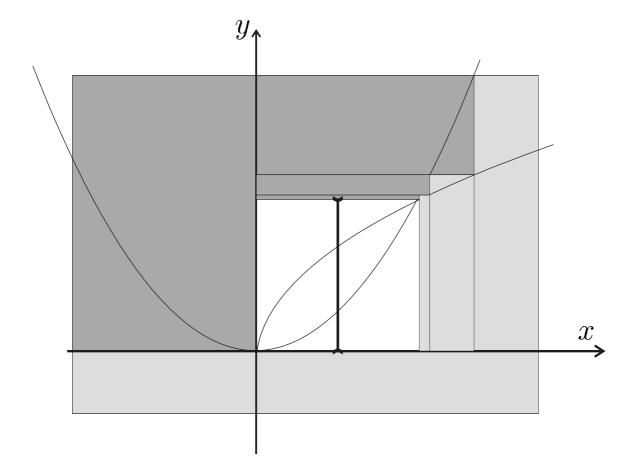


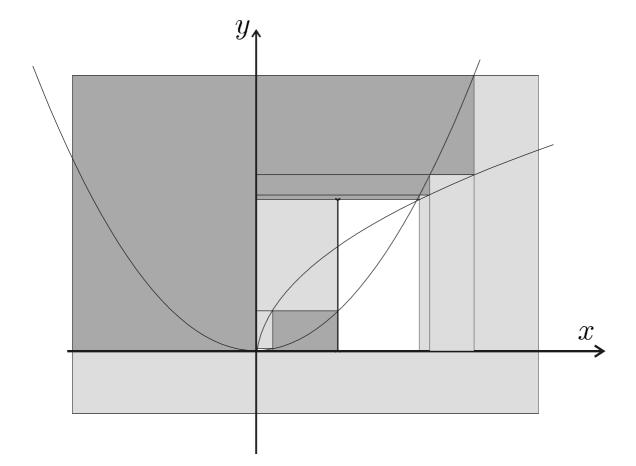


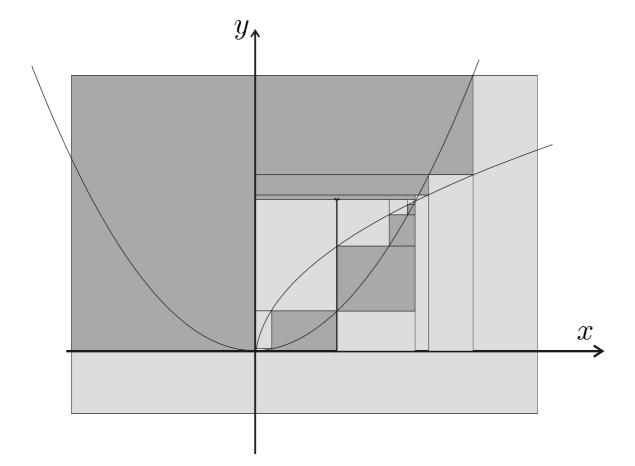












4 Vaimos

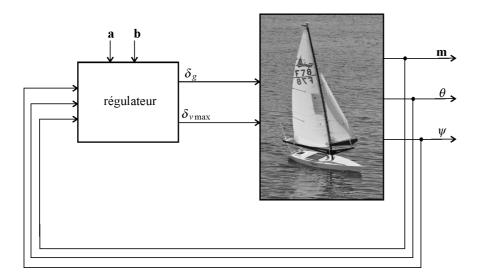
Vaimos (IFREMER and ENSTA)

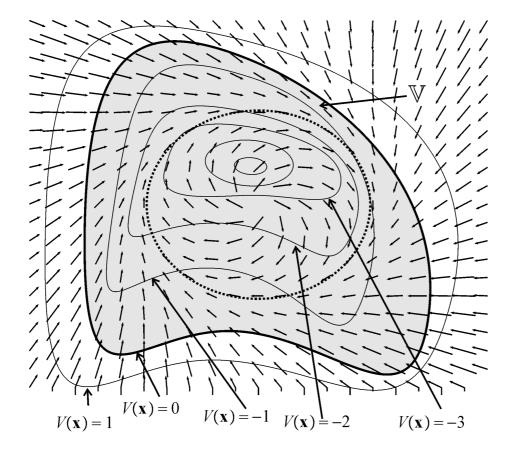
The robot satisfies a state equation

$$\mathbf{\dot{x}}=\mathbf{f}\left(\mathbf{x},\mathbf{u}
ight)$$
 .

With the controller $\mathbf{u}=\mathbf{g}\left(\mathbf{x}
ight)$, the robot satisfies

$$\dot{\mathbf{x}}=\mathbf{f}\left(\mathbf{x}\right)$$





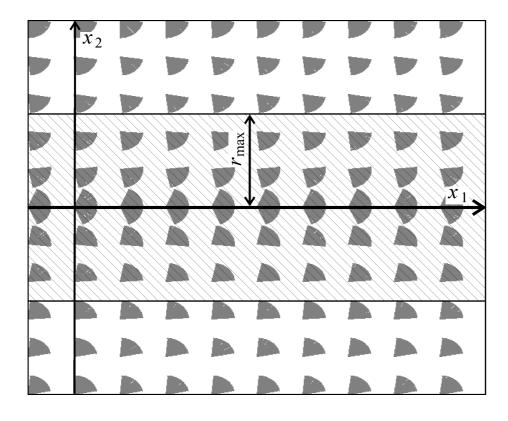
With uncertainty, the robot satisfies.

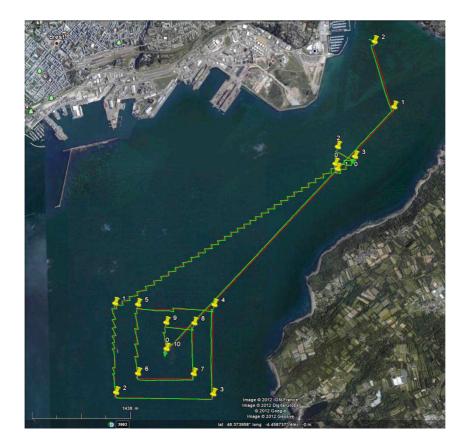
 $\dot{\mathbf{x}} \in \mathbf{F}\left(\mathbf{x}
ight)$

which is a differential inclusion.

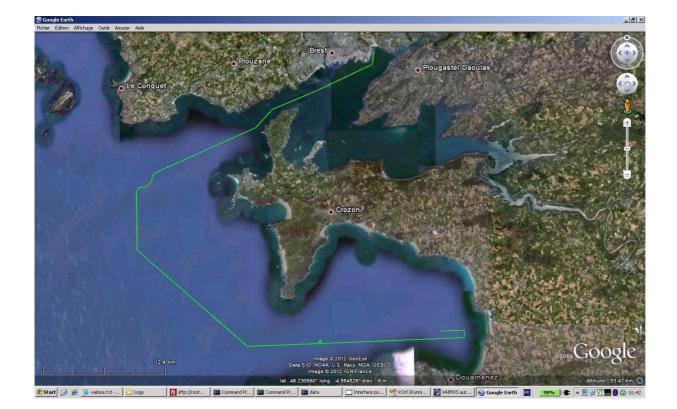
Theorem. We have

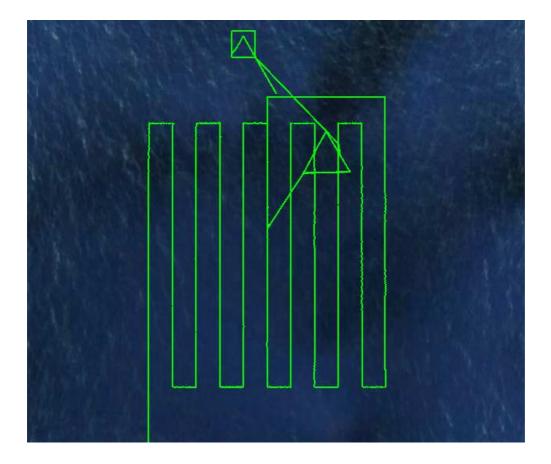
 $\begin{cases} \frac{\partial V}{\partial \mathbf{x}}(\mathbf{x}) . \mathbf{a} \ge \mathbf{0} \\ \mathbf{a} \in \mathbf{F}(\mathbf{x}) \\ V(\mathbf{x}) \ge \mathbf{0} \end{cases} \text{ inconsistent } \Leftrightarrow \mathbf{\dot{x}} \in \mathbf{F}(\mathbf{x}) \text{ is } V \text{-stable} \end{cases}$





Brest-Douarnenez. January 17, 2012, 8am





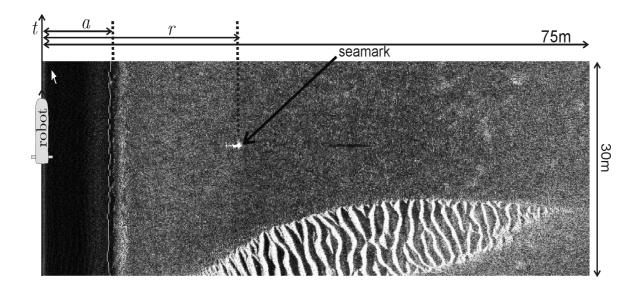
Middle of Atlantic ocean: 350 km in 53h, September 6-9, 2012.

5 Underwater SLAM

Context : Mines detection.

Dans le monde sous marin, les amers sont souvent indistingables et partiellement observables.

Voir film CLAPOT.



Mine detection with SonarPro

Formalization

 $\begin{array}{l} \text{Robot: } \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},\mathbf{u}), \ \mathbf{x}\left(\mathbf{0}\right) = \mathbf{0}.\\ \text{Marks } \mathcal{M} = \left\{\mathbf{m}\left(\mathbf{1}\right), \mathbf{m}\left(\mathbf{2}\right), \dots \right\} \subset \mathbb{R}^{2}. \end{array}$

Context: indistinguishable point marks that are partially observable

Our SLAM is a *chicken and egg* problem of cardinality three:

(i) if the map and the associations are known, we have localization problem,

(ii) if the trajectory and the associations are known, we have a mapping problem

(iii) if the trajectory and the map are known we have an association problem.

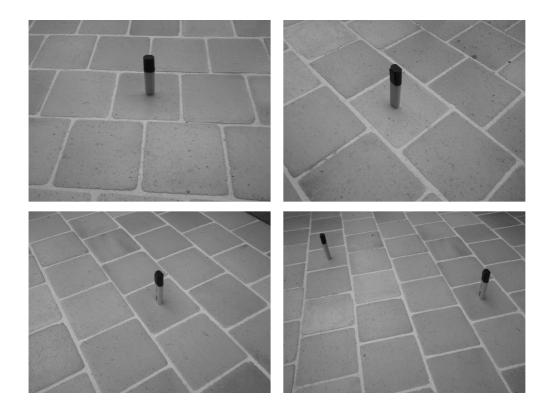
The unknown variables have an heterogenous nature:

(i) marks $\mathbf{m}\left(j
ight)\in\mathbb{R}^{2}$

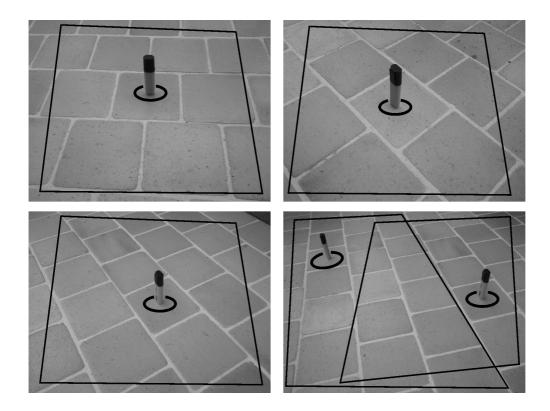
(ii) trajectory $\mathbf{x}(t): \mathbb{R}
ightarrow \mathbb{R}^n$,

(iii) the free space $\mathbb{F} \in \mathcal{P}\left(\mathbb{R}^2\right)$

(iv) the data associations is a graph \mathcal{G} .



A sector \mathbb{H} is a subset of \mathbb{R}^2 which contains a single mark.



Our SLAM problem:

$$\left\{ egin{array}{l} \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},\mathbf{u}) & (ext{evolution equation}) \ \left(t_i,\mathcal{H}_i\left(\mathbf{x}
ight)
ight) & (ext{sector list}) \end{array}
ight.$$

where $t \in [0, t_{\max}]$, $\mathbf{u}(t) \in [\mathbf{u}](t)$. Each set $\mathcal{H}_i(\mathbf{x}(t_i)) \subset \mathbb{R}^2$ contains a unique mark.

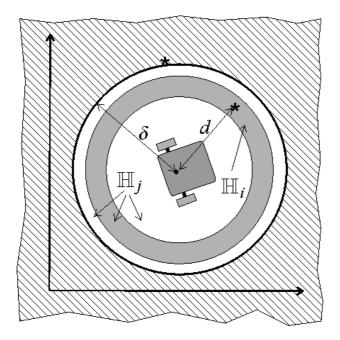
We have an egocentric representation.

We define $\mathbb{H}_i = \mathcal{H}_i(\mathbf{x}(t_i)).$

Example 1. A robot moving in a plane and located at (x_1, x_2) . At t_3 the robot detects a unique mark at a distance $d \in [4, 5]$. We have

 $\mathcal{H}_3(\mathbf{x}) = \left\{ \mathbf{a} \in \mathbb{R}^2 | (x_1 - a_1)^2 + (x_2 - a_2)^2 \in [16, 25] \right\}.$

Example 2. We have two sectors \mathbb{H}_i and \mathbb{H}_j . Since $\mathbb{H}_i \subset \mathbb{H}_j$, $\mathbb{H}_j \setminus \mathbb{H}_i$ has no mark. Thus we can associate \mathbb{H}_i with \mathbb{H}_j .

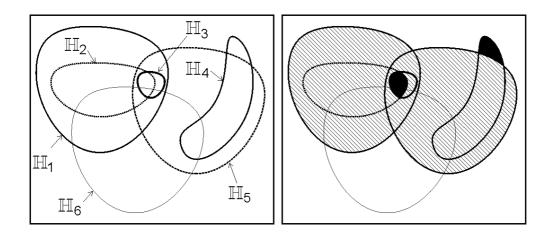


Theorem. Define the free space as $\mathbb{F} = \{ \mathbf{p} \in \mathbb{R}^2 \mid \mathbf{p} \notin \mathcal{M} \}$. Consider *m* sectors $\mathbb{H}_1, \ldots, \mathbb{H}_m$. Denote by $\mathbf{a}(i)$ the mark in \mathbb{H}_i . We have

(i)
$$\mathbb{H}_i \subset \mathbb{H}_j \Rightarrow \mathbf{a}(i) = \mathbf{a}(j)$$

(ii) $\mathbb{H}_i \cap \mathbb{H}_j = \emptyset \Rightarrow \mathbf{a}(i) \neq \mathbf{a}(j)$
(iii) $\mathbb{H}_i \subset \mathbb{H}_j \Rightarrow \mathbb{H}_j \setminus \mathbb{H}_i \subset \mathbb{F}.$

Example.



The two black zones contain a single mark and no mark exists in the hatched area.

Association graph. Consider m detections $\mathbf{a}(1), \ldots, \mathbf{a}(m)$. The *association graph* is the graph with nodes $\mathbf{a}(i)$ such that $\mathbf{a}(i) \to \mathbf{a}(j)$ means that $\mathbf{a}(i) = \mathbf{a}(j)$.

7 Generalized contractors

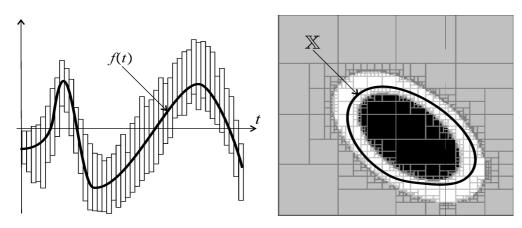
7.1 Lattices

A *lattice* (\mathcal{E}, \leq) is a partially ordered set, closed under least upper and greatest lower bounds.

The *join*: $x \lor y$. The *meet*: $x \land y$. An interval [x] of a complete lattice ${\mathcal E}$ is a subset of ${\mathcal E}$ which satisfies

$$[x] = \{x \in \mathcal{E} \mid \land [x] \le x \le \lor [x]\}.$$

Both \emptyset and \mathcal{E} are intervals of \mathcal{E} .



An interval function (or tube) and a set interval

7.2 Contractors

A CSP is composed of variables $\{x_1, \ldots, x_n\}$, constraints $\{c_1, \ldots, c_m\}$ and domains $\{X_1, \ldots, X_n\}$.

The domains \mathbb{X}_i should belong to a lattice (\mathcal{L}_i, \subset) .

Here domains are

(i) subsets of \mathbb{R}^n for the location of the marks,

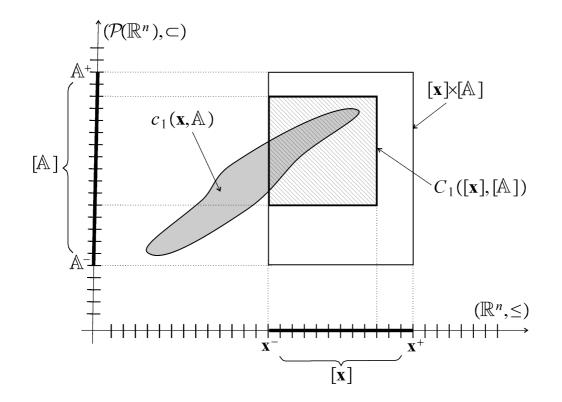
(ii) tubes for the unknown trajectory and

(iii) intervals of subsets of \mathbb{R}^n for the sectors and the free space.

Define $\mathcal{L} = \mathcal{L}_1 \times \cdots \times \mathcal{L}_n$. An element X of \mathcal{L} is the Cartesian product of n elements of \mathcal{L}_i : $X = X_1 \times \cdots \times X_n$. The set X will be called *hyperdomain*. A contractor is an operator

which satisfies

$$\begin{split} \mathbb{X} \subset \mathbb{Y} \Rightarrow \mathcal{C} \left(\mathbb{X} \right) \subset \mathcal{C} \left(\mathbb{Y} \right) & \text{(monotonicity)} \\ \mathcal{C} \left(\mathbb{X} \right) \subset \mathbb{X} & \text{(contractance)} \end{split}$$



7.3 Graph intervals

The set of graphs of ${\mathcal A}$ with the relation

 $\mathcal{G} \leq \mathcal{H} \Leftrightarrow orall i, j \in \{1, \dots, m\}, \ g_{ij} \leq h_{ij},$

corresponds to a complete lattice. Intervals of graphs of ${\cal A}$ can thus be defined.

Example

8 SLAM as a CSP

Variables

(i) the trajectory of the robot \mathbf{x} .

(ii) the sectors \mathbb{H}_i

(iii) the location of the mark $\mathbf{a}(i)$ detected at time t_i

(iv) the association graph ${\cal G}$

(v) the free space \mathbb{F} .

Domains

 $\mathbf{x} \in [\mathbf{x}] = [\mathbf{x}^{-}, \mathbf{x}^{+}]$ $\mathbf{a}(i) \in \mathbb{A}(i)$ $\mathbb{H}_{i} \in [\mathbb{H}_{i}] = [\mathbb{H}_{i}^{-}, \mathbb{H}_{i}^{+}]$ $\mathbb{F} \in [\mathbb{F}] = [\mathbb{F}^{-}, \mathbb{F}^{+}]$ $\mathcal{G} \in [\mathcal{G}] = [\mathcal{G}^{-}, \mathcal{G}^{+}].$

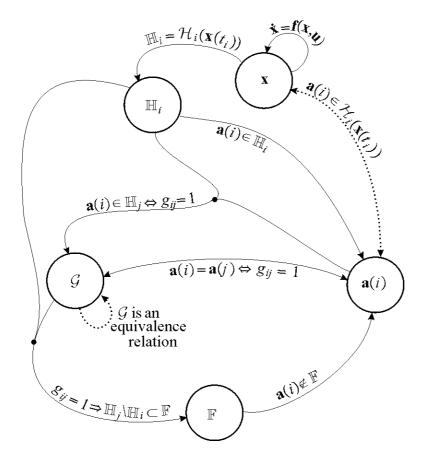
Initialization

$$\begin{split} & [\mathbf{x}] \left(t \right) = [-\infty, \infty] \text{ if } t > 0 \text{ and } [\mathbf{x}] \left(0 \right) = \mathbf{0}. \\ & \mathbb{A} \left(i \right) = \mathbb{R}^2. \\ & \mathbb{H}_i \in \left[\emptyset, \mathbb{R}^2 \right]. \\ & \mathbb{F} \in \left[\emptyset, \mathbb{R}^2 \right]. \\ & \mathcal{G} \in \left[\emptyset, \top \right]. \end{split}$$

Constraints

(i)
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$$

(ii) $\mathbb{H}_i = \mathcal{H}_i(\mathbf{x}(t_i))$
(iii) $\mathbf{a}(i) \in \mathbb{H}_i$
(iv) $\mathbf{a}(i) = \mathbf{a}(j) \Leftrightarrow g_{ij} = 1$
(v) $\mathbf{a}(i) \in \mathbb{H}_j \Leftrightarrow g_{ij} = 1$
(vi) $g_{ij} = 1 \Rightarrow \mathbb{H}_j \setminus \mathbb{H}_i \subset \mathbb{F}$
(vii) $\mathbf{a}(i) \notin \mathbb{F}$



9 Test-case

Generation of the data.

A simulated robot follows a cycloid for 100sec.

10 marks inside $[-8, 8] \times [-8, 8]$.

A rangefinder collects the distance \tilde{d} to the nearest mark.

Resolution. The robot is

$$\begin{cases} \dot{x}_1 = u_1 \cos u_2 \\ \dot{x}_2 = u_1 \sin u_2. \end{cases}$$

The set-valued sector functions are

$$\begin{aligned} \mathcal{H}_i\left(\mathbf{x}\left(t_i\right)\right) &= \left\{\mathbf{a} \mid \left\|\mathbf{a} - \mathbf{x}\left(t_i\right)\right\| \in \left[d_i\right]\right\} \\ \mathcal{H}_{i+1}\left(\mathbf{x}\left(t_{i+1}\right)\right) &= \left\{\mathbf{a} \mid \left\|\mathbf{a} - \mathbf{x}\left(t_{i+1}\right)\right\| < \delta_{i+1}\right\}. \end{aligned}$$

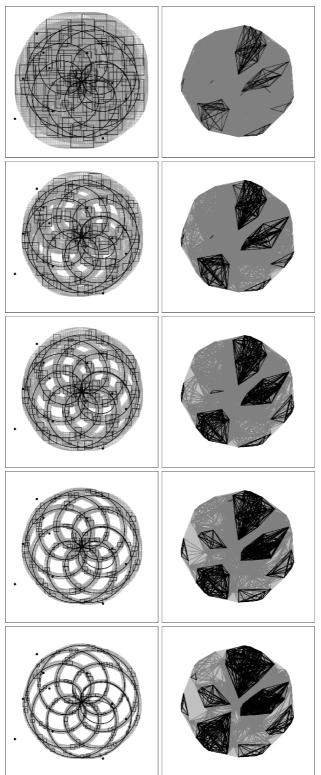
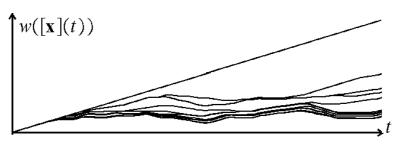
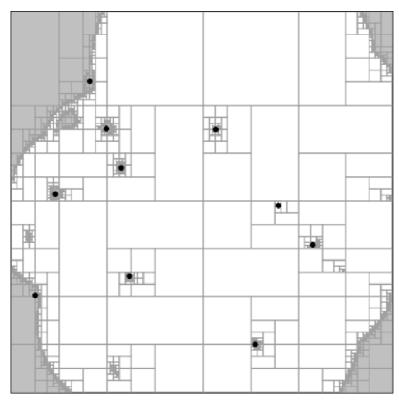


Illustration of the propagation. Left: the tube becomes more and more accurate. Right: The association graph has more and more arcs.



Superposition of the width of the tube $[\mathbf{x}](t)$

Associations. At the fixed point, 3888 associations have been found, 29128 pairs $(\mathbf{a}(i), \mathbf{a}(j))$ have been proven disjoint and 5400 pairs $(\mathbf{a}(i), \mathbf{a}(j))$ have not been classified.



Free space \mathbb{F} .

References.

L. Jaulin (2009), A nonlinear set-membership approach for the localization and map building of an underwater robot using interval constraint propagation, *IEEE Transactions on Robotics*.

L. Jaulin and F. Le Bars (2012). An interval approach for stability analysis; Application to sailboat robotics. *IEEE Transaction on Robotics*.

G. Chabert and L. Jaulin (2009), Contractor programming. *Artificial Intelligence*.

L. Jaulin (2011). Range-only SLAM with occupancy maps; A set-membership approach. *IEEE Transaction on Robotics.*

L. Jaulin (2012). Solving set-valued constraint satisfaction problems. *Computing*.