Lesson in interval robotics

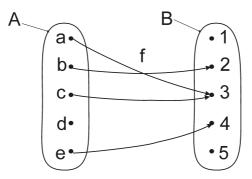
Luc Jaulin,

ENSTA-Bretagne, Brest, France http://www.ensta-bretagne.fr/jaulin/ October 26, University of Manchester

1 Interval computation

1.1 Notions on set theory

Exercise: If f is defined as follows



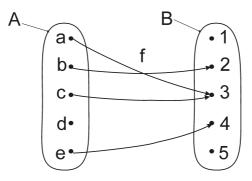
$$f(A) = ?.$$

$$f^{-1}(B) = ?.$$

$$f^{-1}(f(A)) = ?.$$

$$f^{-1}(f(\{b,c\})) = ?.$$

Exercise: If f is defined as follows



$$f(A) = \{2,3,4\} = \operatorname{Im}(f).$$

$$f^{-1}(B) = \{a,b,c,e\} = \operatorname{dom}(f).$$

$$f^{-1}(f(A)) = \{a,b,c,e\} \subset A$$

$$f^{-1}(f(\{b,c\})) = \{a,b,c\}.$$

Exercise: If $f(x) = x^2$, then

$$f([2,3]) = ?$$

 $f^{-1}([4,9]) = ?$

Exercise: If $f(x) = x^2$, then

$$\begin{array}{rcl} f([2,3]) &=& [4,9] \\ f^{-1}([4,9]) &=& [-3,-2] \cup [2,3]. \end{array}$$

This is consistent with the property

 $f^{-1}(f(\mathbb{Y})) \supset \mathbb{Y}.$

1.2 Interval arithmetic

Exercise.

$$egin{array}{rll} [-1,3]+[2,5]&=[?,?],\ [-1,3]\cdot[2,5]&=[?,?],\ [-2,6]/[2,5]&=[?,?]. \end{array}$$

Solution.

$$egin{array}{rll} [-1,3]+[2,5]&=[1,8],\ [-1,3].[2,5]&=[-5,15],\ [-2,6]/[2,5]&=[-1,3]. \end{array}$$

Exercise. Compute

$$[-2,2]/[-1,1] = [?,?].$$

Solution.

$$[-2,2]/[-1,1] = [-\infty,\infty].$$

$$[x^{-}, x^{+}] + [y^{-}, y^{+}] = [x^{-} + y^{-}, x^{+} + y^{+}], [x^{-}, x^{+}] \cdot [y^{-}, y^{+}] = [x^{-}y^{-} \wedge x^{+}y^{-} \wedge x^{-}y^{+} \wedge x^{+}y^{+}, x^{-}y^{-} \vee x^{+}y^{-} \vee x^{-}y^{+} \vee x^{+}y^{+}],$$

Exercise.

$$\begin{array}{rcl} \sin\left([0,\pi]\right) &=& ?,\\ & \mbox{sqr}\left([-1,3]\right) &=& [-1,3]^2 =?,\\ & \mbox{abs}\left([-7,1]\right) &=& ?,\\ & \mbox{sqrt}\left([-10,4]\right) &=& \sqrt{[-10,4]} =?,\\ & \mbox{log}\left([-2,-1]\right) &=& ?. \end{array}$$

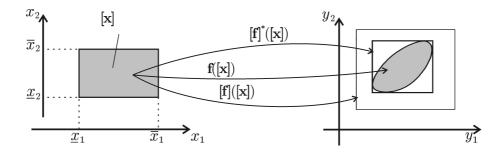
Solution.

$$\begin{array}{rcl} \sin\left([0,\pi]\right) &=& [0,1],\\ \mathrm{sqr}\left([-1,3]\right) &=& [-1,3]^2 = [0,9],\\ \mathrm{abs}\left([-7,1]\right) &=& [0,7],\\ \mathrm{sqrt}\left([-10,4]\right) &=& \sqrt{[-10,4]} = [0,2],\\ \log\left([-2,-1]\right) &=& \emptyset. \end{array}$$

1.3 Inclusion function

A box, or interval vector $[\mathbf{x}]$ of \mathbb{R}^n is $[\mathbf{x}] = [x_1^-, x_1^+] \times \cdots \times [x_n^-, x_n^+] = [x_1] \times \cdots \times [x_n].$ The set of all boxes of \mathbb{R}^n will be denoted by \mathbb{IR}^n .

$$\begin{split} [\mathbf{f}] : \mathbb{I}\mathbb{R}^n \to \mathbb{I}\mathbb{R}^m \text{ is an inclusion function of } \mathbf{f} \text{ if} \\ & \forall [\mathbf{x}] \in \mathbb{I}\mathbb{R}^n, \ \mathbf{f}([\mathbf{x}]) \subset [\mathbf{f}]([\mathbf{x}]). \end{split}$$



Exercise. The natural inclusion function for $f(x) = x^2 + 2x + 4$ is

$$[f]([x]) = [x]^2 + 2[x] + 4.$$

For [x] = [-3, 4], compute [f]([x]) and f([x]).

Solution. If [x] = [-3, 4], we have

$$[f]([-3,4]) = [-3,4]^2 + 2[-3,4] + 4$$

= $[0,16] + [-6,8] + 4$
= $[-2,28].$

Note that $f([-3, 4]) = [3, 28] \subset [f]([-3, 4]) = [-2, 28]$.

A minimal inclusion function for

$$\mathbf{f}: \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^3 \\ (x_1, x_2) & \mapsto & \left(x_1 x_2, x_1^2, x_1 - x_2\right). \end{array}$$

is

$$[\mathbf{f}]: \begin{array}{ccc} \mathbb{I}\mathbb{R}^2 & \to & \mathbb{I}\mathbb{R}^3\\ ([x_1], [x_2]) & \to & ([x_1] * [x_2], [x_1]^2, [x_1] - [x_2]) \end{array}$$

If ${\bf f}$ is given by

Algorithm f(in: $\mathbf{x} = (x_1, x_2, x_3)$, out: $\mathbf{y} = (y_1, y_2)$) 1 $z := x_1$; 2 for k := 0 to 100 3 $z := x_2(z + k \cdot x_3)$; 4 next; 5 $y_1 := z$; 6 $y_2 := \sin(zx_1)$; Its natural inclusion function is

Algorithm [f](in: $[x]$, out: $[y]$)	
1	$[z] := [x_1];$
2	for $k := 0$ to 100
3	$[z] := [x_2] * ([z] + k \cdot [x_3]);$
4	next;
5	$\left[y_{1} ight] :=\left[z ight]$;
6	$[y_2] := sin([z] * [x_1]);$

Is [f] convergent? thin? monotonic?

1.4 Boolean intervals

A Boolean number is an element of

$$\mathbb{B} \triangleq \{ \textit{false}, \textit{true} \} = \{0, 1\}$$
.

If we define the relation \leq as

$$0\leq 0, \quad 0\leq 1, \quad 1\leq 1,$$

then, the set (\mathbb{B}, \leq) is a lattice for which intervals can be defined.

Exercise: The set of *Boolean interval* is

 $\mathbb{IB} = \{?, ?, ?, ?\},$

Exercise: The set of *Boolean interval* is $\mathbb{IB} = \{\emptyset, 0, 1, [0, 1]\},\$

Boolean interval arithmetic

$$\begin{array}{ll} [a] \lor [b] &= \{a \lor b \mid a \in [a], b \in [b]\}, \\ [a] \land [b] &= \{a \land b \mid a \in [a], b \in [b]\}, \\ \neg [a] &= \{\neg a \mid a \in [a]\}. \end{array}$$

Exercise: Compute

 $([0,1] \lor 1) \land ([0,1] \land 1) = ?$

Solution: We have

 $([0,1] \lor 1) \land ([0,1] \land 1) = 1 \land [0,1] = [0,1].$

2 Subpavings

2.1 Definition

A subpaving of \mathbb{R}^n is a set of non-overlapping boxes of \mathbb{R}^n .

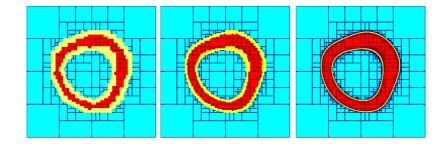
Compact sets $\mathbb X$ can be bracketed between inner and outer subpavings:

 $\mathbb{X}^{-}\subset\mathbb{X}\subset\mathbb{X}^{+}.$

Exercise. The set

$$\mathbb{X} = \{ (x_1, x_2) \mid x_1^2 + x_2^2 + \sin(x_1 + x_2) \in [4, 9] \}$$

are approximated by \mathbb{X}^- and \mathbb{X}^+ for different accuracies.



2.2 Set inversion

If $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbb{Y} \subset \mathbb{R}^m$.

$$\mathbb{X} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{f}(\mathbf{x}) \in \mathbb{Y}\} = \mathbf{f}^{-1}(\mathbb{Y}).$$

Exercise. Define the set

 $\mathbb{X} = \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1 x_2 + \sin x_2 \leq 0 \text{ and } x_1 - x_2 = 1 \}.$

Show that it is a set inversion problem.

Solution. We have

$$\mathbb{X}=\mathrm{f}^{-1}(\mathbb{Y})$$

with

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} x_1 x_2 + \sin x_2 \\ x_1 - x_2 \end{pmatrix} \text{ and } \mathbb{Y} = [-\infty, 0] \times \{1\}.$$

$$\begin{array}{ll} (\mathsf{i}) & [\mathbf{f}]([\mathbf{x}]) \subset \mathbb{Y} & \Rightarrow & [\mathbf{x}] \subset \mathbb{X} \\ (\mathsf{ii}) & [\mathbf{f}]([\mathbf{x}]) \cap \mathbb{Y} = \emptyset & \Rightarrow & [\mathbf{x}] \cap \mathbb{X} = \emptyset. \end{array}$$

Boxes for which these tests failed, will be bisected, except if they are too small.

```
Algorithm Sivia(in: [x](0), f, \mathbb{Y})
```

```
1 \mathcal{L} := \{ [\mathbf{x}](\mathbf{0}) \} ;
```

```
2 pull [\mathbf{x}] from \mathcal{L};

3 if [\mathbf{f}]([\mathbf{x}]) \subset \mathbb{Y}, draw([\mathbf{x}], 'red');

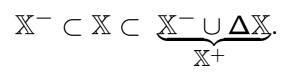
4 elseif [\mathbf{f}]([\mathbf{x}]) \cap \mathbb{Y} = \emptyset, draw([\mathbf{x}], 'blue');

5 elseif w([\mathbf{x}]) < \varepsilon, {draw ([\mathbf{x}], 'yellow')};

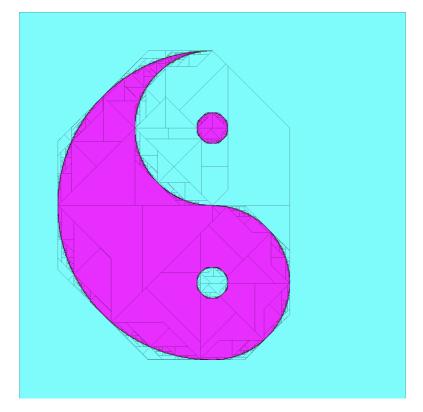
6 else bisect [\mathbf{x}] and push into \mathcal{L};
```

```
7 if \mathcal{L} \neq \emptyset, go to 2
```

If $\Delta \mathbb{X}$ denotes the union of yellow boxes and if \mathbb{X}^- is the union of red boxes then:



Sivia works with other abstract domains (or wrappers).



Sivia with octogones (made by D. Massé)

2.3 Bounded-error estimation

Exercise. Consider a parabola of the form

$$\phi(\mathbf{p},t) = p_1 t^2 + p_2 t + p_3.$$

where $\mathbf{p} = (p_1, p_2, p_3)^{\mathsf{T}}$ is an unkown parameter vector. Assume that

$$\phi(\mathbf{p}, \mathbf{1}) \in [2, 3], \ \phi(\mathbf{p}, \mathbf{4}) \in [5, 6], \ \phi(\mathbf{p}, \mathbf{7}) \in [8, 9].$$

Show that the set $\mathbb P$ of all feasible $\mathbf p$ can be defined as a set inversion problem.

Solution. We have

$$\mathbb{P}=\mathrm{f}^{-1}\left(\mathbb{Y}
ight),$$

where

$$\mathbf{f}(\mathbf{p}) = \begin{pmatrix} \phi(\mathbf{p}, 1) \\ \phi(\mathbf{p}, 4) \\ \phi(\mathbf{p}, 7) \end{pmatrix} = \begin{pmatrix} p_1 + p_2 + p_3 \\ 16p_1 + 4p_2t + p_3 \\ 49p_1 + 7p_2 + p_3 \end{pmatrix}$$

 $\quad \text{and} \quad$

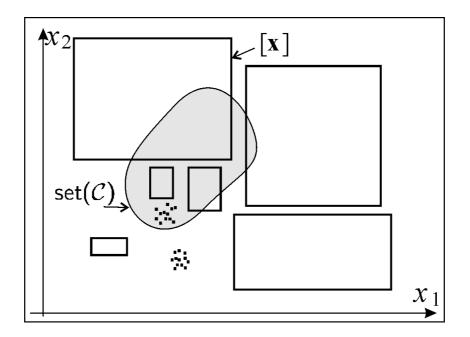
$$\mathbb{Y} = [2,3] \times [5,6] \times [8,9]$$
.

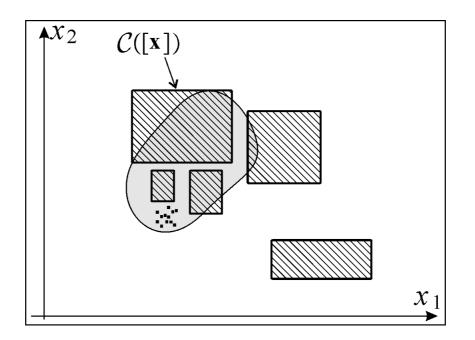
Contractors

3.1 Definition

The operator $\mathcal{C}_{\mathbb{X}}:\mathbb{IR}^n\to\mathbb{IR}^n$ is a *contractor* for $\mathbb{X}\subset\mathbb{R}^n$ if

$$\forall [\mathbf{x}] \in \mathbb{IR}^n, \left\{ \begin{array}{ll} \mathcal{C}_{\mathbb{X}}([\mathbf{x}]) \subset [\mathbf{x}] & (\text{contractance}), \\ \mathcal{C}_{\mathbb{X}}([\mathbf{x}]) \cap \mathbb{X} = [\mathbf{x}] \cap \mathbb{X} & (\text{completeness}). \end{array} \right.$$





The operator $\mathcal{C} : \mathbb{IR}^n \to \mathbb{IR}^n$ is a *contractor* for the equation $f(\mathbf{x}) = 0$, if $\begin{pmatrix} \mathcal{C}(\mathbf{x}) \\ \subset \mathbf{x} \end{pmatrix} \subset \mathbf{x}$

$$\forall [\mathbf{x}] \in \mathbb{IR}^n, \begin{cases} \mathcal{C}([\mathbf{x}]) \subset [\mathbf{x}] \\ \mathbf{x} \in [\mathbf{x}] \text{ et } f(\mathbf{x}) = \mathbf{0} \Rightarrow \mathbf{x} \in \mathcal{C}([\mathbf{x}]) \end{cases}$$

Exercice. Let x, y, z be 3 variables such that

$$egin{array}{rcl} x &\in & [-\infty, 5], \ y &\in & [-\infty, 4], \ z &\in & [6, \infty], \ z &= & x+y. \end{array}$$

Contract the intervals for x, y, z.

Solution.

Since $x \in [-\infty, 5], y \in [-\infty, 4], z \in [6, \infty]$ and z = x + y, we have

$$egin{aligned} z &= x + y \Rightarrow \ z \in \ [6,\infty] \cap ([-\infty,5] + [-\infty,4]) \ &= [6,\infty] \cap [-\infty,9] = [6,9]. \ x &= z - y \Rightarrow \ x \in \ [-\infty,5] \cap ([6,\infty] - [-\infty,4]) \ &= [-\infty,5] \cap [2,\infty] = [2,5]. \ y &= z - x \Rightarrow \ y \in \ [-\infty,4] \cap ([6,\infty] - [-\infty,5]) \ &= [-\infty,4] \cap [1,\infty] = [1,4]. \end{aligned}$$

The contractor associated with z = x + y is:

Algorithm Cadd(inout: $[z], [x], [y]$)		
1	$[z] := [z] \cap ([x] + [y]);$	
2	$[x]:=[x]\cap \left(\left[z ight] -\left[y ight] ight)$;	
3	$[y] := [y] \cap \left([z] - [x] \right).$	

The contractor associated with $z = x \cdot y$ is

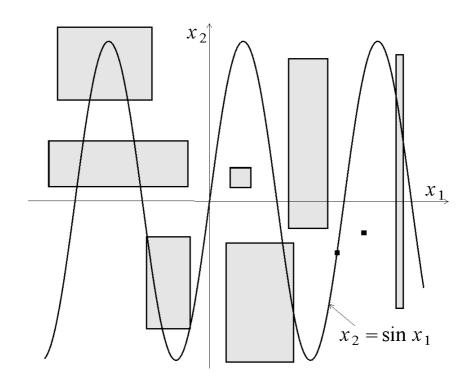
Algorithm pmul(inout: $[z], [x], [y]$)		
1	$[z]:=[z]\cap \left([x]\cdot [y] ight)$;	
2	$[x]:=[x]\cap \left([z]\cdot 1/[y] ight)$;	
3	$[y]:=[y]\cap \left([z]\cdot 1/[x] ight).$	

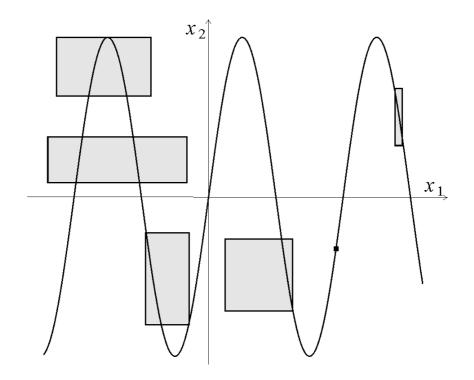
The contractor associated with $y = \exp(y)$ is

Algorithm Cexp(inout: $[y], [x]$)		
1	$[y] := [y] \cap \exp([x]);$	
2	$[x] := [x] \cap \log ([y]).$	

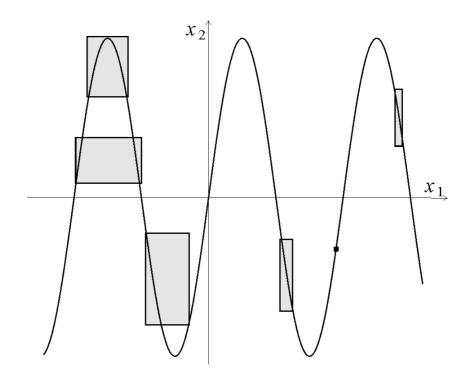
Example. Consider the primitive equation:

 $x_2 = \sin x_1.$





Forward contraction



Backward contraction

Decomposition

$$egin{aligned} x+\sin(xy)\leq \mathsf{0},\ x\in [-1,1], y\in [-1,1] \end{aligned}$$

Decomposition

$$egin{aligned} x+\sin(xy)\leq 0,\ x\in [-1,1], y\in [-1,1] \end{aligned}$$

can be decomposed into

$$\left\{ egin{array}{ll} a=xy & x\in [-1,1] & a\in [-\infty,\infty] \ b=\sin(a) &, y\in [-1,1] & b\in [-\infty,\infty] \ c=x+b & c\in [-\infty,0] \end{array}
ight.$$

Forward-backward contractor (HC4 revise)

For the equation

$$(x_1 + x_2) \cdot x_3 \in [1, 2],$$

we have the following contractor:

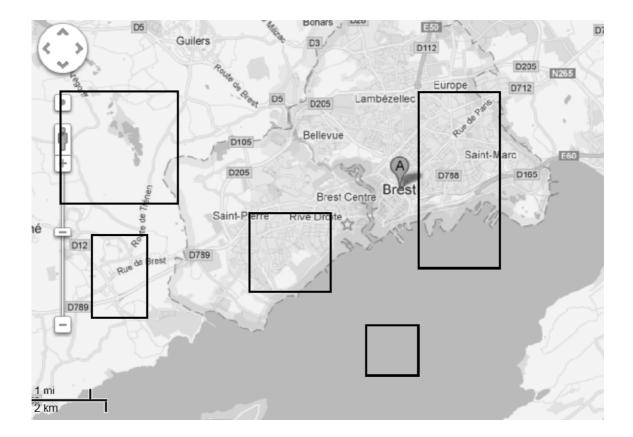
algorithm C (inout $[x_1], [x_2], [x_3]$)			
$[a] = [x_1] + [x_2]$	$//a = x_1 + x_2$		
$[b] = [a] \cdot [x_3]$	$// b = a \cdot x_3$		
$[b] = [b] \cap [1,2]$	$//~b\in$ [1,2]		
$[x_3] = [x_3] \cap \frac{[b]}{[a]}$	$//x_3 = \frac{b}{a}$		
$[a] = [a] \cap \frac{[b]}{[x_3]}$	$//a = \frac{b}{x_3}$		
$[x_1] = [x_1] \cap [a] - [x_2]$	$//x_1 = a - x_2$		
$[x_2] = [x_2] \cap [a] - [x_1]$	$//x_2 = a - x_1$		

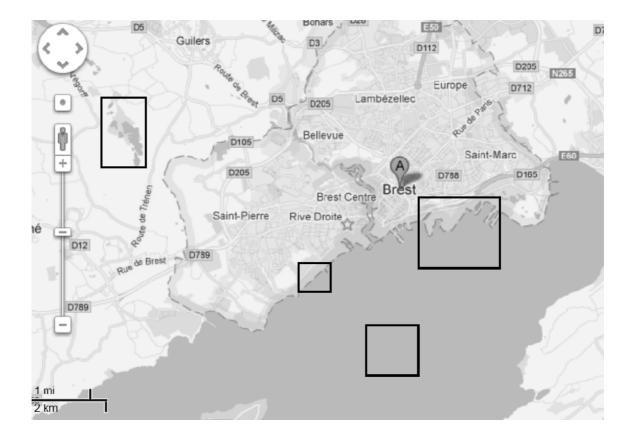
Properties

$$\begin{array}{lll} (\mathcal{C}_{1}^{\infty} \cap \mathcal{C}_{2}^{\infty})^{\infty} &= (\mathcal{C}_{1} \cap \mathcal{C}_{2})^{\infty} \\ (\mathcal{C}_{1} \cap (\mathcal{C}_{2} \cup \mathcal{C}_{3})) &\supset (\mathcal{C}_{1} \cap \mathcal{C}_{2}) \cup (\mathcal{C}_{1} \cap \mathcal{C}_{3}) \\ \begin{cases} \mathcal{C}_{1} \text{ minimal} \\ \mathcal{C}_{2} \text{ minimal} \end{cases} \Rightarrow \mathcal{C}_{1} \cup \mathcal{C}_{2} \text{ minimal} \end{array}$$

Contractor on images

The robot with coordinates (x_1, x_2) is in the water.





3.2 Propagation

A CN (Constraint Network) is composed of 1) a set of variables $\mathcal{V} = \{x_1, \ldots, x_n\}$, 2) a set of constraints $\mathcal{C} = \{c_1, \ldots, c_m\}$ and 3) a set of interval domains $\{[x_1], \ldots, [x_n]\}$. Principle of propagation: contract $[\mathbf{x}] = [x_1] \times \cdots \times [x_n]$ as follows:

 $((((([\mathbf{x}] \sqcap c_1) \sqcap c_2) \sqcap \dots) \sqcap c_m) \sqcap c_1) \sqcap c_2) \dots,$

until a steady box is reached.

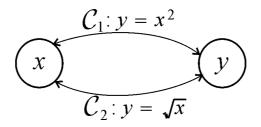
3.3 Example 1

Consider the system of two equations.

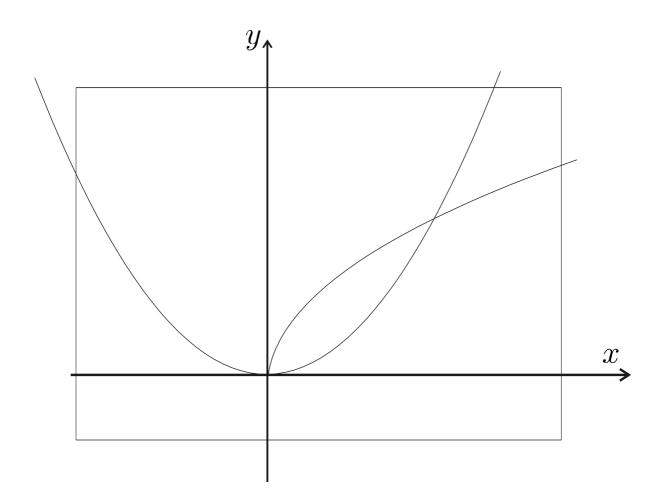
$$y = x^2$$
$$y = \sqrt{x}.$$

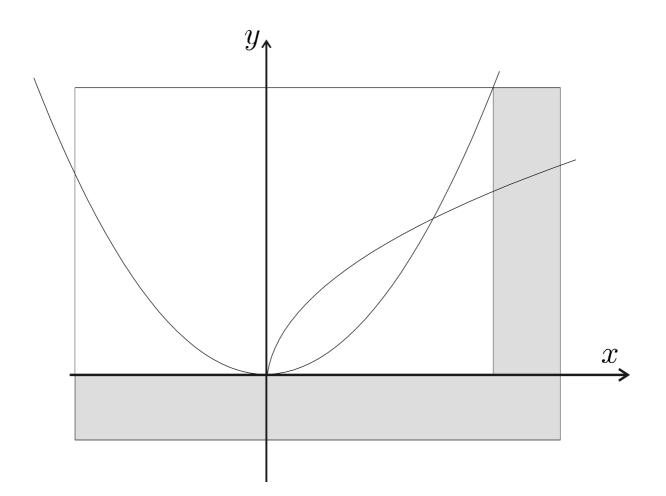
We can build two contractors

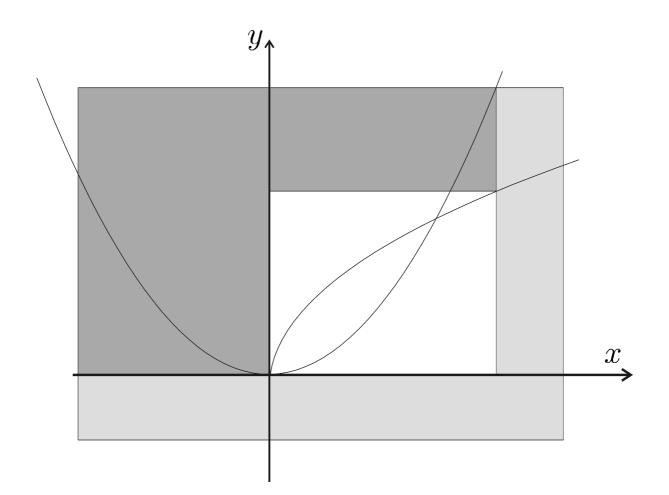
$$\mathcal{C}_{1}: \begin{cases} [y] = [y] \cap [x]^{2} \\ [x] = [x] \cap \sqrt{[y]} \end{cases} \text{ associated to } y = x^{2} \\ \mathcal{C}_{2}: \begin{cases} [y] = [y] \cap \sqrt{[x]} \\ [x] = [x] \cap [y]^{2} \end{cases} \text{ associated to } y = \sqrt{x} \end{cases}$$

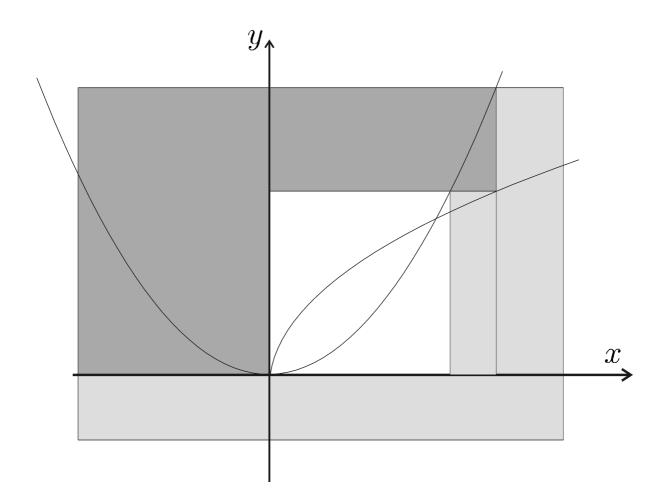


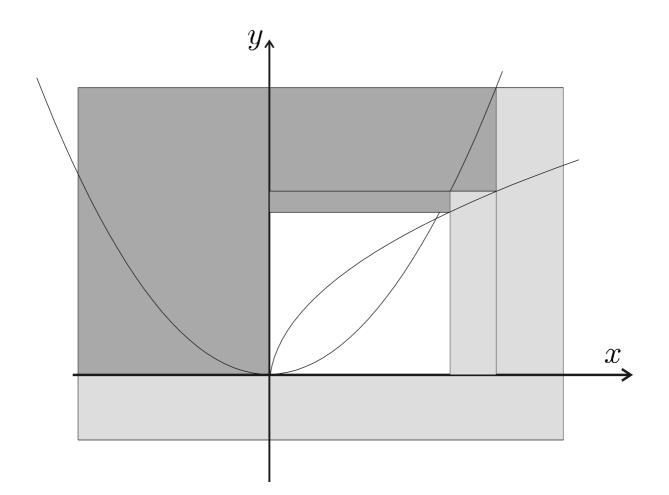
Contractor graph

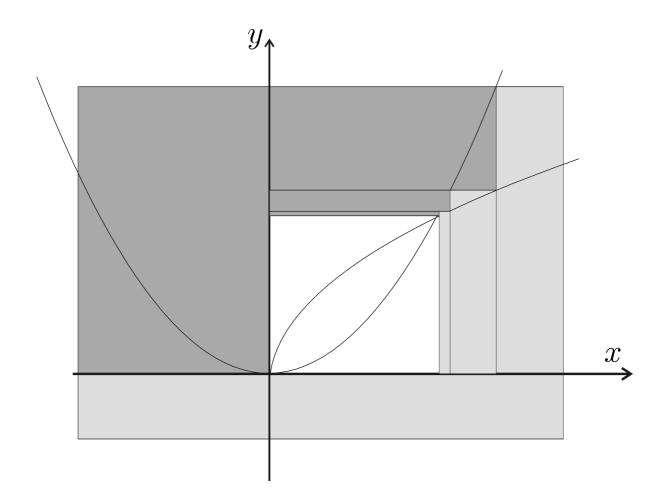


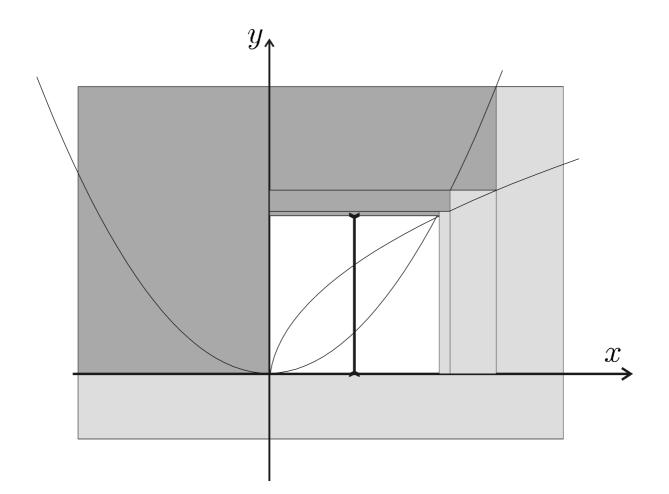


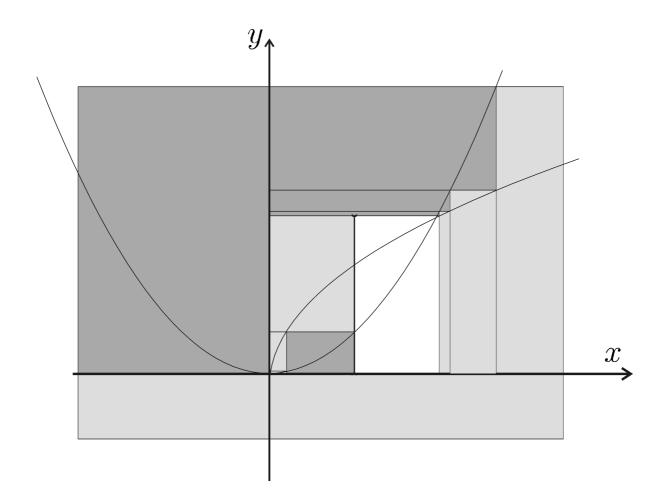


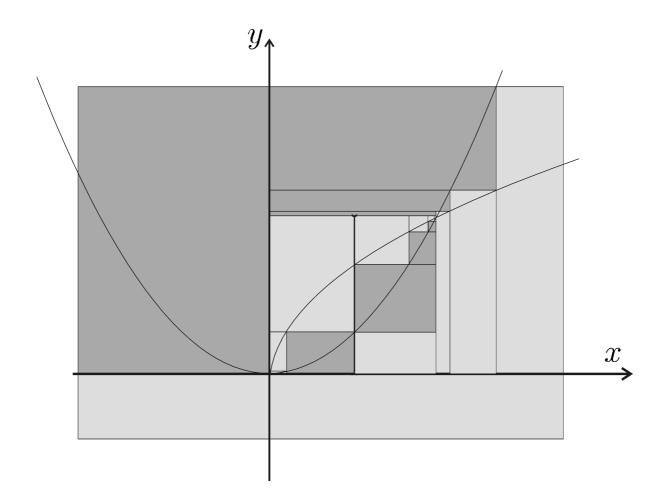








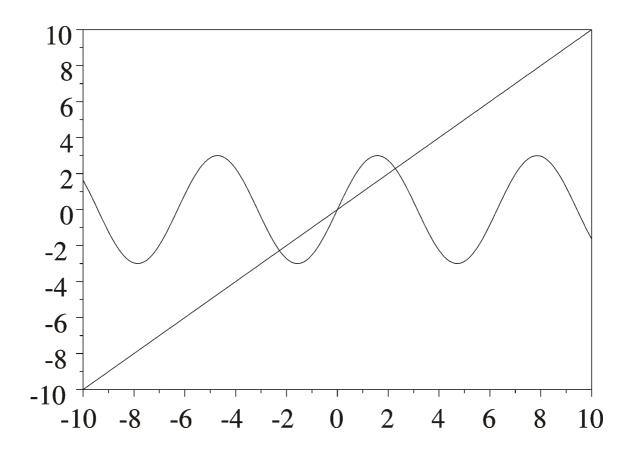


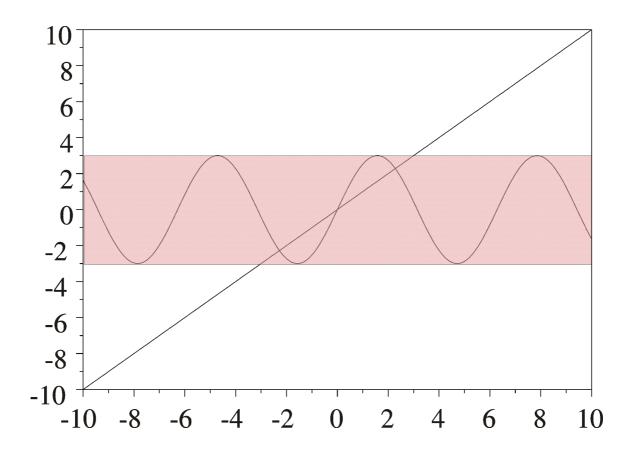


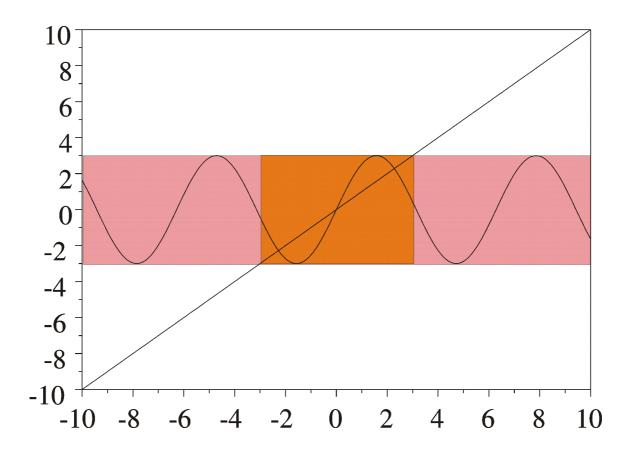
3.4 Example 2

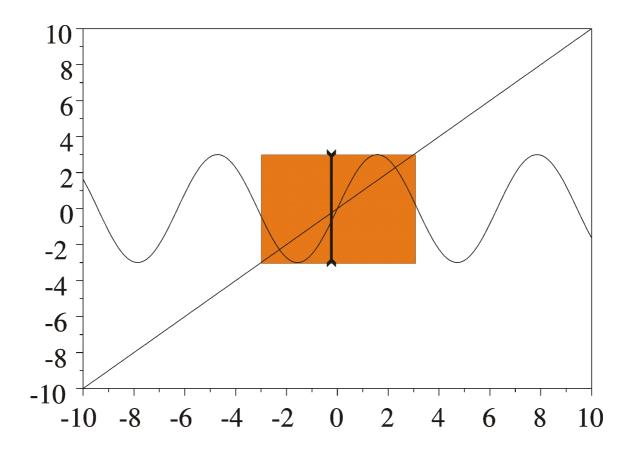
Exemple. Consider the system

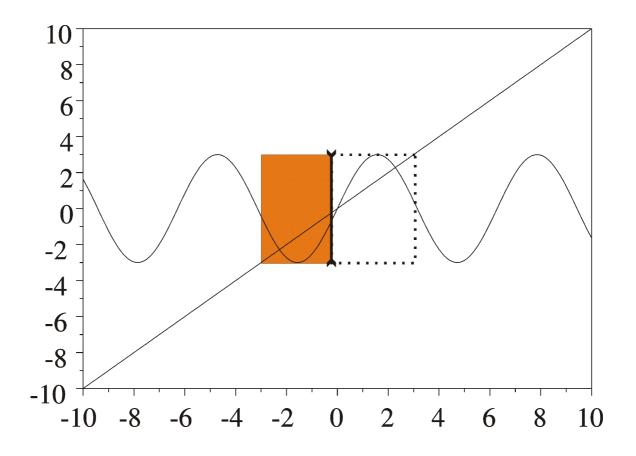
$$\begin{cases} y = 3\sin(x) \\ y = x \end{cases} \quad x \in \mathbb{R}, \ y \in \mathbb{R}.$$

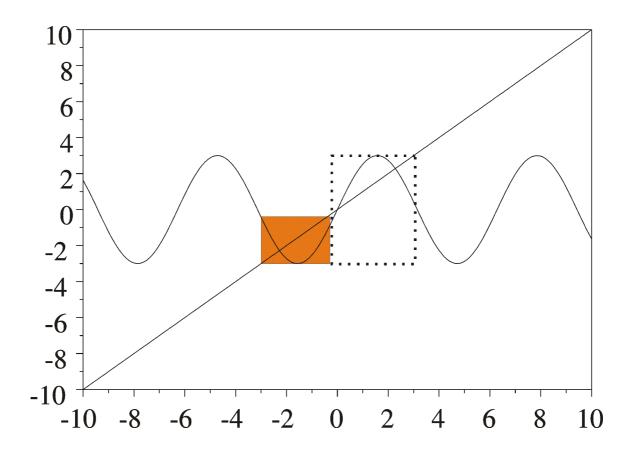


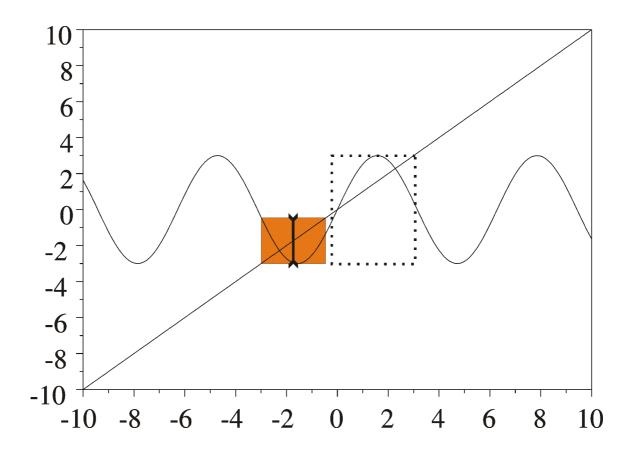


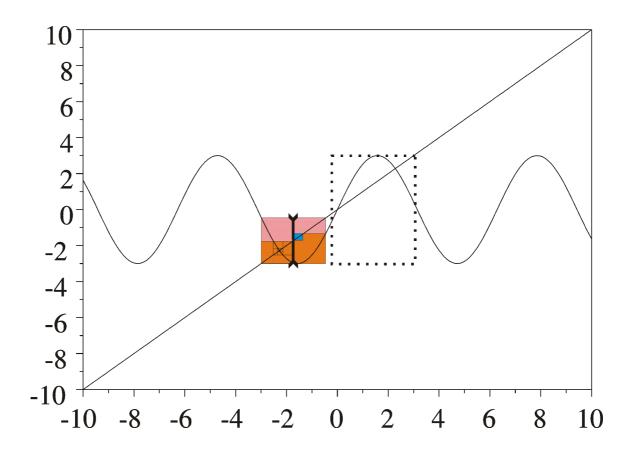


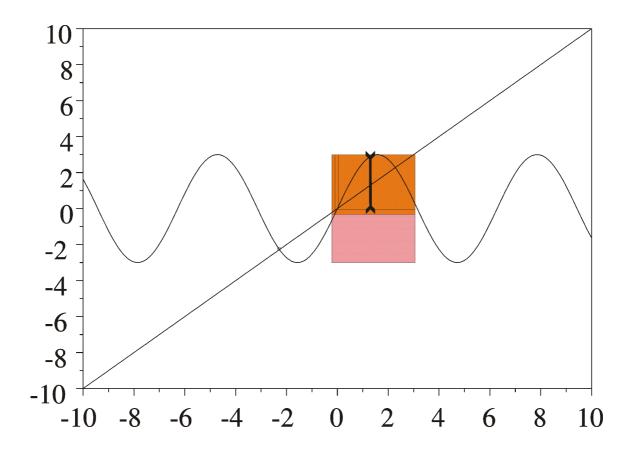


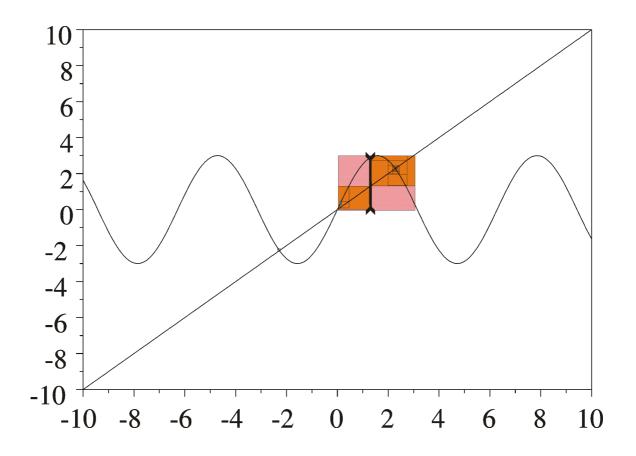








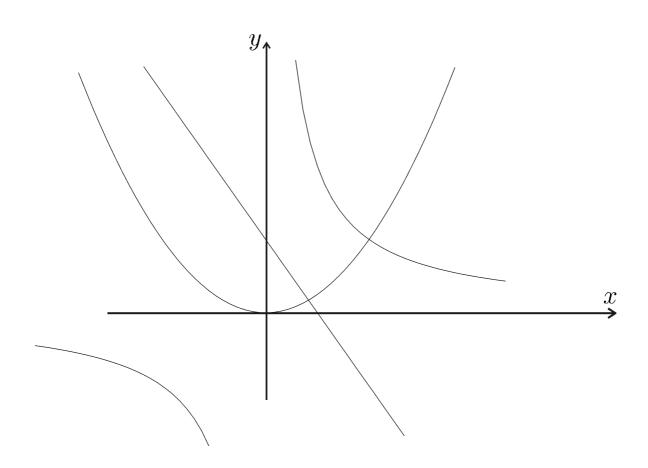


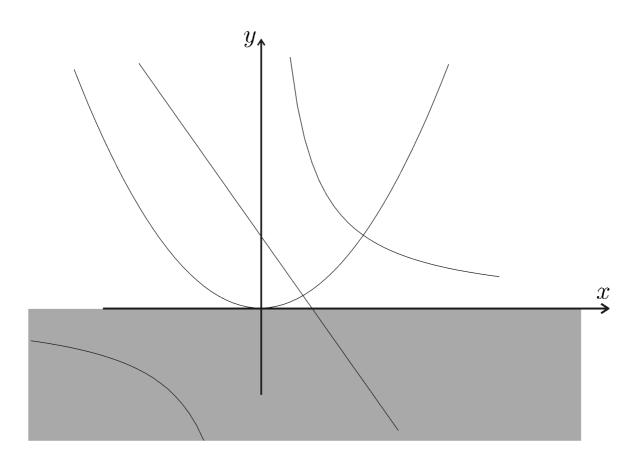


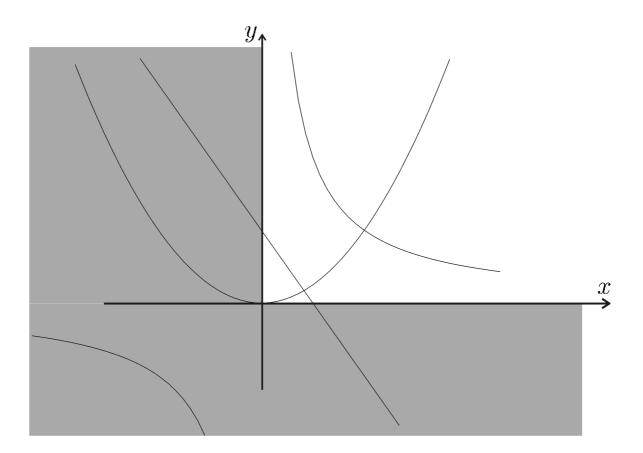
3.5 Example 3

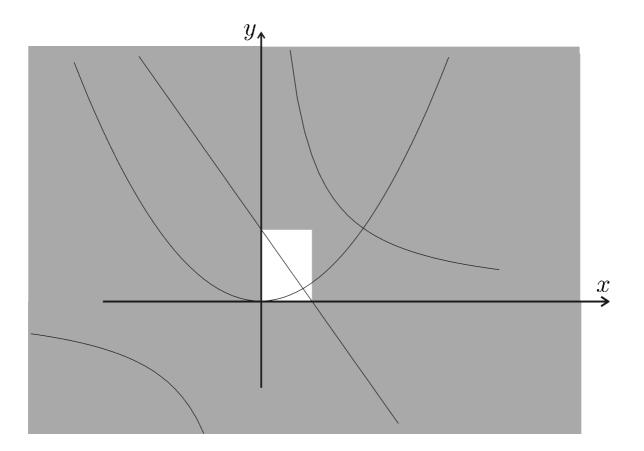
Consider the problem:

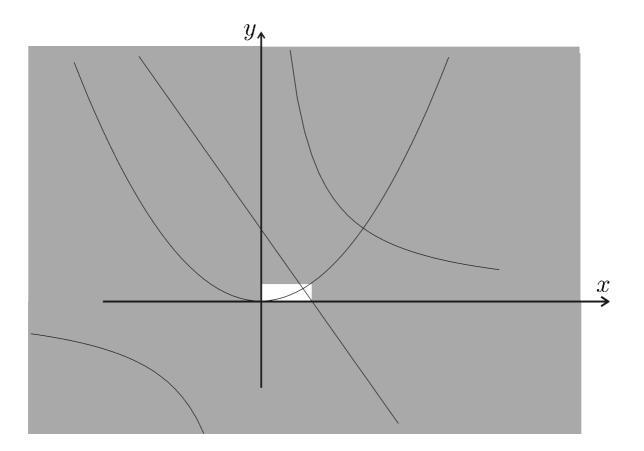
$$\begin{cases} (C_1): & y = x^2 \\ (C_2): & xy = 1 \\ (C_3): & y = -2x + 1 \end{cases}$$

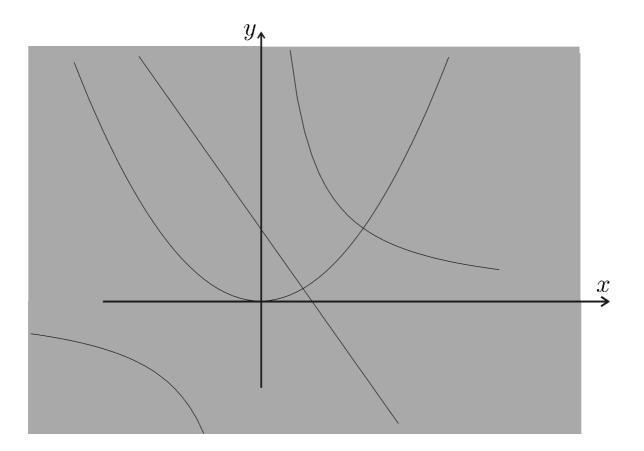












$$\begin{array}{rcl} (C_1) \Rightarrow & y \in & [-\infty, \infty]^2 = & [0, \infty] \\ (C_2) \Rightarrow & x \in & 1/[0, \infty] = & [0, \infty] \\ (C_3) \Rightarrow & y \in & [0, \infty] \ \cap \ ((-2) \cdot [0, \infty] + 1) \\ & & = & [0, \infty] \ \cap \ ((-2) \cdot [0, \infty] + 1) \\ & & x \in & [0, \infty] \ \cap \ ((-0, 1]) = & [0, 1] \\ & & x \in & [0, \infty] \ \cap \ (-[0, 1]/2 + 1/2) = & [0, \frac{1}{2}] \\ (C_1) \Rightarrow & y \in & [0, 1] \ \cap \ [0, 1/2]^2 = & [0, 1/4] \\ (C_2) \Rightarrow & x \in & [0, 1/2] \ \cap \ 1/[0, 1/4] = \emptyset \\ & & y \in & [0, 1/4] \ \cap 1/\emptyset = \emptyset \end{array}$$

3.6 Contractor algebra

intersection	$\left(\mathcal{C}_{1}\cap\mathcal{C}_{2}\right)\left(\left[\mathbf{x}\right]\right)\overset{def}{=}\mathcal{C}_{1}\left(\left[\mathbf{x}\right]\right)\cap\mathcal{C}_{2}\left(\left[\mathbf{x}\right]\right)$
union	$\left(\mathcal{C}_{1}\cup\mathcal{C}_{2}\right)\left(\left[\mathbf{x}\right]\right)\overset{\text{def}}{=}\left[\mathcal{C}_{1}\left(\left[\mathbf{x}\right]\right)\cup\mathcal{C}_{2}\left(\left[\mathbf{x}\right]\right)\right]$
composition	$\left(\mathcal{C}_{1}\circ\mathcal{C}_{2} ight)\left(\left[\mathbf{x} ight] ight)\stackrel{\mathrm{def}}{=}\mathcal{C}_{1}\left(\mathcal{C}_{2}\left(\left[\mathbf{x} ight] ight) ight)$
repetition	$\mathcal{C}^{\infty} \stackrel{def}{=} \mathcal{C} \circ \mathcal{C} \circ \mathcal{C} \circ \ldots$
repeat intersection	$\mathcal{C}_1 \sqcap \mathcal{C}_2 = (\mathcal{C}_1 \cap \mathcal{C}_2)^\infty$
repeat union	$\mathcal{C}_1 \sqcup \mathcal{C}_2 = (\mathcal{C}_1 \cup \mathcal{C}_2)^\infty$

3.7 A link between matrices and contractors

$$\begin{array}{rcl} \text{linear application} & \to & \text{matrices} \\ \mathcal{L}: \left\{ \begin{array}{ll} \alpha &=& 2a+3h \\ \gamma &=& h-5a \end{array} \right. \rightarrow & \mathbf{A} = \left(\begin{array}{ll} 2 & \mathbf{3} \\ \mathbf{1} & -\mathbf{5} \end{array} \right) \end{array}$$

We have a matrix algebra and Matlab. We have: $var(\mathcal{L}) = \{a, h\}$, $covar(\mathcal{L}) = \{\alpha, \gamma\}$. But we cannot write: $var(\mathbf{A}) = \{a, h\}$, $covar(\mathbf{A}) = \{\alpha, \gamma\}$.

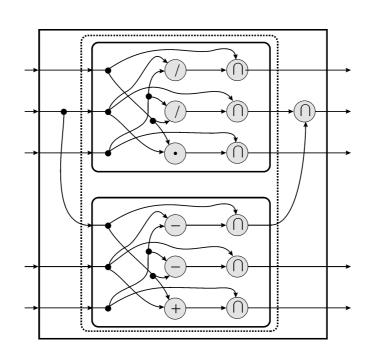
constraint	\rightarrow	contractor
$a \cdot b = z$	\rightarrow	

Contractor fusion

$$\begin{cases} a \cdot b = z \quad \to \quad \mathcal{C}_1 \\ b + c = d \quad \to \quad \mathcal{C}_2 \end{cases}$$

Since b occurs in both constraints, we fuse the two contractors as:

$$\begin{aligned} \mathcal{C} &= \mathcal{C}_1 \times \mathcal{C}_2 \rfloor_{(2,1)} \\ &= \mathcal{C}_1 | \mathcal{C}_2 \text{ (for short)} \end{aligned}$$



4 Robust parameter estimation

Exercise. A robot measures its own distance to three marks. The distances and the coordinates of the marks are

mark	x_i	y_i	d_i
1	0	0	[22, 23]
2	10	10	[10, 11]
3	30	-30	[53, 54]

- 1) Define the set $\mathbb X$ al all feasible positions.
- 2) Build the contractor associated with \mathbb{X} .
- 2) Build the contractor associated with $\overline{\mathbb{X}}$.

Solution.

$$\mathbb{X} = \bigcap_{i \in \{1,2,3\}} \underbrace{\left\{ (x,y) \mid (x-x_i)^2 + (y-y_i)^2 \in \left[d_i^-, d_i^+\right] \right\}}_{\mathbb{X}_i}$$

$$\overline{\mathbb{X}} = \overline{\bigcap_{i \in \{1,2,3\}} \mathbb{X}_i} = \bigcup_{i \in \{1,2,3\}} \overline{\mathbb{X}_i} \\ = \bigcup_{i \in \{1,2,3\}} \{(x,y) \mid (x-x_i)^2 + (y-y_i)^2 \in [-\infty, d_i^-] \\ \cup \{(x,y) \mid (x-x_i)^2 + (y-y_i)^2 \in [d_i^+, \infty] \}$$

$$\mathcal{C} = \bigcap_{i \in \{1,2,3\}} \mathcal{D}_{\left[d_i^-, d_i^+\right]}$$

$$\overline{\mathcal{C}} = \bigcup_{i \in \{1,2,3\}} \left(\mathcal{D}_{\left[-\infty, d_i^-\right]} \right) \cup \left(\mathcal{D}_{\left[d_i^+, \infty\right]} \right)$$

4.1 Relaxed intersection

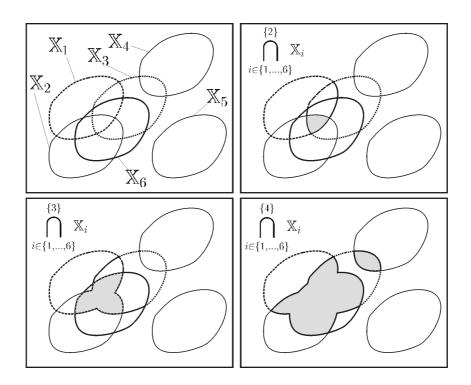
Dealing with outliers

$$\mathcal{C} = (\mathcal{C}_1 \cap \mathcal{C}_2) \cup (\mathcal{C}_2 \cap \mathcal{C}_3) \cup (\mathcal{C}_1 \cap \mathcal{C}_3)$$

Consider m sets $\mathbb{X}_1, \ldots, \mathbb{X}_m$ of \mathbb{R}^n . The q-relaxed $\{q\}$ intersection $\bigcap \mathbb{X}_i$ is the set of all $\mathbf{x} \in \mathbb{R}^n$ which belong to all \mathbb{X}_i 's, except q at most.

We have

$$\mathbf{x} \in \bigcap^{\{q\}} \mathbb{X}_i \Leftrightarrow \# \{i | \mathbf{x} \in \mathbb{X}_i\} \ge m - q$$



Exercise. Compute

$$\{ 0 \} \ \bigcap_{\{1\}} \mathbb{X}_i = ? \ \bigcap_{\{5\}} \mathbb{X}_i = ? \ \bigcap_{\{5\}} \mathbb{X}_i = ? \ \bigcap_{\{6\}} \mathbb{X}_i = ? \ \bigcap \mathbb{X}_i = ?$$

Solution. we have

$$\begin{cases} 0 \\ \bigcap \\ 1 \\ 1 \\ \end{bmatrix} \mathbb{X}_{i} = \emptyset$$

$$\bigcap \\ \begin{cases} 5 \\ 5 \\ \end{bmatrix} \mathbb{X}_{i} = \bigcup \\ \mathbb{X}_{i} \\ \end{bmatrix} = \bigcup \\ \mathbb{X}_{i}$$

Exercise. Consider 8 intervals: $X_1 = [1, 4], X_2 = [2, 4], X_3 = [2, 7], X_4 = [6, 9], X_5 = [3, 4], X_6 = [3, 7]$. Compute

$$\begin{cases} 0 \} & \{1\} & \{2\} \\ \bigcap X_i = ?, & \bigcap X_i = ?, \\ \{3\} & \{4\} \\ \bigcap X_i = ?, & \bigcap X_i = ?, \\ \{5\} & \{6\} \\ \bigcap X_i = ?, & \bigcap X_i = ?. \end{cases}$$

Solution. For $\mathbb{X}_1 = [1, 4]$, $\mathbb{X}_2 = [2, 4]$, $\mathbb{X}_3 = [2, 7]$, $\mathbb{X}_4 = [6, 9]$, $\mathbb{X}_5 = [3, 4]$, $\mathbb{X}_6 = [3, 7]$, we have

$$\begin{cases} 0 \} & \{1\} & \{2\} \\ \bigcap X_i &= \emptyset, \ \bigcap X_i = [3, 4], \ \bigcap X_i = [3, 4], \\ \{3\} & \{4\} \\ \bigcap X_i &= [2, 4] \cup [6, 7], \ \bigcap X_i = [2, 7], \\ \{5\} & \{6\} \\ \bigcap X_i &= [1, 9], \ \bigcap X_i = \mathbb{R}. \end{cases}$$

If X_i 's are intervals, the relaxed intersection can be computed with a complexity of $m \log m$.

Take all bounds of all intervals with their brackets.

Bounds	1	4	2	4	2	7	6	9	3	4	3	7
Brackets	[]	[]	[]	[]	[]	[]

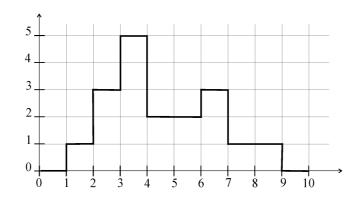
Sort the columns with respect the bounds:

Bounds	1	2	2	3	3	4	4	4	6	7	7	9
Brackets	[[[[[]]]	[]]]

Scan from left to right, counting +1 for '[' and -1 for ']':

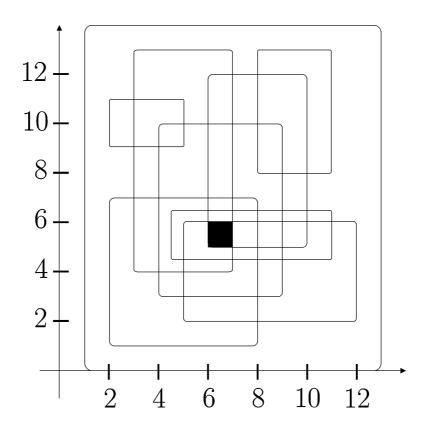
Bounds	1	2	2	3	3	4	4	4	6	7	7	9
Brackets	[[[[[]]]	[]]]
Sum	1	2	3	4	5	4	3	2	3	2	1	0

Read the q-intersections



Set-membership function associated with the 6 intervals

Computing the q relaxed intersection of m boxes is tractable.



The black box is the 2-intersection of 9 boxes

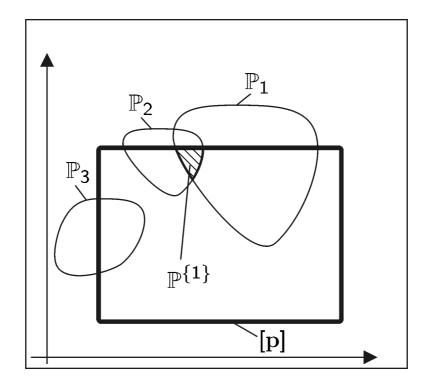
From the De Morgan's law, we get

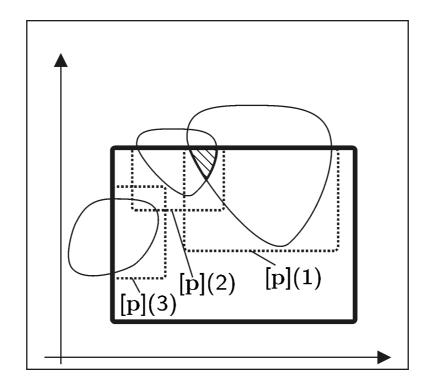
$$\overline{\{q\}} \bigcup_{i} \overline{\mathbb{X}_{i}} = \overline{\bigcup_{i} \mathbb{X}_{i}} = \{m-q-1\} \bigcup_{i} \overline{\mathbb{X}_{i}} = \prod_{i} \overline{\mathbb{X}_{i}}$$

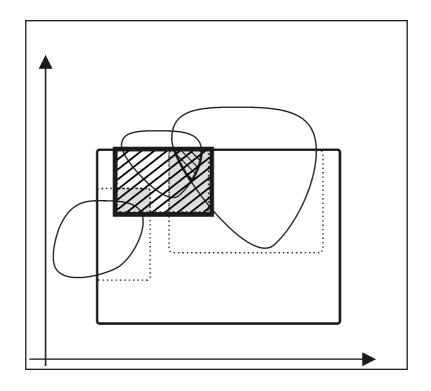
Relaxation of contractors

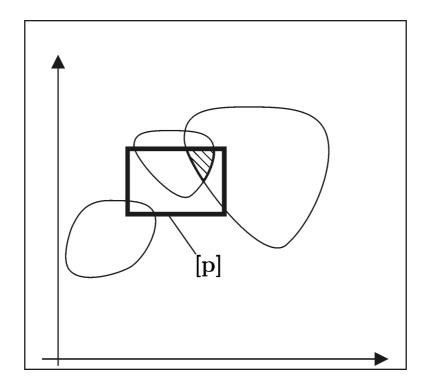
We define the $q\mbox{-}{\rm relaxed}$ intersection between m contractors

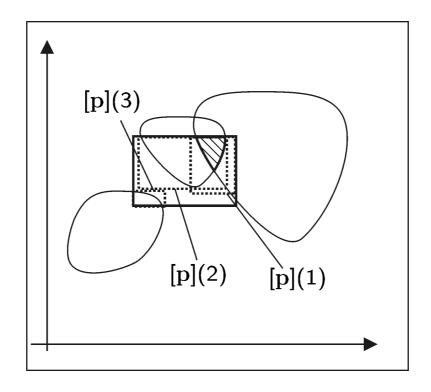
$$\mathcal{C} = \begin{pmatrix} \{q\} \\ \bigcap_{i \in \{1,...,m\}} \mathcal{C}_i \end{pmatrix} \Leftrightarrow \forall [\mathbf{x}] \in \mathbb{IR}^n, \mathcal{C}([\mathbf{x}]) = \bigcap^{\{q\}} \mathcal{C}_i([\mathbf{x}])$$

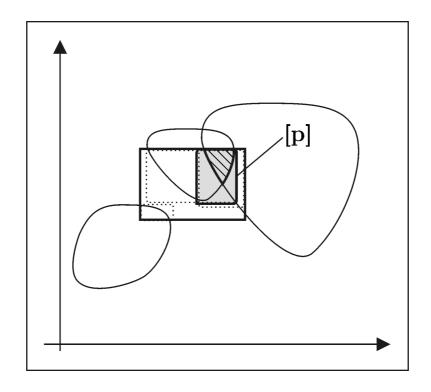




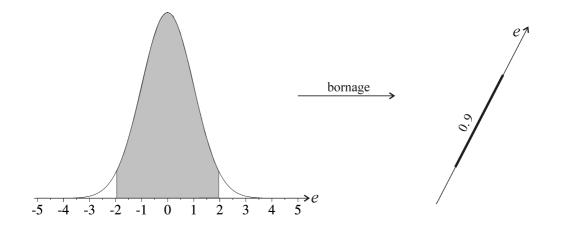


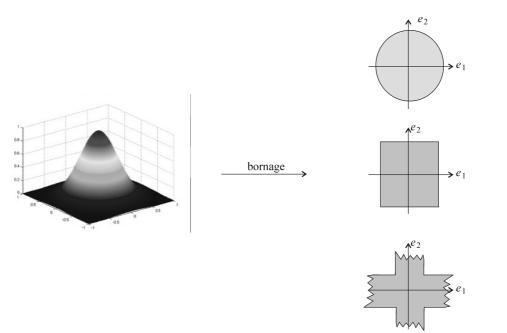


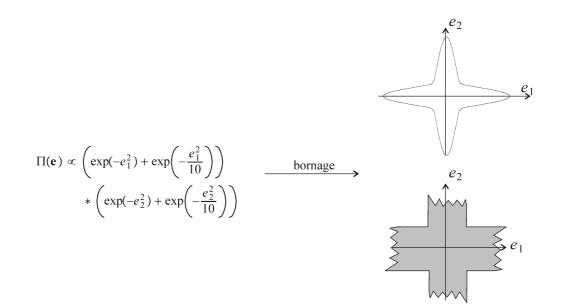




4.2 Probabilistic motivation







Consider the error model

$$\mathbf{e=}\underbrace{\mathbf{y}-\psi\left(\mathbf{p}
ight)}_{\mathbf{f}\left(\mathbf{y},\mathbf{p}
ight)}.$$

 y_i is an inlier if $e_i \in [e_i]$ and an outlier otherwise. We assume that

$$\forall i, \ \mathsf{Pr}\left(e_{i} \in [e_{i}]\right) = \pi$$

and that all e_i 's are independent.

Equivalently,

$$\begin{cases} f_1(\mathbf{y}, \mathbf{p}) \in [e_1] & \text{with a probability } \pi \\ \vdots & \vdots \\ f_m(\mathbf{y}, \mathbf{p}) \in [e_m] & \text{with a probability } \pi \end{cases}$$

Having \boldsymbol{k} inliers follows a binomial distribution

$$rac{m!}{k!\,(m-k)!}\pi^k.\,(1-\pi)^{m-k}\,.$$

The probability of having more than q outliers is thus

$$\gamma(q, m, \pi) \stackrel{\text{def}}{=} \sum_{k=0}^{m-q-1} \frac{m!}{k! (m-k)!} \pi^k (1-\pi)^{m-k}$$

Example. If m = 1000, q = 900, $\pi = 0.2$, we get $\gamma(q, m, \pi) = 7.04 \times 10^{-16}$. Thus having more than 900 outliers can be seen as a rare event.

4.3 Robust bounded error estimation

$$\mathbb{S} = igcap_{i}^{\{q\}} \{ \mathbf{p} \in \mathbb{R}^n \mid f_i\left(\mathbf{p}
ight) \in [y_i] \}$$

We build the following contractors

$$\begin{array}{rcl} \mathcal{C}_{i} & : & f_{i}\left(\mathbf{p}\right) \in \left[y_{i}\right] \\ \overline{\mathcal{C}_{i}} & : & f_{i}\left(\mathbf{p}\right) \notin \left[y_{i}\right] \\ & \left\{q\right\} \\ \mathcal{C} & = & \bigcap_{i}^{\left\{q\right\}} \mathcal{C}_{i} \\ & \overline{\left\{q\right\}} \\ \overline{\mathcal{C}} & = & \bigcap_{i}^{\left\{q\right\}} \mathcal{C}_{i} = \left\{n-q-1\right\} \\ & \overline{\mathcal{C}_{i}} \end{array}$$

Then we call a paver with $\overline{\mathcal{C}}$ and \mathcal{C} .

4.4 Application to localization

A robot measures distances to three beacons.

beacon	x_i	y_i	$[d_i]$
1	1	3	[1,2]
2	3	1	[2, 3]
3	-1	-1	[3, 4]

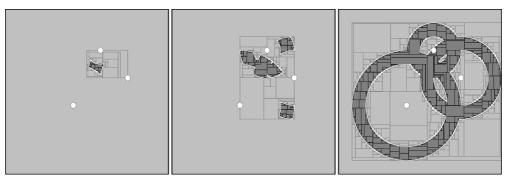
The intervals $[d_i]$ contain the true distance with a probability of $\pi = 0.9$.

The feasible sets associated to each data is

$$\mathbb{P}_i = \Big\{ \mathbf{p} \in \mathbb{R}^2 \mid \sqrt{(p_1 - x_i)^2 + (p_2 - y_i)^2} - d_i \in [-0.5, 0.5] \$$

where $d_1 = 1.5, d_2 = 2.5, d_3 = 3.5.$

$$\begin{array}{ll} \operatorname{prob}\left(\mathbf{p}\in\mathbb{P}^{\{0\}}\right)=&0.729\\ \operatorname{prob}\left(\mathbf{p}\in\mathbb{P}^{\{1\}}\right)=&0.972\\ \operatorname{prob}\left(\mathbf{p}\in\mathbb{P}^{\{2\}}\right)=&0.999 \end{array}$$



Probabilistic sets $\mathbb{P}^{\{0\}}, \mathbb{P}^{\{1\}}, \mathbb{P}^{\{2\}}$.