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1 Interval computation



1.1 Notions on set theory



Exercise: If f is defined as follows
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Exercise: If f is defined as follows
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f(A) = {2,3,4} = Im(f).

F~4(B) {a,b,c,e} = dom(f).

FH(f(A)) {a,b,c,e} C A
FHf(Eb,e}) = {a,b,c}.



Exercise: If f(z) = x2, then

£(12,3])
F1([4,9])



Exercise: If f(z) = x2, then

£(12,3]) = [4,9]
f_l([47 9]) — [—3, —2] U [27 3]

This is consistent with the property

FLHFY) oY,



1.2 Interval arithmetic



Exercise.

[-1,3]+[2,5] =17,7],
[-1,3]-[2,5] =1[7,7],
[-2,6]/[2,5] =1?,7].



Solution.



Exercise. Compute

[—2,2]/[-1,1] =1[7,7].



Solution.

[—2,2]/[-1,1] = [—o0, 0]



[z, 2]+ [y v = [27 +y 2T +yT],
[ 2T] - [y, yT]l= [z 7y AzTy Az yT Azty™,
ry" VeTy Ve yTV :U+y+],



Exercise.

sin ([0, 7]
sqr ([—1, 3]
abs ([—7, 1]

sqrt ([—10, 4]
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Solution.

sin ([0,7]) = [0,1],
sar ([—1,3]) = [-1,3]° =0,9],
abs ([-7,1]) = [0,7],

sqrt ([—10,4]) = +/[-10,4] = [0, 2],
log ([-2,—1]) = 0.



1.3 Inclusion function



A box, or interval vector [x] of R™ is
[X] — [CC]__,LE]{__] X X ['CET_LVCE?_’L'_] — [LE]_] X X [CCn]

The set of all boxes of R™ will be denoted by TR".



[f] : IR™ — IR™ is an inclusion function of f if

Vx| € IR™, f£([x]) C [£] ([x])-
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Exercise. The natural inclusion function for f(z) =
r? + 2z + 4 is

[£1([2]) = []* + 2[] + 4.
For [x] = [—3, 4], compute [f]([x]) and f([x]).



Solution. If [x] = [—3, 4], we have

[F1([-3,4]) = [-3,4]° +2[-3,4] + 4
— [0,16] +[-6,8] + 4
= [-2,28].

Note that f([—3,4]) = [3,28] C [f]([-3,4]) = [-2, 28].




A minimal inclusion function for
e R? — R3

" (z1,72) — (xlxz,x%,xl—aQ).

IS

1] IR? — 1IR3
([z1], [w2]) = ([2a] * [22], [24]? [21] — [22]) -



If £ is given by

Algorithm f(in: x = (z1, 72, 23), out: y = (y1,¥2))

zZ 1= x1;

for kK := 0 to 100
z:=xo(z + k- x3);

next;

Y1 == =,

Yo = sin(zxq);
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lts natural inclusion function is

Algorithm [f](in: [x], out: [y])

1 [z] := [za];

2 for k:=0 to 100
3 [2] == [z2] * ([2] + & - [z3]);
4 next;

5 [y1] := [2];

6 [yo] :=sin([z] * [z1]);

Is [f] convergent? thin? monotonic?



1.4 Boolean intervals



A Boolean number is an element of

B = {false, true} = {0,1} .

If we define the relation < as

0<0, 0<L1, 1<£1,

then, the set (B, <) is a lattice for which intervals can
be defined.



Exercise: The set of Boolean interval is

IB = {7,7,7,7},

3 "9 "



Exercise: The set of Boolean interval is

]HB — {(Z), O, 17 [07 1]}7



Boolean interval arithmetic
[al] V[b] = {aVb]|ac€la]l,be [b]},
la] A[b] = {aAb]|ac]a],be[b]},

—la] = {—alae€la]}.




Exercise: Compute

([0,1] V1) A([0,1] A1) =7



Solution: We have

([0,1] v1)A([0,1] A1) =1 A[0,1] =[O0, 1].



2 Subpavings



2.1 Definition

A subpaving of R™ is a set of non-overlapping boxes of
R™,

Compact sets X can be bracketed between inner and
outer subpavings:

X" cXcXT.



Exercise. The set

X = {(21,22) | 23 + 23 + sin (x1 + z2) € [4,9]}

are approximated by X~ and X for different accuracies.
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2.2 Set inversion



If f : R” — R™ and Y C R™,
X = {x ¢ R" | f(x) € Y} = f~}(Y).



Exercise. Define the set

X:{X€R2|x1x2—|—sinx2§03nd x1 —xo = 1},

Show that it is a set inversion problem.



Solution. We have
X = f~1(Y)

with

f(x) = ( 122+ sin ) and Y = [—00, 0] x {1} .

L1 — X2



(i) [f([x]) CY = [x]CX
() F(X)NY=0 = [x]NnX=0.

Boxes for which these tests failed, will be bisected, ex-
cept if they are too small.



Algorithm Sivia(in: [x](0),f,Y)

L= {[x](0)};

pull [x] from L;

if [f]([x]) C Y, draw([x], 'red’);

elseif [f]([x]) NY = 0, draw([x], 'blue’);
elseif w([x]) < €, {draw ([x], 'yellow")};
else bisect [x] and push into £;

if L F#£ (0, goto?2

~NOo oW




If AX denotes the union of yellow boxes and if X7 is
the union of red boxes then:

X CXC X UAX.
X+




Sivia works with other abstract domains (or wrappers).



Sivia with octogones (made by D. Massé)



2.3 Bounded-error estimation



Exercise. Consider a parabola of the form

¢ (p,t) = p1t® + pat + p3.

where p = (pl,pz,pg,)T Is an unkown parameter vec-
tor. Assume that

¢(p,1) €[2,3], ¢(p,4) €[5,6], ¢(p,7) €[8,9].

Show that the set P of all feasible p can be defined as
a set inversion problem.



Solution. We have
P=f"1(Y),
where
¢ (p,1) p1+p2 + D3
f(p)=1| ¢(p,4) | = | 16p1 + 4pot + p3
¢ (p,7) 49p1 + Tpo + p3

and

Y = [2,3] x [5,6] x [8,9].



3 Contractors



3.1 Definition



The operator Cx : IR™ — IR" is a contractor for X C
R™ if

n | Cx([x]) C [X] (contractance),
vix] € IR, { Cx([x])NX =[x] "X (completeness).



X2 - [X]






The operator C : IR"™ — IRR"™ is a contractor for the
equation f(x) =0, if

C([x]) C [x]

\VI[X] S HR”) { x € [X] et f (X) =0=x¢€ C([X])



Exercice. Let x, y, z be 3 variables such that

r € [—o0,5],
y € [—o0,4],
z € [6,00],
zZ = T +Y.

Contract the intervals for x, y, z.



Solution.

2, 5]
1, 4]
6, 9]




Since x € [—00,5],y € [-00,4],2 € [6,00] and z =
x + y, we have

z=x+y= z€ [6,00]N([—00,5]+ [—00,4])

r=z—y= x € [—00,5]N([6,0] —[—00,4])
— :_0075] M [2700 — 275
Yy=z—r= yc —OO,4]ﬁ([6,00——OO,5)
= [—o0,4] N[1, 00] = [1, 4].




The contractor associated with z = = + y is:

Algorithm Cadd(inout: [2], [z], [y])

L [2] := [l 0 ([] + [y]);
2 [z] := [=] N ([2] = [y]);
3 Iyl := [yl N (] = [z]).




The contractor associated with z = x -y Is

Algorithm pmul(inout: [2], [z], [y])
1 [z] = [z] N ([] - [9]):

2 [a] =[] N ([2] - 1/[y]):

3 [yl:==Mwln(z]-1/[x]).




The contractor associated with y = exp (y) is

Algorithm Cexp(inout: [y], [z])
L [yl := [yl nexp([z]);
2 [z] := [z] Nlog ([v]) -




Example. Consider the primitive equation:

To = sinxy.









Backward contraction



Decomposition

x + sin(zy) < 0,
T < [_17 1]7y S [_17 1]



Decomposition

x + sin(zy) < 0,
T < [_17 1]7y S [_17 1]

can be decomposed into
a = zy r € [-1,1] a € [—o0, ]

b= Sin(a) ) y € [_17 1] b e [_OO7OO]
c=x+b c € [—o0, 0]



Forward-backward contractor (HC4 revise)

For the equation

(21 +22) - 23 € [1,2],

we have the following contractor:

e_1|gorithm C (inout [z1], [z2], [x3])

a] = [z1] + [z2] /] a=w1+x2
b] = [a] - [z3] /] b=a-3
b] =[b] N [1,2] //bell,2]
03] = [23] N {4 /) a3 =1t

a] = [a] N &) /] a=2%

c1] = [z1] N [a] —[x2] // @1=0a—
zo] =[zo] N [a] —[z1] //xo=0a—mz




Properties

(CT°NC3®)™
(C1N(C2UC3))
{ C1 minimal

C> minimal

(C1 N Cp)™®
(C1NC2) U (C1NC3)

J U

C1 U Co minimal



Contractor on images

The robot with coordinates (x1, z3) is in the water.









3.2 Propagation



A CN (Constraint Network) is composed of
1) a set of variables V = {z1,...,zn},

2) a set of constraints C = {c1,...,cm} and
3) a set of interval domains {[z1], ..., [zn]}.



Principle of propagation: contract [x] = [z1] X - -+ X
[z1,] as follows:

((((((x]TTer) Mex) M) Mem) Mey) Mep) - -

until a steady box is reached.



3.3 Example 1

Consider the system of two equations.

y = a°

y = V.



We can build two contractors

vl =N [z]? . 2
Cq: { 2] = [2] N \/m associated toy =«

: [y]:[y]ﬂ\/m associated to y = v/«
62'{[x1=[x1m[y12 ted toy = v



Cly=x2

CzJ’:ﬁ

Contractor graph



Y,

7z




Y,

7z

























3.4 Example 2



Exemple. Consider the system

(v

3sin(x)

. r€eR, yeR.
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3.5 Example 3



Consider the problem:
(C1): y=a?
(C2):  =zy=1
(C3): y=-2x+1






y/\
















(C1) =
(C2) =
(C3) =

(C1) =
(C2) =

Yy €
T &
Y €

xr €
Yy €
xr €
Y €

i7|%07oo]2 — [0700]

000l r]w Y

o r(w(_2) [0, 00] +1)

0, 1]/2 [0,1/2]* = [o+11/2) -
0.1/2] N 1/00, Ly
0,1/4]N1/0 =10 :




3.6 Contractor algebra



intersection (C1 N Co) ([x]) def C1 ([x]) NCa ([x])
(C1UCo) (Ix]) = €1 ([x]) U Co (Ix))]
composition (C10Co) ([x]) o C1(Co ([x]))
repetition C° def CoCoCo...

repeat intersection | C1 M Cy = (C1 NCy)™°

repeat union C1UCy = (CLUC)™®




3.7 A link between matrices and con-

tractors



linear application — matrices
) a = 2a+3h (2 3
ﬁ'{v — h—>5a _>A_<1 —5)

We have a matrix algebra and Matlab.
We have: var(L) = {a, h}, covar(L) = {a,v}.
But we cannot write: var(A) = {a, h}, covar(A) =

{a, 7}



constraint

contractor




Contractor fusion

a-b=z — (C
b+c=d — (o

Since b occurs in both constraints, we fuse the two
contractors as:

C = G xCloy
C1|Co (for short)






4 Robust parameter estimation



Exercise. A robot measures its own distance to three
marks. The distances and the coordinates of the marks

are

mark Z; Y; dz'
1 [ 0] 0 [[22,23]
2 [10] 10 |[10,11]
3 30| —30][53,54]

1) Define the set X al all feasible positions.
2) Build the contractor associated with X.
2) Build the contractor associated with X.



Solution.

x= N (@) | @)+ @-wPeli.d]}

i€{1,2,3} X;




Al

n = U X

ie{1,2,3} i€{1,2,3}

U {(w,y) | (z— @)’ + (y —wi)’ € [_OO’ d'i_]
i€{1,2,3}

U{(az,y) | (:13—:137;)2-|—(y—yi)2 S [dj,oo”






4.1 Relaxed intersection



Dealing with outliers

C=(C1NC)U(CoNC3)U(C1NC3)



Consider m sets X1,...,X;, of R™. The g-relaxed

{q}
intersection ﬂ X; is the set of all x € R which belong

to all X;'s, except g at most.

We have

{a}
X € ﬂXiﬁ#{ﬂXEXi}zm—q






Exercise. Compute

10}

{1}

{5}

16}

)




Solution. we have




Exercise. Consider 8 intervals: X; = [1,4], Xy =
[274]7X3 — [277]7X4 — [679]7X5 — [374]7X6 —
[3,7]. Compute

{0} {1} {2}

NX; =72 NX=?2 NX=7
{3} {4}

N X; 7, NXi=7,

{5} {6}

N X; 7, NX =7




Solution. For X; =[1,4], Xo = [2,4],X3 = [2,7],X4 =
[6,9], X5 = [3,4], X = [3,7], we have

{0} {1} {2}

X, =0 (X=1[34], X;=]3,4]
{3} {4}

NXi = [2,4u]6,7], X =[27],
{5} {6}

X, = [1,9 (X;=R



If X;'s are intervals, the relaxed intersection can be
computed with a complexity of m log m.



Take all bounds of all intervals with their brackets.

Bounds [ 14|24 |2|716|9[3/4]|3

Brackets | [ | ] [[ [ [[ ][0T ]L]]]I




Sort the columns with respect the bounds:

Bounds |1 (22334 |4|4]|6

Brackets | [ | [ [[ [[[[ ][] []]I




Scan from left to right, counting +1 for '[' and —1 for
1]1:
Bounds |12 |23 (3|4(4|4|/6|7|7|9

Brackets
Sum 112131454 (3|2|3([2|1/0

—
—
—
—
—
[I—
—
[I—
—
—
[I—
[I—




Read the g-intersections

=) Ju— S} w B W
|
|

0 1 2 3 4 5 6 7 8 9 10

Set-membership function associated with the 6 intervals



Computing the g relaxed intersection of m boxes is
tractable.



2 4 6 &8 10 12

The black box is the 2-intersection of 9 boxes



From the De Morgan's law, we get




Relaxation of contractors

We define the g-relaxed intersection between m con-

tractors

{q} {a}
C = M Ci| eV[x]eIR",C([x])=()Ci([x]).

ie{l,....m}
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4.2 Probabilistic motivation
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Consider the error model

e =y —ib (pz
f(y,p)

y; is an inlier if e; € [e;] and an outlier otherwise. We

assume that
Vi, Pr(e; € [e]) ==

and that all e;'s are independent.



Equivalently,

f1(y,p) € [e1] with a probability 7

fm (¥, P) € [em] with a probability =



Having £ inliers follows a binomial distribution

ml

e k)!wk. (1—m)"




The probability of having more than g outliers is thus

—g—1

m
def m! _
0 ! !

Example. If m = 1000, ¢ = 900, 7 = 0.2, we get
v(q,m, ) = 7.04 X 10~10. Thus having more than
900 outliers can be seen as a rare event.



4.3 Robust bounded error estimation



{q}
S = ﬂ {peR" | fi(p) € [uil}



We build the following contractors

Ci : fi(p) € [ul
Ci : fi(p) ¢ [wil
{q}

e

C

Ql
]
-
D
]
-
)

Then we call a paver with C and C.



4.4 Application to localization



A robot measures distances to three beacons.

beacon | z; | vy; | [d;]
1 1| 3 |[1,2]
2 31 [[23]
3 | —1|—-1][3,4]

The intervals [d;] contain the true distance with a prob-
ability of m = 0.9.



The feasible sets associated to each data is

P; = {P € R? | \/(p1 — )2 + (p2 — 4:)? — d; € [-0.5,0.5]
where dl — 1.5, d2 — 2.5, d3 = 3.b.




prob (p € P10}) = 0.729
prob (p € P} 0.972
prob (p € P12}) = 0.999



Probabilistic sets IP’{O}, IP’{l}, P12},



