Méthodes Intervalles et Applications

JD-JN MACS, Strasbourg, 9,10 juillet 2013. Luc Jaulin ENSTA Bretagne, LabSTICC, OSM, IHSEV.

http://www.ensta-bretagne.fr/jaulin/

1 Interval computation

1.1 Set theory

The direct image of $\mathbb X$ by f is

$$f(\mathbb{X}) \triangleq \{f(x) \mid x \in \mathbb{X}\}.$$

The reciprocal image of $\mathbb {Y}$ by f is

$$f^{-1}(\mathbb{Y}) \triangleq \{x \in \mathbb{X} \mid f(x) \in \mathbb{Y}\}.$$

Exercise: If f is defined as follows

$$f(A) = ?.$$

$$f^{-1}(B) = ?.$$

$$f^{-1}(f(A)) = ?$$

$$f^{-1}(f(\{b,c\})) = ?.$$

Exercise: If f is defined as follows

$$f(A) = \{2,3,4\} = \operatorname{Im}(f).$$

$$f^{-1}(B) = \{a,b,c,e\} = \operatorname{dom}(f).$$

$$f^{-1}(f(A)) = \{a,b,c,e\} \subset A$$

$$f^{-1}(f(\{b,c\})) = \{a,b,c\}.$$

Exercise: If $f(x) = x^2$, then

$$f([2,3]) = ?$$

$$f^{-1}([4,9]) = ?.$$

Exercise: If $f(x) = x^2$, then

$$f([2,3]) = [4,9]$$

$$f^{-1}([4,9]) = [-3,-2] \cup [2,3].$$

This is consistent with the property

$$f^{-1}(f(\mathbb{Y})) \supset \mathbb{Y}.$$

1.2 Interval arithmetic

 $\mathsf{lf} \diamond \in \{+,-,\cdot,/,\mathsf{max},\mathsf{min}\}$

 $[x] \diamond [y] = [\{x \diamond y \mid x \in [x], y \in [y]\}].$

where [A] is the smallest interval which encloses $\mathbb{A} \subset \mathbb{R}$.

Exercise.

$$egin{array}{rl} [-1,3]+[2,5]&=[?,?],\ [-1,3]\cdot[2,5]&=[?,?],\ [-2,6]/[2,5]&=[?,?]. \end{array}$$

Solution.

$$egin{array}{rll} [-1,3]+[2,5]&=[1,8],\ [-1,3].[2,5]&=[-5,15],\ [-2,6]/[2,5]&=[-1,3]. \end{array}$$

$$[x^{-}, x^{+}] + [y^{-}, y^{+}] = [x^{-} + y^{-}, x^{+} + y^{+}], [x^{-}, x^{+}] \cdot [y^{-}, y^{+}] = [x^{-}y^{-} \wedge x^{+}y^{-} \wedge x^{-}y^{+} \wedge x^{+}y^{+}, x^{-}y^{-} \vee x^{+}y^{-} \vee x^{-}y^{+} \vee x^{+}y^{+}],$$

If $f \in \{\cos, \sin, \operatorname{sqrt}, \log, \exp, \dots\}$ $f([x]) = [\{f(x) \mid x \in [x]\}].$ Exercise.

$$\begin{array}{rcl} \sin\left([0,\pi]\right) &=& ?,\\ & \mbox{sqr}\left([-1,3]\right) &=& [-1,3]^2 =?,\\ & \mbox{abs}\left([-7,1]\right) &=& ?,\\ & \mbox{sqrt}\left([-10,4]\right) &=& \sqrt{[-10,4]} =?,\\ & \mbox{log}\left([-2,-1]\right) &=& ?. \end{array}$$

Solution.

$$\begin{array}{rcl} \sin\left([0,\pi]\right) &=& [0,1],\\ \mathrm{sqr}\left([-1,3]\right) &=& [-1,3]^2 = [0,9],\\ \mathrm{abs}\left([-7,1]\right) &=& [0,7],\\ \mathrm{sqrt}\left([-10,4]\right) &=& \sqrt{[-10,4]} = [0,2],\\ \log\left([-2,-1]\right) &=& \emptyset. \end{array}$$

1.3 Boxes

A box, or interval vector $[\mathbf{x}]$ of \mathbb{R}^n is

$$[\mathbf{x}] = [x_1^-, x_1^+] \times \cdots \times [x_n^-, x_n^+] = [x_1] \times \cdots \times [x_n].$$

The set of all boxes of \mathbb{R}^n will be denoted by \mathbb{IR}^n .

The width $w([\mathbf{x}])$ of a box $[\mathbf{x}]$ is the length of its largest side. For instance

 $w([1,2] \times [-1,3]) = 4$

1.4 Inclusion function

The interval function [f] from \mathbb{IR}^n to \mathbb{IR}^m , is an *inclusion function* of f if

 $\forall [\mathbf{x}] \in \mathbb{IR}^n, \ \mathbf{f}([\mathbf{x}]) \subset [\mathbf{f}]([\mathbf{x}]).$

Inclusion functions [f] and $[f]^*$; here, $[f]^*$ is minimal.

The inclusion function $\left[f \right]$ is

monotonic	if	$([\mathrm{x}] \subset [\mathrm{y}]) \Rightarrow ([\mathrm{f}]([\mathrm{x}]) \subset [\mathrm{f}]([\mathrm{y}]))$
minimal	if	$orall \mathbf{x} \in \mathbb{IR}^n, \ \mathbf{[f]}\left(\mathbf{[x]} ight) = \mathbf{[f}\left(\mathbf{[x]} ight) \mathbf{]}$
thin	if	$w([\mathbf{x}]) = 0 \Rightarrow w([\mathbf{f}]([\mathbf{x}]) = 0$
convergent	if	$w([\mathbf{x}]) \rightarrow 0 \Rightarrow w([\mathbf{f}]([\mathbf{x}]) \rightarrow 0.$

Exercise

The figure provides a nested sequence of boxes [x](k), their image f([x]) by a function f and the image by an inclusion function [f].

- a) [f] is convergent.
- b) [f] is monotonic
- c) [f] is minimal.

Solution. [f] is convergent, non-monotonic, non-minimal.

Convergent and monotonic

Exercise. The natural inclusion function for $f(x) = x^2 + 2x + 4$ is

$$[f]([x]) = [x]^2 + 2[x] + 4.$$

For [x] = [-3, 4], compute [f]([x]) and f([x]).

Solution. If [x] = [-3, 4], we have

$$[f]([-3,4]) = [-3,4]^2 + 2[-3,4] + 4$$

= [0,16] + [-6,8] + 4
= [-2,28].

Note that $f([-3, 4]) = [3, 28] \subset [f]([-3, 4]) = [-2, 28]$.

A minimal inclusion function for

$$\mathbf{f}: \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^3 \\ (x_1, x_2) & \mapsto & \left(x_1 x_2, x_1^2, x_1 - x_2\right). \end{array}$$

is

$$[\mathbf{f}]: \begin{array}{ccc} \mathbb{I}\mathbb{R}^2 & \to & \mathbb{I}\mathbb{R}^3\\ ([x_1], [x_2]) & \to & ([x_1] * [x_2], [x_1]^2, [x_1] - [x_2]) \end{array}.$$

If ${\bf f}$ is given by the algorithm

Algorithm f(in: $x = (x_1, x_2, x_3)$, out: $y = (y_1, y_2)$)		
1	$z := x_1;$	
2	for $k := 0$ to 100	
3	$z:=x_2\cdot(z+k\cdot x_3);$	
4	next;	
5	$y_1 := z;$	
6	$y_2 := \sin(zx_1);$	

Its natural inclusion function is

Algorithm [f](in: [x], out: [y])
1 [z] := [
$$x_1$$
];
2 for $k := 0$ to 100
3 [z] := [x_2] · ([z] + k · [x_3]);
4 next;
5 [y_1] := [z];
6 [y_2] := sin([z] * [x_1]);

Is [f] convergent? thin? monotonic?

2 Subpavings

2.1 Definition

A subpaving of \mathbb{R}^n is a set of non-overlapping boxes of \mathbb{R}^n .

Compact sets $\mathbb{X} \subset \mathbb{R}^n$ can be bracketed between inner and outer subpavings:

$$\mathbb{X}^- \subset \mathbb{X} \subset \mathbb{X}^+.$$

Example. The set

$$\mathbb{X} = \{ (x_1, x_2) \mid x_1^2 + x_2^2 + \sin(x_1 + x_2) \in [4, 9] \}.$$

can be approximated by subpavings.

Set operations such as $\mathbb{Z} := \mathbb{X} + \mathbb{Y}$, $\mathbb{X} := \mathbf{f}^{-1}(\mathbb{Y}), \mathbb{Z} := \mathbb{X} \cap \mathbb{Y} \dots$ can be approximated by subpaving operations.

2.2 Set inversion

$$\mathbb{X} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{f}(\mathbf{x}) \in \mathbb{Y} \} = \mathbf{f}^{-1}(\mathbb{Y}).$$

If $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbb{Y} \subset \mathbb{R}^m$.
$$\begin{array}{lll} (\mathsf{i}) & [\mathbf{f}]([\mathbf{x}]) \subset \mathbb{Y} & \Rightarrow & [\mathbf{x}] \subset \mathbb{X} \\ (\mathsf{ii}) & [\mathbf{f}]([\mathbf{x}]) \cap \mathbb{Y} = \emptyset & \Rightarrow & [\mathbf{x}] \cap \mathbb{X} = \emptyset. \end{array}$$

Boxes for which these tests failed, will be bisected, except if they are too small.

```
Algorithm Sivia(in: [x](0), f, Y)

1 \mathcal{L} := \{[x](0)\};

2 pull [x] from \mathcal{L};

3 if [f]([x]) \subset Y, draw([x], 'red');

4 elseif [f]([x]) \cap Y = \emptyset, draw([x], 'blue');

5 elseif w([x]) < \varepsilon, {draw ([x], 'yellow')};

6 else bisect [x] and push into \mathcal{L};

7 if \mathcal{L} \neq \emptyset, go to 2
```

If $\Delta\mathbb{X}$ denotes the union of yellow boxes and if \mathbb{X}^- is the union of red boxes then :

$$\mathbb{X}^- \subset \mathbb{X} \subset \mathbb{X}^- \cup \Delta \mathbb{X}.$$

2.3 Bounded-error estimation

Model : $\phi(\mathbf{p}, t) = p_1 e^{-p_2 t}$.

Prior feasible box for the parameters : $[\mathbf{p}] \subset \mathbb{R}^2$

Measurement times : t_1, t_2, \ldots, t_m

Data bars : $[y_1^-, y_1^+], [y_2^-, y_2^+], \dots, [y_m^-, y_m^+]$ $\mathbb{S} = \{ \mathbf{p} \in [\mathbf{p}], \phi(\mathbf{p}, t_1) \in [y_1^-, y_1^+], \dots, \phi(\mathbf{p}, t_m) \in [y_m^-, y_m^+] \}.$

$$\phi(\mathbf{p}) = \begin{pmatrix} \phi(\mathbf{p}, t_1) \\ \phi(\mathbf{p}, t_m) \end{pmatrix}$$

 $\quad \text{and} \quad$

$$[\mathbf{y}] = [y_1^-, y_1^+] \times \dots \times [y_m^-, y_m^+]$$

then

$$\mathbb{S} = \left[\mathrm{p}
ight] \cap \phi^{-1} \left(\left[\mathrm{y}
ight]
ight).$$

Contractors

To characterize $\mathbb{X} \subset \mathbb{R}^n$, bisection algorithms bisect all boxes in all directions and become inefficient. Interval methods can still be useful if

- the solution set X is small (optimization problem, solving equations),
- contraction procedures are used as much as possible,
- bisections are used only as a last resort.

3.1 Definition

The operator $\mathcal{C}_{\mathbb{X}}:\mathbb{IR}^n\to\mathbb{IR}^n$ is a *contractor* for $\mathbb{X}\subset\mathbb{R}^n$ if

$$\forall [\mathbf{x}] \in \mathbb{IR}^n, \begin{cases} \mathcal{C}_{\mathbb{X}}([\mathbf{x}]) \subset [\mathbf{x}] & (\text{contractance}), \\ \mathcal{C}_{\mathbb{X}}([\mathbf{x}]) \cap \mathbb{X} = [\mathbf{x}] \cap \mathbb{X} & (\text{completeness}). \end{cases}$$

The operator \mathcal{C} : $\mathbb{IR}^n \to \mathbb{IR}^n$ is a *contractor* for the equation $f(\mathbf{x}) = 0$, if

$$\forall [\mathbf{x}] \in \mathbb{IR}^n, \begin{cases} \mathcal{C}([\mathbf{x}]) \subset [\mathbf{x}] \\ \mathbf{x} \in [\mathbf{x}] \text{ et } f(\mathbf{x}) = \mathbf{0} \Rightarrow \mathbf{x} \in \mathcal{C}([\mathbf{x}]) \end{cases}$$

$\mathcal{C}_{\mathbb{X}}$ is monotonic if	$[\mathrm{x}] \subset [\mathrm{y}] \Rightarrow \mathcal{C}_{\mathbb{X}}([\mathrm{x}]) \subset \mathcal{C}_{\mathbb{X}}([\mathrm{y}])$
$\mathcal{C}_{\mathbb{X}}$ is <i>minimal</i> if	$orall [\mathbf{x}] \in \mathbb{IR}^n, \ \mathcal{C}_{\mathbb{X}}(\mathbf{[x]}) = \mathbf{[[x]} \cap \mathbb{X}\mathbf{]}$
$\mathcal{C}_{\mathbb{X}}$ is <i>thin</i> if	$orall \mathbf{x} \in \mathbb{R}^n, \ \mathcal{C}_{\mathbb{X}}(\{\mathbf{x}\}) = \{\mathbf{x}\} \cap \mathbb{X}$
$\mathcal{C}_{\mathbb{X}}$ is idempotent if	$orall [\mathbf{x}] \in \mathbb{IR}^n, \mathcal{C}_{\mathbb{X}}(\mathcal{C}_{\mathbb{X}}([\mathbf{x}])) = \mathcal{C}_{\mathbb{X}}([\mathbf{x}]).$

intersection	$\left(\mathcal{C}_{1} \cap \mathcal{C}_{2}\right)\left([\mathbf{x}]\right) \stackrel{def}{=} \mathcal{C}_{1}\left([\mathbf{x}]\right) \cap \mathcal{C}_{2}\left([\mathbf{x}]\right)$
union	$(\mathcal{C}_1 \cup \mathcal{C}_2)([\mathbf{x}]) \stackrel{def}{=} [\mathcal{C}_1([\mathbf{x}]) \cup \mathcal{C}_2([\mathbf{x}])]$
composition	$(\mathcal{C}_1 \circ \mathcal{C}_2)([\mathbf{x}]) \stackrel{def}{=} \mathcal{C}_1(\mathcal{C}_2([\mathbf{x}]))$
répétition	$\mathcal{C}^{\infty} \stackrel{def}{=} \mathcal{C} \circ \mathcal{C} \circ \mathcal{C} \circ \ldots$

 $\mathcal{C}_{\mathbb{X}}$ is said to be convergent if

 $[\mathbf{x}](k) \to \mathbf{x} \quad \Rightarrow \quad \mathcal{C}_{\mathbb{X}}([\mathbf{x}](k)) \to \{\mathbf{x}\} \cap \mathbb{X}.$

3.2 Projection of constraints

Let x, y, z be 3 variables such that

$$egin{array}{rcl} x &\in & [-\infty, 5], \ y &\in & [-\infty, 4], \ z &\in & [6, \infty], \ z &= & x+y. \end{array}$$

The values < 2 for x, < 1 for y and > 9 for z are inconsistent.

To project a constraint (here, z = x + y), is to compute the smallest intervals which contains all consistent values.

For our example, this amounts to project onto $\boldsymbol{x},\boldsymbol{y}$ and \boldsymbol{z} the set

 $\mathbb{S} = \left\{ (x, y, z) \in [-\infty, 5] \times [-\infty, 4] \times [6, \infty] \mid z = x + y \right\}.$

3.3 Numerical method for projection

Since $x \in [-\infty, 5], y \in [-\infty, 4], z \in [6, \infty]$ and z = x + y, we have

The contractor associated with z = x + y is.

Algorithm pplus(inout: $[z], [x], [y]$)		
1	$[z]:=[z]\cap ([x]+[y])$;	
2	$[x]:=[x]\cap \left(\left[z ight] -\left[y ight] ight)$;	
3	$[y] := [y] \cap ([z] - [x])$.	

The projection procedure developed for plus can be extended to other ternary constraints such as mult: z = x * y, or equivalently

$$\mathsf{mult} riangleq \left\{ (x,y,z) \in \mathbb{R}^3 \mid z = x * y
ight\}.$$

The resulting projection procedure becomes

Algorithm pmult(inout:
$$[z], [x], [y]$$
)
1 $[z] := [z] \cap ([x] * [y]);$
2 $[x] := [x] \cap ([z] * 1/[y]);$
3 $[y] := [y] \cap ([z] * 1/[x]).$

Consider the binary constraint

$$\exp \triangleq \{(x, y) \in \mathbb{R}^n | y = \exp(x)\}.$$

The associated contractor is

Algorithm pexp(inout: $[y], [x]$)		
1	$[y]:=[y]\cap \exp\left([x] ight)$;	
2	$[x] := [x] \cap \log([y]).$	

Any constraint for which such a projection procedure is available will be called a *primitive constraint*.

Example. Consider the primitive equation:

$$x_2 = \sin x_1.$$

Forward contraction

Backward contraction

Decomposition

$$egin{array}{l} x+\sin(xy)\leq { extsf{0}},\ x\in [-1,1], y\in [-1,1] \end{array}$$

Decomposition

$$egin{aligned} x+\sin(xy)\leq \mathsf{0},\ x\in [-1,1], y\in [-1,1] \end{aligned}$$

can be decomposed into

$$\left\{ egin{array}{ll} a=xy & x\in [-1,1] & a\in [-\infty,\infty] \ b=\sin(a) &, y\in [-1,1] & b\in [-\infty,\infty] \ c=x+b & c\in [-\infty,0] \end{array}
ight.$$

Forward-backward contractor (HC4 revise)

For the equation

$$(x_1+x_2)\cdot x_3 \in [1,2],$$

we have the following contractor:

algorithm $\mathcal C$ (inout $[x_1], [x_2]$	$[2], [x_3])$
$[a] = [x_1] + [x_2]$	$// a = x_1 + x_2$
$[b] = [a] \cdot [x_3]$	$// b = a \cdot x_3$
$[b] = [b] \cap [1,2]$	$//~b\in extsf{[1,2]}$
$[x_3] = [x_3] \cap \frac{[b]}{[a]}$	$//x_3 = \frac{b}{a}$
$[a] = [a] \cap \frac{[b]}{[x_3]}$	$//a = \frac{b}{x_3}$
$[x_1] = [x_1] \cap [a] - [x_2]$	$//x_1 = a - x_2$
$[x_2] = [x_2] \cap [a] - [x_1]$	$//x_2 = a - x_1$

Properties

$$\begin{array}{lll} (\mathcal{C}_{1}^{\infty} \cap \mathcal{C}_{2}^{\infty})^{\infty} &= (\mathcal{C}_{1} \cap \mathcal{C}_{2})^{\infty} \\ (\mathcal{C}_{1} \cap (\mathcal{C}_{2} \cup \mathcal{C}_{3})) &\supset (\mathcal{C}_{1} \cap \mathcal{C}_{2}) \cup (\mathcal{C}_{1} \cap \mathcal{C}_{3}) \\ \begin{cases} \mathcal{C}_{1} \text{ minimal} \\ \mathcal{C}_{2} \text{ minimal} \end{cases} \Rightarrow \mathcal{C}_{1} \cup \mathcal{C}_{2} \text{ minimal} \end{array}$$

Contractor on images

The robot with coordinates (x_1, x_2) is in the water.

3.4 Propagation

Example 1. Consider the system of two equations.

$$y = x^2$$
$$y = \sqrt{x}.$$

We can build two contractors

$$\mathcal{C}_{1}: \begin{cases} [y] = [y] \cap [x]^{2} \\ [x] = [x] \cap \sqrt{[y]} \end{cases} \text{ associated to } y = x^{2} \\ \mathcal{C}_{2}: \begin{cases} [y] = [y] \cap \sqrt{[x]} \\ [x] = [x] \cap [y]^{2} \end{cases} \text{ associated to } y = \sqrt{x} \end{cases}$$

Contractor graph

If $\mathcal{C}^*_{\mathbb{S}_1}$ and $\mathcal{C}^*_{\mathbb{S}_2}$ are two minimal contractors for \mathbb{S}_1 and \mathbb{S}_2 then

$$\mathcal{C}_{\mathbb{S}} = \mathcal{C}_{\mathbb{S}_1}^* \circ \mathcal{C}_{\mathbb{S}_2}^* \circ \mathcal{C}_{\mathbb{S}_1}^* \circ \mathcal{C}_{\mathbb{S}_2}^* \circ \dots$$

is a contractor for $\mathbb{S} = \mathbb{S}_1 \cap \mathbb{S}_2$, but it is not always optimal. This is the *local consistency effect*. Example 2 (local consistency). Consider the system

$$\begin{cases} y = 3\sin(x) \\ y = x \end{cases} \quad x \in \mathbb{R}, \ y \in \mathbb{R}.$$

Example 3 (more equations than unknowns).

$$\begin{cases} (C_1): & y = x^2 \\ (C_2): & xy = 1 \\ (C_3): & y = -2x + 1 \end{cases}$$

3.5 Contractor algebra

intersection	$\left(\mathcal{C}_{1}\cap\mathcal{C}_{2} ight)\left(\left[\mathbf{x} ight] ight)\overset{def}{=}\mathcal{C}_{1}\left(\left[\mathbf{x} ight] ight)\cap\mathcal{C}_{2}\left(\left[\mathbf{x} ight] ight)$
union	$\left(\mathcal{C}_{1} \cup \mathcal{C}_{2}\right)\left([\mathbf{x}]\right) \stackrel{def}{=} \left[\mathcal{C}_{1}\left([\mathbf{x}]\right) \cup \mathcal{C}_{2}\left([\mathbf{x}]\right)\right]$
composition	$(\mathcal{C}_1 \circ \mathcal{C}_2)([\mathbf{x}]) \stackrel{def}{=} \mathcal{C}_1(\mathcal{C}_2([\mathbf{x}]))$
repetition	$\mathcal{C}^{\infty} \stackrel{def}{=} \mathcal{C} \circ \mathcal{C} \circ \mathcal{C} \circ \ldots$
repeat intersection	$\mathcal{C}_1 \sqcap \mathcal{C}_2 = (\mathcal{C}_1 \cap \mathcal{C}_2)^\infty$
repeat union	$\mathcal{C}_1 \sqcup \mathcal{C}_2 = (\mathcal{C}_1 \cup \mathcal{C}_2)^\infty$

Consider the contractor C([x], [y]), where $[x] \in \mathbb{R}^n, [y] \in \mathbb{R}^p$. We define the contractor

$$\mathcal{C}^{\cup[\mathbf{y}]}\left([\mathbf{x}]\right) = \left[\bigcup_{\mathbf{y}\in[\mathbf{y}]} \pi_{\mathbf{x}}\left(\mathcal{C}\left([\mathbf{x}],\mathbf{y}\right)\right)\right] \quad \text{(projected union)}$$

Define the contractor

We have

$$\begin{split} & \mathsf{set}\left(\mathcal{C}^{\cup[\mathbf{y}]}\right) = \{\mathbf{x}, \exists \mathbf{y} \in [\mathbf{y}], (\mathbf{x}, \mathbf{y}) \in \mathsf{set}\left(\mathcal{C}\right)\} \\ & \mathsf{set}\left(\mathcal{C}^{\cap[\mathbf{y}]}\right) = \{\mathbf{x}, \forall \mathbf{y} \in [\mathbf{y}], (\mathbf{x}, \mathbf{y}) \in \mathsf{set}\left(\mathcal{C}\right)\}. \end{split}$$

3.6 Circuits

Example 1

Domains

- $E \in [23V, 26V]; I \in [4A, 8A];$
- $U_1 \in [10V, 11V]; U_2 \in [14V, 17V];$
 - $P \in [124W, 130W]; R_1 \in [0, \infty[\text{ and } R_2 \in [0, \infty[.$

Constraints

(i)
$$P = EI$$
, (ii) $E = (R_1 + R_2)I$, (iii) $U_1 = R_1I$,
(iv) $U_2 = R_2I$, (v) $E = U_1 + U_2$.

Solution set

 $\mathbb{S} = \left\{ \begin{pmatrix} E \\ R_1 \\ R_2 \\ I \\ U_1 \\ U_2 \\ P \end{pmatrix} \in \begin{pmatrix} [23, 26] \\ [0, \infty[\\ [4, 8] \\ [10, 11] \\ [14, 17] \\ [124, 130]; \end{pmatrix}, \left\{ \begin{array}{l} P = EI \\ E = (R_1 + R_2) I \\ U_1 = R_1 I \\ U_2 = R_2 I \\ E = U_1 + U_2 \end{array} \right\} \right\}$

```
variables
E in [23 ,26];
I in [4,8];
U1 in [10,11];
U2 in [14 ,17];
P in [124,130];
R1 in [0 ,1e08 ];
R2 in [0 ,1e08 ];
contractor_list L
P=E*I;
E=(R1+R2)*I;
U1=R1*I;
U2=R2*I;
E=U1+U2;
```

```
end
```

```
contractor C
   compose(L);
end
contractor epsilon
   precision(1);
end
```

$$\begin{split} & [24;26]\times[1.846;2.307]\times[2.584;3.355]\\ & \times\,[4.769;5.417]\times[10;11]\times[14;16]\times[124;130]\,, \end{split}$$

i.e.,

$E \in [24; 26],$	$R_1 \in [1.846; 2.307],$
$R_2 \in [2.584; 3.355],$	$I \in [4.769; 5.417]$,
$U_1 \in [10; 11],$	$U_2 \in [14; 16]$,
$P \in [124; 130]$.	

4 SLAM

Show the video

Mine detection with SonarPro

Loch-Doppler returns the speed robot \mathbf{v}_r .

$$\mathbf{v}_r \in \mathbf{ ilde{v}}_r + 0.004 * \left[-1,1
ight].\mathbf{ ilde{v}}_r + 0.004 * \left[-1,1
ight]$$

Inertial central (Octans III from IXSEA).

$$\begin{pmatrix} \phi \\ \theta \\ \psi \end{pmatrix} \in \begin{pmatrix} \tilde{\phi} \\ \tilde{\theta} \\ \tilde{\psi} \end{pmatrix} + \begin{pmatrix} 1.75 \times 10^{-4} \cdot [-1,1] \\ 1.75 \times 10^{-4} \cdot [-1,1] \\ 5.27 \times 10^{-3} \cdot [-1,1] \end{pmatrix}$$

Six mines have been detected.

i	0	1	2	3	4	5
$\tau(i)$	7054	7092	7374	7748	9038	9688
$\sigma(i)$	1	2	1	0	1	5
$\tilde{r}(i)$	52.42	12.47	54.40	52.68	27.73	26.98

6	7	8	9	10	11
10024	10817	11172	11232	11279	11688
4	3	3	4	5	1
37.90	36.71	37.37	31.03	33.51	15.05

4.1 Constraints

$t \in \{6000.0, 6000.1, 6000.2, \dots, 11999.4\},\$ $i \in \{0, 1, \dots, 11\},\$ $\begin{pmatrix} p_x(t) \\ p_y(t) \end{pmatrix} = 111120 \cdot \begin{pmatrix} 0 & 1 \\ \cos\left(\ell_y(t) \cdot \frac{\pi}{180}\right) & 0 \end{pmatrix} \cdot \begin{pmatrix} \ell_x(t) - \ell_x^0 \\ \ell_y(t) - \ell_y^0 \end{pmatrix},\$ $\mathbf{p}(t) = (p_x(t), p_y(t), p_z(t)),\$ $\mathbf{R}_{\psi}(t) = \begin{pmatrix} \cos\psi(t) & -\sin\psi(t) & 0 \\ \sin\psi(t) & \cos\psi(t) & 0 \\ 0 & 0 & 1 \end{pmatrix},\$ $(\cos\theta(t) - \sin\theta(t))$

$$\mathbf{R}_{\theta}(t) = \begin{pmatrix} \cos \theta(t) & 0 & \sin \theta(t) \\ 0 & 1 & 0 \\ -\sin \theta(t) & 0 & \cos \theta(t) \end{pmatrix},$$

$$egin{aligned} \mathbf{R}_arphi(t) &= egin{pmatrix} 1 & 0 & 0 \ 0 & \cos arphi(t) & -\sin arphi(t) \ 0 & \sin arphi(t) & \cos arphi(t) \end{pmatrix}, \ \mathbf{R}(t) &= \mathbf{R}_\psi(t) \cdot \mathbf{R}_ heta(t) \cdot \mathbf{R}_arphi(t), \ \dot{\mathbf{p}}(t) &= \mathbf{R}(t) \cdot \mathbf{v}_r(t), \ ||\mathbf{m}(\sigma(i)) - \mathbf{p}(au(i))|| &= r(i), \ \mathbf{R}^ op(\tau(i)) \cdot (\mathbf{m}(\sigma(i)) - \mathbf{p}(au(i))) \in [0] imes [0,\infty]^{ imes 2}. \end{aligned}$$

4.2 GESMI

Robust parameter estimation

Exercise. A robot measures its own distance to three marks. The distances and the coordinates of the marks are

mark	x_i	y_i	d_i
1	0	0	[22, 23]
2	10	10	[10, 11]
3	30	-30	[53, 54]

- 1) Define the set $\mathbb X$ al all feasible positions.
- 2) Build the contractor associated with X.
- 2) Build the contractor associated with $\overline{\mathbb{X}}$.

Solution.

$$\mathbb{X} = \bigcap_{i \in \{1,2,3\}} \underbrace{\left\{ (x,y) \mid (x-x_i)^2 + (y-y_i)^2 \in \left[d_i^-, d_i^+\right] \right\}}_{\mathbb{X}_i}$$

$$\overline{\mathbb{X}} = \bigcap_{i \in \{1,2,3\}} \mathbb{X}_i = \bigcup_{i \in \{1,2,3\}} \overline{\mathbb{X}_i} \\ = \bigcup_{i \in \{1,2,3\}} \left\{ (x,y) \mid (x-x_i)^2 + (y-y_i)^2 \in \left[-\infty, d_i^-\right] \right\} \\ \cup \left\{ (x,y) \mid (x-x_i)^2 + (y-y_i)^2 \in \left[d_i^+,\infty\right] \right\}$$

$$\mathcal{C} = \bigcap_{i \in \{1,2,3\}} \mathcal{D}_{\left[d_i^-, d_i^+\right]}$$

$$\overline{\mathcal{C}} = \bigcup_{i \in \{1,2,3\}} \left(\mathcal{D}_{\left[-\infty, d_i^-\right]} \right) \cup \left(\mathcal{D}_{\left[d_i^+, \infty\right]} \right)$$

5.1 Relaxed intersection

Dealing with outliers

$$\mathcal{C} = (\mathcal{C}_1 \cap \mathcal{C}_2) \cup (\mathcal{C}_2 \cap \mathcal{C}_3) \cup (\mathcal{C}_1 \cap \mathcal{C}_3)$$

Consider m sets X_1, \ldots, X_m of \mathbb{R}^n . The q-relaxed intersection $\bigcap^{\{q\}} X_i$ is the set of all $\mathbf{x} \in \mathbb{R}^n$ which belong to all X_i 's, except q at most.

Exercise. Consider 8 intervals: $X_1 = [1, 4], X_2 = [2, 4], X_3 = [2, 7], X_4 = [6, 9], X_5 = [3, 4], X_6 = [3, 7]$. Compute

Solution. For $\mathbb{X}_1 = [1, 4]$, $\mathbb{X}_2 = [2, 4]$, $\mathbb{X}_3 = [2, 7]$, $\mathbb{X}_4 = [6, 9]$, $\mathbb{X}_5 = [3, 4]$, $\mathbb{X}_6 = [3, 7]$, we have

$$\begin{cases} 0 \} & \{1\} & \{2\} \\ \bigcap X_i &= \emptyset, \ \bigcap X_i = [3, 4], \ \bigcap X_i = [3, 4], \\ \{3\} & \{4\} \\ \bigcap X_i &= [2, 4] \cup [6, 7], \ \bigcap X_i = [2, 7], \\ \{5\} & \{6\} \\ \bigcap X_i &= [1, 9], \ \bigcap X_i = \mathbb{R}. \end{cases}$$

If X_i 's are intervals, the relaxed intersection can be computed with a complexity of $n \log n$.

Take all bounds of all intervals with their brackets.

Bounds	1	4	2	4	2	7	6	9	3	4	3	7
Brackets	[]	[]	[]	[]	[]	[]
Sort the columns with respect the bounds:

Bounds	1	2	2	3	3	4	4	4	6	7	7	9
Brackets	[[[[[]]]	[]]]

Scan from left to right, counting +1 for '[' and -1 for ']':

Bounds	1	2	2	3	3	4	4	4	6	7	7	9
Brackets	[[[]]]	[]]]
Sum	1	2	3	4	5	4	3	2	3	2	1	0

Read the q-intersections

Set-membership function associated with the 6 intervals

Computing the q relaxed intersection of \boldsymbol{m} boxes is tractable.

The black box is the 2-intersection of 9 boxes

Formal definition

$$\begin{cases} q \\ \bigcap \mathbb{X}_i = \bigcup_{\{\sigma_1, \dots, \sigma_{n-q}\}} \mathbb{X}_{\sigma_1} \cap \dots \cap \mathbb{X}_{\sigma_{n-q}} \\ \begin{cases} q \\ \bigcup \mathbb{X}_i = \bigcap_{\{\sigma_1, \dots, \sigma_{n-q}\}} \mathbb{X}_{\sigma_1} \cup \dots \cup \mathbb{X}_{\sigma_{n-q}} \end{cases}$$

Remark

$$\begin{array}{l} {}^{\{0\}} \\ \bigcap \mathbb{X}_i = \bigcap \mathbb{X}_i \\ {}^{\{0\}} \\ \bigcup \mathbb{X}_i = \bigcup \mathbb{X}_i \end{array}$$

Dual rule

$$\bigcap^{\{q\}} \mathbb{X}_i = \bigcup^{\{n-q-1\}} \mathbb{X}_i$$

De Morgan's law

$$\begin{array}{rcl}
\overline{\{q\}} & & \{q\} \\
\bigcap \mathbb{X}_i & = & \bigcup \overline{\mathbb{X}_i} \\
\overline{\{q\}} & & \{q\} \\
\bigcup \mathbb{X}_i & = & \bigcap \overline{\mathbb{X}_i}.
\end{array}$$

From the De Morgan's law and the dual rules, we get

$$\overline{\{q\}} = \overline{\{n-q-1\}} = \{n-q-1\} = \{n-q-1\} = \{n-q-1\} = [n-q-1] = [n$$

Relaxation of contractors

We define the $q\mbox{-relaxed}$ intersection between m contractors

$$\mathcal{C} = \left(\bigcap_{i \in \{1,...,m\}}^{\{q\}} \mathcal{C}_i\right) \Leftrightarrow \forall [\mathbf{x}] \in \mathbb{IR}^n, \mathcal{C}([\mathbf{x}]) = \bigcap^{\{q\}} \mathcal{C}_i([\mathbf{x}]).$$

5.2 Shape detection

Sauc'isse robot swimming inside a pool

A spheric buoy seen by Sauc'isse

An *implicit parameter set estimation problem* amounts to characterizing

$$\mathbb{P} = \bigcap_{i \in \{1,...,m\}} \underbrace{\{\mathbf{p} \in \mathbb{R}^n, \exists \mathbf{y} \in [\mathbf{y}](i), \mathbf{f}(\mathbf{p}, \mathbf{y}) = \mathbf{0}\}}_{\mathbb{P}_i}$$

where \mathbf{p} is the parameter vector, $[\mathbf{y}](i)$ is the *i*th measurement box and \mathbf{f} is the model function.

Consider the shape function f(p, y), where $y \in \mathbb{R}^2$ corresponds to a pixel and p is the shape vector.

Example (circle):

$$f(\mathbf{p}, \mathbf{y}) = (y_1 - p_1)^2 + (y_2 - p_2)^2 - p_3^2.$$

The shape associated with \mathbf{p} is

$$\mathcal{S}\left(\mathbf{p}
ight)\stackrel{\mathsf{def}}{=}\left\{\mathbf{y}\in\mathbb{R}^{2},\mathbf{f}\left(\mathbf{p},\mathbf{y}
ight)=\mathbf{0}
ight\}$$

Consider a set of (small) boxes in the image

$$\mathcal{Y} = \left\{ [\mathbf{y}](1), \ldots, [\mathbf{y}](m) \right\}.$$

Each box is assumed to intersect the shape we want to extract.

In our buoy example,

• $\mathcal Y$ corresponds to edge pixel boxes.

•
$$f(\mathbf{p}, \mathbf{y}) = (y_1 - p_1)^2 + (y_2 - p_2)^2 - p_3^2$$
.

• $\mathbf{p} = (p_1, p_2, p_3)^{\mathsf{T}}$ where p_1, p_2 are the coordinates of the center of the circle and p_3 its radius.

The \boldsymbol{q} relaxed feasible set is

$$\mathbb{P}^{\{q\}} \stackrel{\mathsf{def}}{=} igcap_{i \in \{1,...,m\}}^{\{q\}} \left\{ \mathbf{p} \in \mathbb{R}^n, \exists \mathbf{y} \in [\mathbf{y}](i), \mathbf{f}\left(\mathbf{p},\mathbf{y}
ight) = \mathbf{0}
ight\}.$$

An optimal contractor for the set

$$\left\{\mathbf{p} \in [\mathbf{p}], \exists \mathbf{y} \in [\mathbf{y}], (y_1 - p_1)^2 + (y_2 - p_2)^2 - p_3^2 = \mathbf{0}\right\}$$

FB(in: [y], [p], out: [p])
1	$[d_1] := [y_1] - [p_1];$
2	$[d_2] := [y_2] - [p_2];$
3	$[c_1] := [d_1]^2$;
4	$[c_2] := [d_2]^2;$
5	$[c_3] := [p_3]^2;$
6	$[e] := [0,0] \cap ([c_1] + [c_2] - [c_3]);$
7	$[c_1] := [c_1] \cap ([e] - [c_2] + [c_3]);$
8	$[c_2] := [c_2] \cap ([e] - [c_1] + [c_3]);$
9	$[c_3] := [c_3] \cap ([c_1] + [c_2] - [e]);$
10	$[\bar{p}_3] := [p_3] \cap \sqrt{[c_3]};$
11	$[d_2] := [d_2] \cap \sqrt{[c_2]};$
12	$[d_1] := [d_1] \cap \sqrt{[c_1]};$
13	$[p_2]:=[p_2]\cap \dot{(}[y_2]-[d_2])$;
14	$[p_1]:=[p_1]\cap ([y_1]-[d_1])$;

q= 0.70 m (i.e. 70% of the data can be outlier)

q= 0.80 m (i.e. 80% of the data can be outlier)

q= 0.81 m (i.e. 81% of the data can be outlier)

6 Intervals and graphs

6.1 Path planning

Initial configuration: $\vec{p} = (0 \ 0)^{\mathrm{T}}$

Goal configuration: $\vec{p} = (17 \ 0)^{\mathrm{T}}$

6.2 Charaterizing the topology

(Collaboration with N. Delanoue and B. Cottenceau)

An approach has also been developed with N. Delanoue to compute a triangulation homeomorphic to $\mathbb{S}.$

7 Saiboat robotics

7.1 Vaimos

Vaimos (IFREMER and ENSTA)

The robot satisfies a state equation

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$$
.

With the controller $\mathbf{u} = \mathbf{g}(\mathbf{x})$, the robot satisfies an equation of the form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$
.

With all uncertainties, the robot satisfies.

 $\dot{\mathbf{x}} \in \mathbf{F}\left(\mathbf{x}
ight)$

which is a differential inclusion.

7.2 Line following

Controller of a sailboat robot

Heading controller

$$\begin{cases} \delta_r &= \begin{cases} \delta_r^{\max}.\sin\left(\theta - \overline{\theta}\right) & \text{if } \cos\left(\theta - \overline{\theta}\right) \ge 0\\ \delta_r^{\max}.\operatorname{sign}\left(\sin\left(\theta - \overline{\theta}\right)\right) & \text{otherwise} \end{cases}\\ \delta_s^{\max} &= \frac{\pi}{2}.\left(\frac{\cos(\psi - \overline{\theta}) + 1}{2}\right). \end{cases}$$

Rudder

$$\delta_r = \begin{cases} \delta_r^{\max} . \sin\left(\theta - \overline{\theta}\right) & \text{if } \cos\left(\theta - \overline{\theta}\right) \ge 0\\ \delta_r^{\max} . \text{sign}\left(\sin\left(\theta - \overline{\theta}\right)\right) & \text{otherwise} \end{cases}$$

Sail

7.3 Vector field

Nominal vector field:
$$\theta^* = \varphi - \frac{1}{2} \operatorname{atan} \left(\frac{e}{r} \right)$$
.

A course θ^* may be unfeasible

$$\theta^* = -\frac{2.\gamma_\infty}{\pi}$$
.atan $\left(\frac{e}{r}\right)$

7.4 Controller

Function in: m,
$$\theta$$
, ψ , a, b; out: δ_r , δ_s^{\max} ; inout: q
1 $e = \frac{\det(\mathbf{b}-\mathbf{a},\mathbf{m}-\mathbf{a})}{\|\mathbf{b}-\mathbf{a}\|}$
2 if $|e| > r$ then $q = \operatorname{sign}(e)$
3 $\varphi = \operatorname{atan2}(\mathbf{b}-\mathbf{a})$
4 $\overline{\theta} = \varphi - \frac{1}{2} \cdot \operatorname{atan}\left(\frac{e}{r}\right)$
5 if $\cos\left(\psi - \overline{\theta}\right) + \cos\zeta < 0$ then $\overline{\theta} = \pi + \psi - q.\zeta$.
6 if $\cos\left(\theta - \overline{\theta}\right) \ge 0$ then $\delta_r = \delta_r^{\max} \cdot \sin\left(\theta - \overline{\theta}\right)$
 $else \, \delta_r = \delta_r^{\max} \cdot \operatorname{sign}\left(\sin\left(\theta - \overline{\theta}\right)\right)$
7 $\delta_s^{\max} = \frac{\pi}{2} \cdot \left(\frac{\cos(\psi - \overline{\theta}) + 1}{2}\right)$.

7.5 Validation by simulation

7.6 Theoretical validation

When the wind is known, the sailboat with the heading controller is described by

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$
.

The system

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$

is Lyapunov-stable (1892) is there exists $V\left(\mathbf{x}
ight)\geq$ 0 such that

$$\dot{V}(\mathbf{x}) < 0 \text{ if } \mathbf{x} \neq \mathbf{0},$$

 $V(\mathbf{x}) = 0 \text{ iff } \mathbf{x} = \mathbf{0}.$

Definition. Consider a differentiable function $V(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}$. The system is V-stable if

$$\left(V\left(\mathbf{x}
ight) \geq \mathsf{0} \ \Rightarrow \ \dot{V}\left(\mathbf{x}
ight) < \mathsf{0}
ight) .$$

Theorem. If the system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is *V*-stable then

(i) $\forall \mathbf{x}(0), \exists t \geq 0$ such that $V(\mathbf{x}(t)) < 0$ (ii) if $V(\mathbf{x}(t)) < 0$ then $\forall \tau > 0, V(\mathbf{x}(t+\tau)) < 0$. Now,

$$\begin{pmatrix} V(\mathbf{x}) \ge \mathbf{0} \implies \dot{V}(\mathbf{x}) < \mathbf{0} \\ \Leftrightarrow \quad \left(V(\mathbf{x}) \ge \mathbf{0} \Rightarrow \frac{\partial V}{\partial \mathbf{x}}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) < \mathbf{0} \right) \\ \Leftrightarrow \quad \forall \mathbf{x}, \frac{\partial V}{\partial \mathbf{x}}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) < \mathbf{0} \text{ or } V(\mathbf{x}) < \mathbf{0} \\ \Leftrightarrow \quad \neg \left(\exists \mathbf{x}, \frac{\partial V}{\partial \mathbf{x}}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) \ge \mathbf{0} \text{ and } V(\mathbf{x}) \ge \mathbf{0} \right)$$

Theorem. We have

$$\begin{cases} \frac{\partial V}{\partial \mathbf{x}}\left(\mathbf{x}\right).\mathbf{f}\left(\mathbf{x}\right) \geq \mathbf{0} \\ V(\mathbf{x}) \geq \mathbf{0} \end{cases} \text{ inconsistent } \Leftrightarrow \mathbf{\dot{x}} = \mathbf{f}\left(\mathbf{x}\right) \text{ is } V \text{-stable.} \end{cases}$$

Interval method could easily prove the $V\mbox{-stability}.$

Theorem. We have

 $\begin{cases} \frac{\partial V}{\partial \mathbf{x}}(\mathbf{x}) . \mathbf{a} \ge \mathbf{0} \\ \mathbf{a} \in \mathbf{F}(\mathbf{x}) \\ V(\mathbf{x}) \ge \mathbf{0} \end{cases} \text{ inconsistent } \Leftrightarrow \mathbf{\dot{x}} \in \mathbf{F}(\mathbf{x}) \text{ is } V \text{-stable} \end{cases}$

Differential inclusion $\dot{\mathbf{x}} \in \mathbf{F}(\mathbf{x})$ for the sailboat. $V(x) = x_2^2 - r_{\max}^2$.

7.7 Parametric case

Consider the differential inclusion

 $\mathbf{\dot{x}} \in \mathbf{F}(\mathbf{x}, \mathbf{p})$.

We characterize the set \mathbb{P} of all \mathbf{p} such that the system is V-stable.

7.8 Experimental validation

Brest

Show Dashboard

Brest-Douarnenez. January 17, 2012, 8am

Montrer la mise à l'eau

Middle of Atlantic ocean

350 km made by Vaimos in 53h, September 6-9, 2012.

Consequence.

It is possible for a sailboat robot to navigate inside a corridor.

Essential, to create circulation rules when robot swarms are considered.

Essential to determine who has to pay in case of accident.

References.

Jaulin L., M. Kieffer, O. Didrit and E. Walter (2001), Applied Interval Analysis with Examples in Parameter and State Estimation, Robust Control and Robotics, Springer-Verlag,

L. Jaulin (2009), A nonlinear set-membership approach for the localization and map building of an underwater robot using interval constraint propagation, *IEEE Transactions on Robotics*.

L. Jaulin and F. Le Bars (2012). An interval approach for stability analysis; Application to sailboat robotics. *IEEE Transaction on Robotics*.

L. Jaulin (2001). Path planning using intervals and graphs. Reliable Computing.

N. Delanoue, L. Jaulin and B. Cottenceau (2005), Using interval arithmetic to prove that a set is path-connected -

Theoretical Computer Science, Special issue: Real Numbers and Computers.

G. Chabert and L. Jaulin (2009), Contractor programming. *Artificial Intelligence*.