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1 Interval computation



1.1 Set theory



The direct image of X by f is

f (X) � {f(x) | x ∈ X}.
The reciprocal image of Y by f is

f−1 (Y) � {x ∈ X | f(x) ∈ Y}.



Exercise: If f is defined as follows

f(A) = ?.

f−1(B) = ?.

f−1(f(A)) = ?

f−1(f({b, c})) = ?.



Exercise: If f is defined as follows

f(A) = {2, 3, 4} = Im(f).

f−1(B) = {a, b, c, e} = dom(f).

f−1(f(A)) = {a, b, c, e} ⊂ A
f−1(f({b, c})) = {a, b, c}.



Exercise: If f(x) = x2, then

f([2, 3]) = ?

f−1([4, 9]) = ?.



Exercise: If f(x) = x2, then

f([2, 3]) = [4, 9]

f−1([4, 9]) = [−3,−2] ∪ [2, 3].

This is consistent with the property

f−1 (f (Y)) ⊃ Y.



1.2 Interval arithmetic



If ⋄ ∈ {+,−, ·, /,max,min}

[x] ⋄ [y] = [ {x ⋄ y | x ∈ [x], y ∈ [y]} ] .

where [A] is the smallest interval which encloses A ⊂ R.



Exercise.

[−1, 3] + [2, 5] = [?, ?],
[−1, 3] · [2, 5] = [?, ?],
[−2, 6]/[2, 5] = [?, ?].



Solution.

[−1, 3] + [2, 5] = [1, 8],
[−1, 3].[2, 5] = [−5, 15],
[−2, 6]/[2, 5] = [−1, 3].



[x−, x+] + [y−, y+] = [x− + y−, x+ + y+],
[x−, x+] · [y−, y+] = [x−y− ∧ x+y− ∧ x−y+ ∧ x+y+,

x−y− ∨ x+y− ∨ x−y+ ∨ x+y+],



If f ∈ {cos, sin,sqr, sqrt, log, exp, . . . }

f ([x]) = [{f(x) | x ∈ [x]}] .



Exercise.

sin ([0, π]) = ?,

sqr ([−1, 3]) = [−1, 3]2 =?,
abs ([−7, 1]) = ?,

sqrt ([−10, 4]) =
�
[−10, 4] =?,

log ([−2,−1]) = ?.



Solution.

sin ([0, π]) = [0, 1],

sqr ([−1, 3]) = [−1, 3]2 = [0, 9],

abs ([−7, 1]) = [0, 7],

sqrt ([−10, 4]) =
�
[−10, 4] = [0, 2],

log ([−2,−1]) = ∅.



1.3 Boxes



A box, or interval vector [x] of Rn is

[x] = [x−1 , x
+
1 ]× · · · × [x−n , x

+
n ] = [x1]× · · · × [xn].

The set of all boxes of Rn will be denoted by IRn.



The width w ([x]) of a box [x] is the length of its largest

side. For instance

w([1, 2]× [−1, 3]) = 4



1.4 Inclusion function



The interval function [f ] from IR
n to IRm, is an inclusion

function of f if

∀ [x] ∈ IRn, f([x]) ⊂ [f ] ([x]).

Inclusion functions [f ] and [f ]∗; here, [f ]∗ is minimal.



The inclusion function [f ] is

monotonic if ([x] ⊂ [y])⇒ ([f ] ([x]) ⊂ [f ] ([y]))
minimal if ∀[x] ∈ IRn, [f ] ([x]) = [f ([x])]
thin if w([x]) = 0⇒ w([f ]( [x]) = 0
convergent if w([x])→ 0⇒ w([f ]( [x])→ 0.



Exercise

The figure provides a nested sequence of boxes [x] (k),

their image f ([x]) by a function f and the image by an

inclusion function [f ].

a) [f ] is convergent.

b) [f ] is monotonic

c) [f ] is minimal.



Solution. [f ] is convergent, non-monotonic, non-minimal.



Convergent and monotonic



Exercise. The natural inclusion function for f(x) = x2+

2x+ 4 is

[f ]([x]) = [x]2 + 2[x] + 4.

For [x] = [−3, 4], compute [f ]([x]) and f([x]).



Solution. If [x] = [−3, 4], we have

[f ]([−3, 4]) = [−3, 4]2 + 2[−3, 4] + 4

= [0, 16] + [−6, 8] + 4

= [−2, 28].
Note that f([−3, 4]) = [3, 28] ⊂ [f ]([−3, 4]) = [−2, 28].



A minimal inclusion function for

f :
R2 → R3

(x1, x2) �→
�
x1x2, x

2
1, x1 − x2

�
.

is

[f ] :
IR

2 → IR
3

([x1] , [x2]) →
�
[x1] ∗ [x2] , [x1]2 , [x1]− [x2]

�
.



If f is given by the algorithm

Algorithm f(in: x = (x1, x2, x3), out: y = (y1, y2))
1 z := x1;
2 for k := 0 to 100
3 z := x2 · (z + k · x3);
4 next;
5 y1 := z;
6 y2 := sin(zx1);



Its natural inclusion function is

Algorithm [f ](in: [x], out: [y])
1 [z] := [x1];
2 for k := 0 to 100
3 [z] := [x2] · ([z] + k · [x3]);
4 next;
5 [y1] := [z] ;
6 [y2] := sin([z] ∗ [x1]);

Is [f ] convergent? thin? monotonic?



2 Subpavings



2.1 Definition

A subpaving of Rn is a set of non-overlapping boxes of Rn.

Compact sets X ⊂ Rn can be bracketed between inner and

outer subpavings:

X
− ⊂ X ⊂ X+.



Example. The set

X = {(x1, x2)
��� x21 + x

2
2 + sin (x1 + x2) ∈ [4, 9]}.

can be approximated by subpavings.



Set operations such as Z := X+ Y, X := f−1 (Y) ,Z :=

X ∩ Y . . . can be approximated by subpaving operations.



2.2 Set inversion



If f : Rn→ Rm and Y ⊂ Rm.

X = {x ∈ Rn | f(x) ∈ Y} = f−1(Y).



(i) [f ]([x]) ⊂ Y ⇒ [x] ⊂ X
(ii) [f ]([x]) ∩ Y = ∅ ⇒ [x] ∩ X = ∅.

Boxes for which these tests failed, will be bisected, except

if they are too small.



.

Algorithm Sivia(in: [x](0), f ,Y)
1 L := {[x](0)} ;
2 pull [x] from L;
3 if [f ]([x]) ⊂ Y, draw([x], ’red’);
4 elseif [f ]([x]) ∩ Y = ∅, draw([x], ’blue’);
5 elseif w([x]) < ε, {draw ([x], ’yellow’)};
6 else bisect [x] and push into L;
7 if L �= ∅, go to 2



If ∆X denotes the union of yellow boxes and if X− is the

union of red boxes then :

X
− ⊂ X ⊂ X− ∪∆X.



2.3 Bounded-error estimation



Model : φ (p, t) = p1e
−p2t.

Prior feasible box for the parameters : [p] ⊂ R2

Measurement times : t1, t2, . . . , tm

Data bars : [y−1 , y
+
1 ], [y

−
2 , y

+
2 ], . . . , [y

−
m, y

+
m]

S = {p ∈ [p], φ (p, t1) ∈ [y−1 , y
+
1 ], . . . , φ (p, tm) ∈ [y−m, y

+
m]}.



If

φ (p) =





φ (p, t1)

φ (p, tm)






and

[y] = [y−1 , y
+
1 ]× · · · × [y−m, y

+
m]

then

S = [p] ∩ φ−1 ([y]) .



3 Contractors



To characterize X ⊂ Rn, bisection algorithms bisect all

boxes in all directions and become inefficient. Interval

methods can still be useful if

• the solution set X is small (optimization problem, solv-

ing equations),

• contraction procedures are used as much as possible,

• bisections are used only as a last resort.



3.1 Definition



The operator CX : IRn → IR
n is a contractor for X ⊂

Rn if

∀[x] ∈ IRn,
�
CX([x]) ⊂ [x] (contractance),
CX([x]) ∩ X = [x] ∩ X (completeness).







The operator C : IRn → IR
n is a contractor for the

equation f (x) = 0, if

∀[x] ∈ IRn,
�
C([x]) ⊂ [x]
x ∈ [x] et f (x) = 0⇒ x ∈ C([x])



CX is monotonic if [x] ⊂ [y]⇒ CX([x]) ⊂ CX([y])
CX is minimal if ∀[x] ∈ IRn, CX([x]) = [[x] ∩ X]
CX is thin if ∀x ∈ Rn, CX({x}) = {x} ∩ X
CX is idempotent if ∀[x] ∈ IRn, CX (CX([x])) = CX([x]).



intersection (C1 ∩ C2) ([x]) def
= C1 ([x]) ∩ C2 ([x])

union (C1 ∪ C2) ([x]) def
= [C1 ([x]) ∪ C2 ([x])]

composition (C1 ◦ C2) ([x]) def
= C1 (C2 ([x]))

répétition C∞ def
= C ◦ C ◦ C ◦ . . .



CX is said to be convergent if

[x](k)→ x ⇒ CX([x] (k))→ {x} ∩ X.



3.2 Projection of constraints



Let x, y, z be 3 variables such that

x ∈ [−∞, 5],
y ∈ [−∞, 4],
z ∈ [6,∞],

z = x+ y.

The values < 2 for x, < 1 for y and > 9 for z are incon-

sistent.



To project a constraint (here, z = x + y), is to compute

the smallest intervals which contains all consistent values.

For our example, this amounts to project onto x, y and z

the set

S = {(x, y, z) ∈ [−∞, 5]× [−∞, 4]× [6,∞] | z = x+ y} .



3.3 Numerical method for projection



Since x ∈ [−∞, 5], y ∈ [−∞, 4], z ∈ [6,∞] and z =

x+ y, we have

z = x+ y ⇒ z ∈ [6,∞] ∩ ([−∞, 5] + [−∞, 4])
= [6,∞] ∩ [−∞, 9] = [6, 9].

x = z − y ⇒ x ∈ [−∞, 5] ∩ ([6,∞]− [−∞, 4])
= [−∞, 5] ∩ [2,∞] = [2, 5].

y = z − x⇒ y ∈ [−∞, 4] ∩ ([6,∞]− [−∞, 5])
= [−∞, 4] ∩ [1,∞] = [1, 4].



The contractor associated with z = x+ y is.

Algorithm pplus(inout: [z], [x], [y])
1 [z] := [z] ∩ ([x] + [y]) ;
2 [x] := [x] ∩ ([z]− [y]) ;
3 [y] := [y] ∩ ([z]− [x]) .



The projection procedure developed for plus can be ex-

tended to other ternary constraints such as mult: z = x∗y,

or equivalently

mult �
�
(x, y, z) ∈ R3 | z = x ∗ y



.

The resulting projection procedure becomes

Algorithm pmult(inout: [z], [x], [y])
1 [z] := [z] ∩ ([x] ∗ [y]) ;
2 [x] := [x] ∩ ([z] ∗ 1/[y]) ;
3 [y] := [y] ∩ ([z] ∗ 1/[x]) .



Consider the binary constraint

exp � {(x, y) ∈ Rn|y = exp (x)} .
The associated contractor is

Algorithm pexp(inout: [y], [x])
1 [y] := [y] ∩ exp ([x]) ;
2 [x] := [x] ∩ log ([y]) .



Any constraint for which such a projection procedure is

available will be called a primitive constraint.



Example. Consider the primitive equation:

x2 = sinx1.





Forward contraction



Backward contraction



Decomposition

x+ sin(xy) ≤ 0,
x ∈ [−1, 1], y ∈ [−1, 1]



Decomposition

x+ sin(xy) ≤ 0,
x ∈ [−1, 1], y ∈ [−1, 1]

can be decomposed into





a = xy
b = sin(a)
c = x+ b

,
x ∈ [−1, 1] a ∈ [−∞,∞]
y ∈ [−1, 1] b ∈ [−∞,∞]

c ∈ [−∞, 0]



Forward-backward contractor (HC4 revise)

For the equation

(x1 + x2) · x3 ∈ [1, 2] ,

we have the following contractor:

algorithm C (inout [x1] , [x2] , [x3])
[a] = [x1] + [x2] // a = x1 + x2
[b] = [a] · [x3] // b = a · x3
[b] = [b] ∩ [1, 2] // b ∈ [1, 2]

[x3] = [x3] ∩ [b]
[a]

// x3 =
b
a

[a] = [a] ∩ [b]
[x3]

// a = b
x3

[x1] = [x1] ∩ [a]− [x2] // x1 = a− x2
[x2] = [x2] ∩ [a]− [x1] // x2 = a− x1



Properties

(C∞1 ∩ C∞2 )∞ = (C1 ∩ C2)∞

(C1 ∩ (C2 ∪ C3)) ⊃ (C1 ∩ C2) ∪ (C1 ∩ C3)�
C1 minimal
C2 minimal

⇒ C1 ∪ C2 minimal



Contractor on images

The robot with coordinates (x1, x2) is in the water.







3.4 Propagation



Example 1. Consider the system of two equations.

y = x2

y =
√
x.



We can build two contractors

C1 :
�
[y] = [y] ∩ [x]2

[x] = [x] ∩
�
[y]

associated to y = x2

C2 :
�
[y] = [y] ∩

�
[x]

[x] = [x] ∩ [y]2
associated to y =

√
x



Contractor graph





















If C∗
S1

and C∗
S2

are two minimal contractors for S1 and S2
then

CS = C∗S1 ◦ C
∗
S2
◦ C∗

S1
◦ C∗

S2
◦ . . .

is a contractor for S = S1∩S2, but it is not always optimal.

This is the local consistency effect.



Example 2 (local consistency). Consider the system
�
y = 3 sin(x)
y = x

x ∈ R, y ∈ R.























Example 3 (more equations than unknowns).





(C1) : y = x2

(C2) : xy = 1
(C3) : y = −2x+ 1















(C1)⇒ y ∈ [−∞,∞]2 = [0,∞]
(C2)⇒ x ∈ 1/[0,∞] = [0,∞]
(C3)⇒ y ∈ [0,∞] ∩ ((−2) .[0,∞] + 1)

= [0,∞] ∩ ([−∞, 1]) = [0, 1]

x ∈ [0,∞] ∩ (−[0, 1]/2 + 1/2) = [0, 12]

(C1)⇒ y ∈ [0, 1] ∩ [0, 1/2]2 = [0, 1/4]
(C2)⇒ x ∈ [0, 1/2] ∩ 1/[0, 1/4] = ∅

y ∈ [0, 1/4] ∩ 1/∅ = ∅



3.5 Contractor algebra



intersection (C1 ∩ C2) ([x]) def
= C1 ([x]) ∩ C2 ([x])

union (C1 ∪ C2) ([x]) def
= [C1 ([x]) ∪ C2 ([x])]

composition (C1 ◦ C2) ([x]) def
= C1 (C2 ([x]))

repetition C∞ def
= C ◦ C ◦ C ◦ . . .

repeat intersection C1 ⊓ C2 = (C1 ∩ C2)∞
repeat union C1 ⊔ C2 = (C1 ∪ C2)∞



Consider the contractor C ([x], [y]), where [x] ∈ Rn, [y] ∈
Rp. We define the contractor

C∪[y] ([x]) =






�

y∈[y]
πx (C ([x],y))




 (projected union)



Define the contractor

C∩[y] ([x]) =
�

y∈[y]
πx (C ([x],y)) , (projected intersection)



We have

set
�
C∪[y]

�
= {x,∃y ∈ [y], (x,y) ∈ set (C)}

set
�
C∩[y]

�
= {x,∀y ∈ [y], (x,y) ∈ set (C)} .



3.6 Circuits



Example 1



Domains

E ∈ [23V, 26V ]; I ∈ [4A, 8A];

U1 ∈ [10V, 11V ];U2 ∈ [14V, 17V ];

P ∈ [124W, 130W ];R1 ∈ [0,∞[ and R2 ∈ [0,∞[.

Constraints

(i) P = EI, (ii) E = (R1 +R2) I, (iii) U1 = R1I,
(iv) U2 = R2I, (v) E = U1 + U2.



Solution set

S =











E
R1
R2
I
U1
U2
P






∈






[23, 26]
[0,∞[
[0,∞[
[4, 8]
[10, 11]
[14, 17]

[124, 130];






,






P = EI
E = (R1 +R2) I
U1 = R1I
U2 = R2I
E = U1 + U2








variables

E in [23 ,26];

I in [4,8];

U1 in [10,11];

U2 in [14 ,17];

P in [124,130];

R1 in [0 ,1e08 ];

R2 in [0 ,1e08 ];

contractor_list L

P=E*I;

E=(R1+R2)*I;

U1=R1*I;

U2=R2*I;

E=U1+U2;

end



contractor C

compose(L);

end

contractor epsilon

precision(1);

end



Quimper returns

[24; 26]× [1.846; 2.307]× [2.584; 3.355]

× [4.769; 5.417]× [10; 11]× [14; 16]× [124; 130] ,

i.e.,

E ∈ [24; 26] , R1 ∈ [1.846; 2.307] ,
R2 ∈ [2.584; 3.355], I ∈ [4.769; 5.417] ,
U1 ∈ [10; 11] , U2 ∈ [14; 16] ,
P ∈ [124; 130] .



4 SLAM



Show the video







Mine detection with SonarPro



Loch-Doppler returns the speed robot vr.

vr ∈ ṽr + 0.004 ∗ [−1, 1] .ṽr + 0.004 ∗ [−1, 1]



Inertial central (Octans III from IXSEA).




φ
θ
ψ




 ∈





φ̃

θ̃

ψ̃




+






1.75× 10−4. [−1, 1]
1.75× 10−4. [−1, 1]
5.27× 10−3. [−1, 1]




 .



Six mines have been detected.

i 0 1 2 3 4 5
τ(i) 7054 7092 7374 7748 9038 9688
σ(i) 1 2 1 0 1 5
r̃(i) 52.42 12.47 54.40 52.68 27.73 26.98

6 7 8 9 10 11
10024 10817 11172 11232 11279 11688
4 3 3 4 5 1

37.90 36.71 37.37 31.03 33.51 15.05



4.1 Constraints



t ∈ {6000.0, 6000.1, 6000.2, . . . , 11999.4},

i ∈ {0, 1, . . . , 11},
�
px(t)
py(t)

�

= 111120 ·
�

0 1

cos
�
ℓy(t) · π180

�
0

�

·
�
ℓx(t)− ℓ0x
ℓy(t)− ℓ0y

�

,

p(t) = (px(t), py(t), pz(t)),

Rψ(t) =






cosψ(t) − sinψ(t) 0
sinψ(t) cosψ(t) 0

0 0 1




 ,

Rθ(t) =






cos θ(t) 0 sin θ(t)
0 1 0

− sin θ(t) 0 cos θ(t)




 ,



Rϕ(t) =






1 0 0
0 cosϕ(t) − sinϕ(t)
0 sinϕ(t) cosϕ(t)




 ,

R(t) = Rψ(t) ·Rθ(t) ·Rϕ(t),

ṗ(t) = R(t) · vr(t),

||m(σ(i))− p(τ(i))|| = r(i),

RT(τ(i)) · (m(σ(i))− p(τ(i))) ∈ [0]× [0,∞]×2.



4.2 GESMI







5 Robust parameter estimation



Exercise. A robot measures its own distance to three

marks. The distances and the coordinates of the marks

are

mark xi yi di
1 0 0 [22, 23]
2 10 10 [10, 11]
3 30 −30 [53, 54]

1) Define the set X al all feasible positions.

2) Build the contractor associated with X.

2) Build the contractor associated with X.



Solution.

X =
�

i∈{1,2,3}

�
(x, y) | (x− xi)2 + (y − yi)2 ∈

�
d−i , d

+
i

 


! "# $
Xi



X =
�

i∈{1,2,3}
Xi =

�

i∈{1,2,3}
Xi

=
�

i∈{1,2,3}

�
(x, y) | (x− xi)2 + (y − yi)2 ∈

�
−∞, d−i

 


∪
�
(x, y) | (x− xi)2 + (y − yi)2 ∈

�
d+i ,∞

 




C =
�

i∈{1,2,3}
D%
d−i ,d

+
i

&

C =
�

i∈{1,2,3}

'
D%
−∞,d−i

&
(
∪

'
D%
d+i ,∞

&
(



5.1 Relaxed intersection



Dealing with outliers

C = (C1 ∩ C2) ∪ (C2 ∩ C3) ∪ (C1 ∩ C3)



Considerm setsX1, . . . ,Xm ofRn. The q-relaxed intersection
{q}�
Xi

is the set of all x ∈ Rn which belong to all Xi’s, except q

at most.





Exercise. Consider 8 intervals: X1 = [1, 4], X2 = [2, 4],X3 =

[2, 7],X4 = [6, 9],X5 = [3, 4],X6 = [3, 7]. Compute

{0}�
Xi = ?,

{1}�
Xi = ?,

{2}�
Xi = ?,

{3}�
Xi = ?,

{4}�
Xi = ?,

{5}�
Xi = ?,

{6}�
Xi = ?.



Solution. ForX1 = [1, 4], X2 = [2, 4],X3 = [2, 7],X4 =

[6, 9],X5 = [3, 4],X6 = [3, 7], we have

{0}�
Xi = ∅,

{1}�
Xi = [3, 4],

{2}�
Xi = [3, 4],

{3}�
Xi = [2, 4] ∪ [6, 7],

{4}�
Xi = [2, 7],

{5}�
Xi = [1, 9],

{6}�
Xi = R.



If Xi’s are intervals, the relaxed intersection can be com-

puted with a complexity of n logn.



Take all bounds of all intervals with their brackets.

Bounds 1 4 2 4 2 7 6 9 3 4 3 7
Brackets [ ] [ ] [ ] [ ] [ ] [ ]



Sort the columns with respect the bounds:

Bounds 1 2 2 3 3 4 4 4 6 7 7 9
Brackets [ [ [ [ [ ] ] ] [ ] ] ]



Scan from left to right, counting +1 for ’[’ and −1 for ’]’:

Bounds 1 2 2 3 3 4 4 4 6 7 7 9
Brackets [ [ [ [ [ ] ] ] [ ] ] ]
Sum 1 2 3 4 5 4 3 2 3 2 1 0



Read the q-intersections

Set-membership function associated with the 6 intervals



Computing the q relaxed intersection ofm boxes is tractable.



The black box is the 2-intersection of 9 boxes



Formal definition

{q}�
Xi =

�

{σ1,...,σn−q}
Xσ1 ∩ · · · ∩ Xσn−q

{q}�
Xi =

�

{σ1,...,σn−q}
Xσ1 ∪ · · · ∪ Xσn−q



Remark

{0}�
Xi =

�
Xi

{0}�
Xi =

�
Xi



Dual rule

{q}�
Xi =

{n−q−1}�
Xi



De Morgan’s law

{q}�
Xi =

{q}�
Xi

{q}�
Xi =

{q}�
Xi.



From the De Morgan’s law and the dual rules, we get

{q}�
Xi =

{n−q−1}�
Xi =

{n−q−1}�
Xi



Relaxation of contractors

We define the q-relaxed intersection betweenm contractors

C =






{q}�

i∈{1,...,m}
Ci




⇔ ∀ [x] ∈ IRn, C ([x]) =

{q}�
Ci ([x]) .



5.2 Shape detection



Sauc’isse robot swimming inside a pool



A spheric buoy seen by Sauc’isse









An implicit parameter set estimation problem amounts to

characterizing

P =
�

i∈{1,...,m}
{p ∈ Rn,∃y ∈ [y](i), f (p,y) = 0}! "# $

Pi

where p is the parameter vector, [y](i) is the ith measure-

ment box and f is the model function.



Consider the shape function f (p,y), where y ∈ R2 corre-

sponds to a pixel and p is the shape vector.

Example (circle):

f (p,y) = (y1 − p1)2 + (y2 − p2)2 − p23.





The shape associated with p is

S (p) def
=

�
y ∈ R2, f (p,y) = 0



.

Consider a set of (small) boxes in the image

Y = {[y](1), . . . , [y](m)} .
Each box is assumed to intersect the shape we want to

extract.



In our buoy example,

• Y corresponds to edge pixel boxes.

• f (p,y) = (y1 − p1)2 + (y2 − p2)2 − p23.

• p = (p1, p2, p3)
T where p1, p2 are the coordinates of

the center of the circle and p3 its radius.



The q relaxed feasible set is

P
{q} def

=
{q}�

i∈{1,...,m}
{p ∈ Rn,∃y ∈ [y](i), f (p,y) = 0} .



An optimal contractor for the set
�
p ∈ [p],∃y ∈ [y], (y1 − p1)2 + (y2 − p2)2 − p23 = 0



.

FB(in: [y], [p], out: [p])
1 [d1] := [y1]− [p1] ;
2 [d2] := [y2]− [p2] ;

3 [c1] := [d1]
2 ;

4 [c2] := [d2]
2 ;

5 [c3] := [p3]
2 ;

6 [e] := [0, 0] ∩ ([c1] + [c2]− [c3]) ;
7 [c1] := [c1] ∩ ([e]− [c2] + [c3]) ;
8 [c2] := [c2] ∩ ([e]− [c1] + [c3]) ;
9 [c3] := [c3] ∩ ([c1] + [c2]− [e]) ;

10 [p̄3] := [p3] ∩
�
[c3];

11 [d2] := [d2] ∩
�
[c2];

12 [d1] := [d1] ∩
�
[c1];

13 [p2] := [p2] ∩ ([y2]− [d2]) ;
14 [p1] := [p1] ∩ ([y1]− [d1]) ;



q = 0.70 m (i.e. 70% of the data can be outlier)



q = 0.80 m (i.e. 80% of the data can be outlier)



q = 0.81 m (i.e. 81% of the data can be outlier)



6 Intervals and graphs

6.1 Path planning

















6.2 Charaterizing the topology

(Collaboration with N. Delanoue and B. Cottenceau)





An approach has also been developed with N. Delanoue to

compute a triangulation homeomorphic to S.



7 Saiboat robotics













7.1 Vaimos



Vaimos (IFREMER and ENSTA)



The robot satisfies a state equation

ẋ = f (x,u) .

With the controller u = g (x), the robot satisfies an equa-

tion of the form

ẋ = f (x) .



With all uncertainties, the robot satisfies.

ẋ ∈ F (x)

which is a differential inclusion.



7.2 Line following



Controller of a sailboat robot





Heading controller





δr =





δmax
r . sin

�
θ − θ̄

�
if cos

�
θ − θ̄

�
≥ 0

δmax
r .sign

�
sin

�
θ − θ̄

��
otherwise

δmax
s = π

2 .
'
cos(ψ−θ̄)+1

2

(
.



Rudder

δr =





δmax
r . sin

�
θ − θ̄

�
if cos

�
θ − θ̄

�
≥ 0

δmax
r .sign

�
sin

�
θ − θ̄

��
otherwise





Sail

δmax
s =

π

2
·



cos

�
ψ − θ̄

�
+ 1

2







7.3 Vector field



Nominal vector field: θ∗ = ϕ− 1

2
.atan

'
e

r

(
.



A course θ∗ may be unfeasible



θ∗ = −2.γ∞
π .atan

�
e
r

�



7.4 Controller



Function in: m, θ, ψ, a,b; out: δr, δmax
s ; inout: q

1 e =
det(b−a,m−a)

%b−a%
2 if |e| > r then q = sign(e)
3 ϕ = atan2(b− a)
4 θ̄ = ϕ− 1

2.atan
�
e
r

�

5 if cos
�
ψ − θ̄

�
+ cos ζ < 0 then θ̄ = π + ψ − q.ζ.

6 if cos
�
θ − θ̄

�
≥ 0 then δr = δmax

r . sin
�
θ − θ̄

�

else δr = δmax
r .sign

�
sin

�
θ − θ̄

��

7 δmax
s = π

2 .
'
cos(ψ−θ̄)+1

2

(
.



7.5 Validation by simulation





7.6 Theoretical validation



When the wind is known, the sailboat with the heading

controller is described by

ẋ = f (x) .



The system

ẋ = f (x)

is Lyapunov-stable (1892) is there exists V (x) ≥ 0 such

that

V̇ (x) < 0 if x �= 0,

V (x) = 0 iff x = 0.



Definition. Consider a differentiable function V (x) : Rn→
R. The system is V -stable if

�
V (x) ≥ 0 ⇒ V̇ (x) < 0

�
.





Theorem. If the system ẋ = f (x) is V -stable then

(i) ∀x (0) ,∃t ≥ 0 such that V (x (t)) < 0
(ii) if V (x (t)) < 0 then ∀τ > 0, V (x (t+ τ)) < 0.



Now,
�
V (x) ≥ 0 ⇒ V̇ (x) < 0

�

⇔
�
V (x) ≥ 0⇒ ∂V

∂x (x) .f (x) < 0
�

⇔ ∀x, ∂V∂x (x) .f (x) < 0 or V (x) < 0

⇔ ¬
�
∃x, ∂V∂x (x) .f (x) ≥ 0 and V (x) ≥ 0

�



Theorem. We have
�
∂V
∂x (x) .f (x) ≥ 0
V (x) ≥ 0

inconsistent ⇔ ẋ = f (x) is V -stable.

Interval method could easily prove the V -stability.



Theorem. We have





∂V
∂x (x) .a ≥ 0
a ∈ F (x)
V (x) ≥ 0

inconsistent ⇔ ẋ ∈ F (x) is V -stable



Differential inclusion ẋ ∈ F (x) for the sailboat.

V (x) = x22 − r2max.





7.7 Parametric case

Consider the differential inclusion

ẋ ∈ F (x,p) .

We characterize the set P of all p such that the system is

V -stable.





7.8 Experimental validation



Brest



Show Dashboard



Brest-Douarnenez. January 17, 2012, 8am















Montrer la mise à l’eau



Middle of Atlantic ocean

350 km made by Vaimos in 53h, September 6-9, 2012.



Consequence.

It is possible for a sailboat robot to navigate inside a cor-

ridor.

Essential, to create circulation rules when robot swarms are

considered.

Essential to determine who has to pay in case of accident.
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