
Méthodes Intervalles et
Applications

JD-JN MACS, Strasbourg, 9,10 juillet 2013.

Luc Jaulin

ENSTA Bretagne, LabSTICC, OSM, IHSEV.

http://www.ensta-bretagne.fr/jaulin/

1 Interval computation

1.1 Set theory

The direct image of X by f is

f (X) � {f(x) | x ∈ X}.
The reciprocal image of Y by f is

f−1 (Y) � {x ∈ X | f(x) ∈ Y}.

Exercise: If f is defined as follows

f(A) = ?.

f−1(B) = ?.

f−1(f(A)) = ?

f−1(f({b, c})) = ?.

Exercise: If f is defined as follows

f(A) = {2, 3, 4} = Im(f).

f−1(B) = {a, b, c, e} = dom(f).

f−1(f(A)) = {a, b, c, e} ⊂ A
f−1(f({b, c})) = {a, b, c}.

Exercise: If f(x) = x2, then

f([2, 3]) = ?

f−1([4, 9]) = ?.

Exercise: If f(x) = x2, then

f([2, 3]) = [4, 9]

f−1([4, 9]) = [−3,−2] ∪ [2, 3].

This is consistent with the property

f−1 (f (Y)) ⊃ Y.

1.2 Interval arithmetic

If ⋄ ∈ {+,−, ·, /,max,min}

[x] ⋄ [y] = [{x ⋄ y | x ∈ [x], y ∈ [y]}] .

where [A] is the smallest interval which encloses A ⊂ R.

Exercise.

[−1, 3] + [2, 5] = [?, ?],
[−1, 3] · [2, 5] = [?, ?],
[−2, 6]/[2, 5] = [?, ?].

Solution.

[−1, 3] + [2, 5] = [1, 8],
[−1, 3].[2, 5] = [−5, 15],
[−2, 6]/[2, 5] = [−1, 3].

[x−, x+] + [y−, y+] = [x− + y−, x+ + y+],
[x−, x+] · [y−, y+] = [x−y− ∧ x+y− ∧ x−y+ ∧ x+y+,

x−y− ∨ x+y− ∨ x−y+ ∨ x+y+],

If f ∈ {cos, sin,sqr, sqrt, log, exp, . . . }

f ([x]) = [{f(x) | x ∈ [x]}] .

Exercise.

sin ([0, π]) = ?,

sqr ([−1, 3]) = [−1, 3]2 =?,
abs ([−7, 1]) = ?,

sqrt ([−10, 4]) =
�
[−10, 4] =?,

log ([−2,−1]) = ?.

Solution.

sin ([0, π]) = [0, 1],

sqr ([−1, 3]) = [−1, 3]2 = [0, 9],

abs ([−7, 1]) = [0, 7],

sqrt ([−10, 4]) =
�
[−10, 4] = [0, 2],

log ([−2,−1]) = ∅.

1.3 Boxes

A box, or interval vector [x] of Rn is

[x] = [x−1 , x
+
1]× · · · × [x−n , x

+
n] = [x1]× · · · × [xn].

The set of all boxes of Rn will be denoted by IRn.

The width w ([x]) of a box [x] is the length of its largest

side. For instance

w([1, 2]× [−1, 3]) = 4

1.4 Inclusion function

The interval function [f] from IR
n to IRm, is an inclusion

function of f if

∀ [x] ∈ IRn, f([x]) ⊂ [f] ([x]).

Inclusion functions [f] and [f]∗; here, [f]∗ is minimal.

The inclusion function [f] is

monotonic if ([x] ⊂ [y])⇒ ([f] ([x]) ⊂ [f] ([y]))
minimal if ∀[x] ∈ IRn, [f] ([x]) = [f ([x])]
thin if w([x]) = 0⇒ w([f]([x]) = 0
convergent if w([x])→ 0⇒ w([f]([x])→ 0.

Exercise

The figure provides a nested sequence of boxes [x] (k),

their image f ([x]) by a function f and the image by an

inclusion function [f].

a) [f] is convergent.

b) [f] is monotonic

c) [f] is minimal.

Solution. [f] is convergent, non-monotonic, non-minimal.

Convergent and monotonic

Exercise. The natural inclusion function for f(x) = x2+

2x+ 4 is

[f]([x]) = [x]2 + 2[x] + 4.

For [x] = [−3, 4], compute [f]([x]) and f([x]).

Solution. If [x] = [−3, 4], we have

[f]([−3, 4]) = [−3, 4]2 + 2[−3, 4] + 4

= [0, 16] + [−6, 8] + 4

= [−2, 28].
Note that f([−3, 4]) = [3, 28] ⊂ [f]([−3, 4]) = [−2, 28].

A minimal inclusion function for

f :
R2 → R3

(x1, x2) �→
�
x1x2, x

2
1, x1 − x2

�
.

is

[f] :
IR

2 → IR
3

([x1] , [x2]) →
�
[x1] ∗ [x2] , [x1]2 , [x1]− [x2]

�
.

If f is given by the algorithm

Algorithm f(in: x = (x1, x2, x3), out: y = (y1, y2))
1 z := x1;
2 for k := 0 to 100
3 z := x2 · (z + k · x3);
4 next;
5 y1 := z;
6 y2 := sin(zx1);

Its natural inclusion function is

Algorithm [f](in: [x], out: [y])
1 [z] := [x1];
2 for k := 0 to 100
3 [z] := [x2] · ([z] + k · [x3]);
4 next;
5 [y1] := [z] ;
6 [y2] := sin([z] ∗ [x1]);

Is [f] convergent? thin? monotonic?

2 Subpavings

2.1 Definition

A subpaving of Rn is a set of non-overlapping boxes of Rn.

Compact sets X ⊂ Rn can be bracketed between inner and

outer subpavings:

X
− ⊂ X ⊂ X+.

Example. The set

X = {(x1, x2)
��� x21 + x

2
2 + sin (x1 + x2) ∈ [4, 9]}.

can be approximated by subpavings.

Set operations such as Z := X+ Y, X := f−1 (Y) ,Z :=

X ∩ Y . . . can be approximated by subpaving operations.

2.2 Set inversion

If f : Rn→ Rm and Y ⊂ Rm.

X = {x ∈ Rn | f(x) ∈ Y} = f−1(Y).

(i) [f]([x]) ⊂ Y ⇒ [x] ⊂ X
(ii) [f]([x]) ∩ Y = ∅ ⇒ [x] ∩ X = ∅.

Boxes for which these tests failed, will be bisected, except

if they are too small.

.

Algorithm Sivia(in: [x](0), f ,Y)
1 L := {[x](0)} ;
2 pull [x] from L;
3 if [f]([x]) ⊂ Y, draw([x], ’red’);
4 elseif [f]([x]) ∩ Y = ∅, draw([x], ’blue’);
5 elseif w([x]) < ε, {draw ([x], ’yellow’)};
6 else bisect [x] and push into L;
7 if L �= ∅, go to 2

If ∆X denotes the union of yellow boxes and if X− is the

union of red boxes then :

X
− ⊂ X ⊂ X− ∪∆X.

2.3 Bounded-error estimation

Model : φ (p, t) = p1e
−p2t.

Prior feasible box for the parameters : [p] ⊂ R2

Measurement times : t1, t2, . . . , tm

Data bars : [y−1 , y
+
1], [y

−
2 , y

+
2], . . . , [y

−
m, y

+
m]

S = {p ∈ [p], φ (p, t1) ∈ [y−1 , y
+
1], . . . , φ (p, tm) ∈ [y−m, y

+
m]}.

If

φ (p) =





φ (p, t1)

φ (p, tm)






and

[y] = [y−1 , y
+
1]× · · · × [y−m, y

+
m]

then

S = [p] ∩ φ−1 ([y]) .

3 Contractors

To characterize X ⊂ Rn, bisection algorithms bisect all

boxes in all directions and become inefficient. Interval

methods can still be useful if

• the solution set X is small (optimization problem, solv-

ing equations),

• contraction procedures are used as much as possible,

• bisections are used only as a last resort.

3.1 Definition

The operator CX : IRn → IR
n is a contractor for X ⊂

Rn if

∀[x] ∈ IRn,
�
CX([x]) ⊂ [x] (contractance),
CX([x]) ∩ X = [x] ∩ X (completeness).

The operator C : IRn → IR
n is a contractor for the

equation f (x) = 0, if

∀[x] ∈ IRn,
�
C([x]) ⊂ [x]
x ∈ [x] et f (x) = 0⇒ x ∈ C([x])

CX is monotonic if [x] ⊂ [y]⇒ CX([x]) ⊂ CX([y])
CX is minimal if ∀[x] ∈ IRn, CX([x]) = [[x] ∩ X]
CX is thin if ∀x ∈ Rn, CX({x}) = {x} ∩ X
CX is idempotent if ∀[x] ∈ IRn, CX (CX([x])) = CX([x]).

intersection (C1 ∩ C2) ([x]) def
= C1 ([x]) ∩ C2 ([x])

union (C1 ∪ C2) ([x]) def
= [C1 ([x]) ∪ C2 ([x])]

composition (C1 ◦ C2) ([x]) def
= C1 (C2 ([x]))

répétition C∞ def
= C ◦ C ◦ C ◦ . . .

CX is said to be convergent if

[x](k)→ x ⇒ CX([x] (k))→ {x} ∩ X.

3.2 Projection of constraints

Let x, y, z be 3 variables such that

x ∈ [−∞, 5],
y ∈ [−∞, 4],
z ∈ [6,∞],

z = x+ y.

The values < 2 for x, < 1 for y and > 9 for z are incon-

sistent.

To project a constraint (here, z = x + y), is to compute

the smallest intervals which contains all consistent values.

For our example, this amounts to project onto x, y and z

the set

S = {(x, y, z) ∈ [−∞, 5]× [−∞, 4]× [6,∞] | z = x+ y} .

3.3 Numerical method for projection

Since x ∈ [−∞, 5], y ∈ [−∞, 4], z ∈ [6,∞] and z =

x+ y, we have

z = x+ y ⇒ z ∈ [6,∞] ∩ ([−∞, 5] + [−∞, 4])
= [6,∞] ∩ [−∞, 9] = [6, 9].

x = z − y ⇒ x ∈ [−∞, 5] ∩ ([6,∞]− [−∞, 4])
= [−∞, 5] ∩ [2,∞] = [2, 5].

y = z − x⇒ y ∈ [−∞, 4] ∩ ([6,∞]− [−∞, 5])
= [−∞, 4] ∩ [1,∞] = [1, 4].

The contractor associated with z = x+ y is.

Algorithm pplus(inout: [z], [x], [y])
1 [z] := [z] ∩ ([x] + [y]) ;
2 [x] := [x] ∩ ([z]− [y]) ;
3 [y] := [y] ∩ ([z]− [x]) .

The projection procedure developed for plus can be ex-

tended to other ternary constraints such as mult: z = x∗y,

or equivalently

mult �
�
(x, y, z) ∈ R3 | z = x ∗ y

.

The resulting projection procedure becomes

Algorithm pmult(inout: [z], [x], [y])
1 [z] := [z] ∩ ([x] ∗ [y]) ;
2 [x] := [x] ∩ ([z] ∗ 1/[y]) ;
3 [y] := [y] ∩ ([z] ∗ 1/[x]) .

Consider the binary constraint

exp � {(x, y) ∈ Rn|y = exp (x)} .
The associated contractor is

Algorithm pexp(inout: [y], [x])
1 [y] := [y] ∩ exp ([x]) ;
2 [x] := [x] ∩ log ([y]) .

Any constraint for which such a projection procedure is

available will be called a primitive constraint.

Example. Consider the primitive equation:

x2 = sinx1.

Forward contraction

Backward contraction

Decomposition

x+ sin(xy) ≤ 0,
x ∈ [−1, 1], y ∈ [−1, 1]

Decomposition

x+ sin(xy) ≤ 0,
x ∈ [−1, 1], y ∈ [−1, 1]

can be decomposed into





a = xy
b = sin(a)
c = x+ b

,
x ∈ [−1, 1] a ∈ [−∞,∞]
y ∈ [−1, 1] b ∈ [−∞,∞]

c ∈ [−∞, 0]

Forward-backward contractor (HC4 revise)

For the equation

(x1 + x2) · x3 ∈ [1, 2] ,

we have the following contractor:

algorithm C (inout [x1] , [x2] , [x3])
[a] = [x1] + [x2] // a = x1 + x2
[b] = [a] · [x3] // b = a · x3
[b] = [b] ∩ [1, 2] // b ∈ [1, 2]

[x3] = [x3] ∩ [b]
[a]

// x3 =
b
a

[a] = [a] ∩ [b]
[x3]

// a = b
x3

[x1] = [x1] ∩ [a]− [x2] // x1 = a− x2
[x2] = [x2] ∩ [a]− [x1] // x2 = a− x1

Properties

(C∞1 ∩ C∞2)∞ = (C1 ∩ C2)∞

(C1 ∩ (C2 ∪ C3)) ⊃ (C1 ∩ C2) ∪ (C1 ∩ C3)�
C1 minimal
C2 minimal

⇒ C1 ∪ C2 minimal

Contractor on images

The robot with coordinates (x1, x2) is in the water.

3.4 Propagation

Example 1. Consider the system of two equations.

y = x2

y =
√
x.

We can build two contractors

C1 :
�
[y] = [y] ∩ [x]2

[x] = [x] ∩
�
[y]

associated to y = x2

C2 :
�
[y] = [y] ∩

�
[x]

[x] = [x] ∩ [y]2
associated to y =

√
x

Contractor graph

If C∗
S1

and C∗
S2

are two minimal contractors for S1 and S2
then

CS = C∗S1 ◦ C
∗
S2
◦ C∗

S1
◦ C∗

S2
◦ . . .

is a contractor for S = S1∩S2, but it is not always optimal.

This is the local consistency effect.

Example 2 (local consistency). Consider the system
�
y = 3 sin(x)
y = x

x ∈ R, y ∈ R.

Example 3 (more equations than unknowns).





(C1) : y = x2

(C2) : xy = 1
(C3) : y = −2x+ 1

(C1)⇒ y ∈ [−∞,∞]2 = [0,∞]
(C2)⇒ x ∈ 1/[0,∞] = [0,∞]
(C3)⇒ y ∈ [0,∞] ∩ ((−2) .[0,∞] + 1)

= [0,∞] ∩ ([−∞, 1]) = [0, 1]

x ∈ [0,∞] ∩ (−[0, 1]/2 + 1/2) = [0, 12]

(C1)⇒ y ∈ [0, 1] ∩ [0, 1/2]2 = [0, 1/4]
(C2)⇒ x ∈ [0, 1/2] ∩ 1/[0, 1/4] = ∅

y ∈ [0, 1/4] ∩ 1/∅ = ∅

3.5 Contractor algebra

intersection (C1 ∩ C2) ([x]) def
= C1 ([x]) ∩ C2 ([x])

union (C1 ∪ C2) ([x]) def
= [C1 ([x]) ∪ C2 ([x])]

composition (C1 ◦ C2) ([x]) def
= C1 (C2 ([x]))

repetition C∞ def
= C ◦ C ◦ C ◦ . . .

repeat intersection C1 ⊓ C2 = (C1 ∩ C2)∞
repeat union C1 ⊔ C2 = (C1 ∪ C2)∞

Consider the contractor C ([x], [y]), where [x] ∈ Rn, [y] ∈
Rp. We define the contractor

C∪[y] ([x]) =






�

y∈[y]
πx (C ([x],y))




 (projected union)

Define the contractor

C∩[y] ([x]) =
�

y∈[y]
πx (C ([x],y)) , (projected intersection)

We have

set
�
C∪[y]

�
= {x,∃y ∈ [y], (x,y) ∈ set (C)}

set
�
C∩[y]

�
= {x,∀y ∈ [y], (x,y) ∈ set (C)} .

3.6 Circuits

Example 1

Domains

E ∈ [23V, 26V]; I ∈ [4A, 8A];

U1 ∈ [10V, 11V];U2 ∈ [14V, 17V];

P ∈ [124W, 130W];R1 ∈ [0,∞[and R2 ∈ [0,∞[.

Constraints

(i) P = EI, (ii) E = (R1 +R2) I, (iii) U1 = R1I,
(iv) U2 = R2I, (v) E = U1 + U2.

Solution set

S =











E
R1
R2
I
U1
U2
P






∈






[23, 26]
[0,∞[
[0,∞[
[4, 8]
[10, 11]
[14, 17]

[124, 130];






,






P = EI
E = (R1 +R2) I
U1 = R1I
U2 = R2I
E = U1 + U2






variables

E in [23 ,26];

I in [4,8];

U1 in [10,11];

U2 in [14 ,17];

P in [124,130];

R1 in [0 ,1e08];

R2 in [0 ,1e08];

contractor_list L

P=E*I;

E=(R1+R2)*I;

U1=R1*I;

U2=R2*I;

E=U1+U2;

end

contractor C

compose(L);

end

contractor epsilon

precision(1);

end

Quimper returns

[24; 26]× [1.846; 2.307]× [2.584; 3.355]

× [4.769; 5.417]× [10; 11]× [14; 16]× [124; 130] ,

i.e.,

E ∈ [24; 26] , R1 ∈ [1.846; 2.307] ,
R2 ∈ [2.584; 3.355], I ∈ [4.769; 5.417] ,
U1 ∈ [10; 11] , U2 ∈ [14; 16] ,
P ∈ [124; 130] .

4 SLAM

Show the video

Mine detection with SonarPro

Loch-Doppler returns the speed robot vr.

vr ∈ ṽr + 0.004 ∗ [−1, 1] .ṽr + 0.004 ∗ [−1, 1]

Inertial central (Octans III from IXSEA).




φ
θ
ψ




 ∈





φ̃

θ̃

ψ̃




+






1.75× 10−4. [−1, 1]
1.75× 10−4. [−1, 1]
5.27× 10−3. [−1, 1]




 .

Six mines have been detected.

i 0 1 2 3 4 5
τ(i) 7054 7092 7374 7748 9038 9688
σ(i) 1 2 1 0 1 5
r̃(i) 52.42 12.47 54.40 52.68 27.73 26.98

6 7 8 9 10 11
10024 10817 11172 11232 11279 11688
4 3 3 4 5 1

37.90 36.71 37.37 31.03 33.51 15.05

4.1 Constraints

t ∈ {6000.0, 6000.1, 6000.2, . . . , 11999.4},

i ∈ {0, 1, . . . , 11},
�
px(t)
py(t)

�

= 111120 ·
�

0 1

cos
�
ℓy(t) · π180

�
0

�

·
�
ℓx(t)− ℓ0x
ℓy(t)− ℓ0y

�

,

p(t) = (px(t), py(t), pz(t)),

Rψ(t) =






cosψ(t) − sinψ(t) 0
sinψ(t) cosψ(t) 0

0 0 1




 ,

Rθ(t) =






cos θ(t) 0 sin θ(t)
0 1 0

− sin θ(t) 0 cos θ(t)




 ,

Rϕ(t) =






1 0 0
0 cosϕ(t) − sinϕ(t)
0 sinϕ(t) cosϕ(t)




 ,

R(t) = Rψ(t) ·Rθ(t) ·Rϕ(t),

ṗ(t) = R(t) · vr(t),

||m(σ(i))− p(τ(i))|| = r(i),

RT(τ(i)) · (m(σ(i))− p(τ(i))) ∈ [0]× [0,∞]×2.

4.2 GESMI

5 Robust parameter estimation

Exercise. A robot measures its own distance to three

marks. The distances and the coordinates of the marks

are

mark xi yi di
1 0 0 [22, 23]
2 10 10 [10, 11]
3 30 −30 [53, 54]

1) Define the set X al all feasible positions.

2) Build the contractor associated with X.

2) Build the contractor associated with X.

Solution.

X =
�

i∈{1,2,3}

�
(x, y) | (x− xi)2 + (y − yi)2 ∈

�
d−i , d

+
i

! "# $
Xi

X =
�

i∈{1,2,3}
Xi =

�

i∈{1,2,3}
Xi

=
�

i∈{1,2,3}

�
(x, y) | (x− xi)2 + (y − yi)2 ∈

�
−∞, d−i

∪
�
(x, y) | (x− xi)2 + (y − yi)2 ∈

�
d+i ,∞

C =
�

i∈{1,2,3}
D%
d−i ,d

+
i

&

C =
�

i∈{1,2,3}

'
D%
−∞,d−i

&
(
∪

'
D%
d+i ,∞

&
(

5.1 Relaxed intersection

Dealing with outliers

C = (C1 ∩ C2) ∪ (C2 ∩ C3) ∪ (C1 ∩ C3)

Considerm setsX1, . . . ,Xm ofRn. The q-relaxed intersection
{q}�
Xi

is the set of all x ∈ Rn which belong to all Xi’s, except q

at most.

Exercise. Consider 8 intervals: X1 = [1, 4], X2 = [2, 4],X3 =

[2, 7],X4 = [6, 9],X5 = [3, 4],X6 = [3, 7]. Compute

{0}�
Xi = ?,

{1}�
Xi = ?,

{2}�
Xi = ?,

{3}�
Xi = ?,

{4}�
Xi = ?,

{5}�
Xi = ?,

{6}�
Xi = ?.

Solution. ForX1 = [1, 4], X2 = [2, 4],X3 = [2, 7],X4 =

[6, 9],X5 = [3, 4],X6 = [3, 7], we have

{0}�
Xi = ∅,

{1}�
Xi = [3, 4],

{2}�
Xi = [3, 4],

{3}�
Xi = [2, 4] ∪ [6, 7],

{4}�
Xi = [2, 7],

{5}�
Xi = [1, 9],

{6}�
Xi = R.

If Xi’s are intervals, the relaxed intersection can be com-

puted with a complexity of n logn.

Take all bounds of all intervals with their brackets.

Bounds 1 4 2 4 2 7 6 9 3 4 3 7
Brackets [] [] [] [] [] []

Sort the columns with respect the bounds:

Bounds 1 2 2 3 3 4 4 4 6 7 7 9
Brackets [[[[[]]] []]]

Scan from left to right, counting +1 for ’[’ and −1 for ’]’:

Bounds 1 2 2 3 3 4 4 4 6 7 7 9
Brackets [[[[[]]] []]]
Sum 1 2 3 4 5 4 3 2 3 2 1 0

Read the q-intersections

Set-membership function associated with the 6 intervals

Computing the q relaxed intersection ofm boxes is tractable.

The black box is the 2-intersection of 9 boxes

Formal definition

{q}�
Xi =

�

{σ1,...,σn−q}
Xσ1 ∩ · · · ∩ Xσn−q

{q}�
Xi =

�

{σ1,...,σn−q}
Xσ1 ∪ · · · ∪ Xσn−q

Remark

{0}�
Xi =

�
Xi

{0}�
Xi =

�
Xi

Dual rule

{q}�
Xi =

{n−q−1}�
Xi

De Morgan’s law

{q}�
Xi =

{q}�
Xi

{q}�
Xi =

{q}�
Xi.

From the De Morgan’s law and the dual rules, we get

{q}�
Xi =

{n−q−1}�
Xi =

{n−q−1}�
Xi

Relaxation of contractors

We define the q-relaxed intersection betweenm contractors

C =






{q}�

i∈{1,...,m}
Ci




⇔ ∀ [x] ∈ IRn, C ([x]) =

{q}�
Ci ([x]) .

5.2 Shape detection

Sauc’isse robot swimming inside a pool

A spheric buoy seen by Sauc’isse

An implicit parameter set estimation problem amounts to

characterizing

P =
�

i∈{1,...,m}
{p ∈ Rn,∃y ∈ [y](i), f (p,y) = 0}! "# $

Pi

where p is the parameter vector, [y](i) is the ith measure-

ment box and f is the model function.

Consider the shape function f (p,y), where y ∈ R2 corre-

sponds to a pixel and p is the shape vector.

Example (circle):

f (p,y) = (y1 − p1)2 + (y2 − p2)2 − p23.

The shape associated with p is

S (p) def
=

�
y ∈ R2, f (p,y) = 0

.

Consider a set of (small) boxes in the image

Y = {[y](1), . . . , [y](m)} .
Each box is assumed to intersect the shape we want to

extract.

In our buoy example,

• Y corresponds to edge pixel boxes.

• f (p,y) = (y1 − p1)2 + (y2 − p2)2 − p23.

• p = (p1, p2, p3)
T where p1, p2 are the coordinates of

the center of the circle and p3 its radius.

The q relaxed feasible set is

P
{q} def

=
{q}�

i∈{1,...,m}
{p ∈ Rn,∃y ∈ [y](i), f (p,y) = 0} .

An optimal contractor for the set
�
p ∈ [p],∃y ∈ [y], (y1 − p1)2 + (y2 − p2)2 − p23 = 0

.

FB(in: [y], [p], out: [p])
1 [d1] := [y1]− [p1] ;
2 [d2] := [y2]− [p2] ;

3 [c1] := [d1]
2 ;

4 [c2] := [d2]
2 ;

5 [c3] := [p3]
2 ;

6 [e] := [0, 0] ∩ ([c1] + [c2]− [c3]) ;
7 [c1] := [c1] ∩ ([e]− [c2] + [c3]) ;
8 [c2] := [c2] ∩ ([e]− [c1] + [c3]) ;
9 [c3] := [c3] ∩ ([c1] + [c2]− [e]) ;

10 [p̄3] := [p3] ∩
�
[c3];

11 [d2] := [d2] ∩
�
[c2];

12 [d1] := [d1] ∩
�
[c1];

13 [p2] := [p2] ∩ ([y2]− [d2]) ;
14 [p1] := [p1] ∩ ([y1]− [d1]) ;

q = 0.70 m (i.e. 70% of the data can be outlier)

q = 0.80 m (i.e. 80% of the data can be outlier)

q = 0.81 m (i.e. 81% of the data can be outlier)

6 Intervals and graphs

6.1 Path planning

6.2 Charaterizing the topology

(Collaboration with N. Delanoue and B. Cottenceau)

An approach has also been developed with N. Delanoue to

compute a triangulation homeomorphic to S.

7 Saiboat robotics

7.1 Vaimos

Vaimos (IFREMER and ENSTA)

The robot satisfies a state equation

ẋ = f (x,u) .

With the controller u = g (x), the robot satisfies an equa-

tion of the form

ẋ = f (x) .

With all uncertainties, the robot satisfies.

ẋ ∈ F (x)

which is a differential inclusion.

7.2 Line following

Controller of a sailboat robot

Heading controller





δr =





δmax
r . sin

�
θ − θ̄

�
if cos

�
θ − θ̄

�
≥ 0

δmax
r .sign

�
sin

�
θ − θ̄

��
otherwise

δmax
s = π

2 .
'
cos(ψ−θ̄)+1

2

(
.

Rudder

δr =





δmax
r . sin

�
θ − θ̄

�
if cos

�
θ − θ̄

�
≥ 0

δmax
r .sign

�
sin

�
θ − θ̄

��
otherwise

Sail

δmax
s =

π

2
·



cos

�
ψ − θ̄

�
+ 1

2





7.3 Vector field

Nominal vector field: θ∗ = ϕ− 1

2
.atan

'
e

r

(
.

A course θ∗ may be unfeasible

θ∗ = −2.γ∞
π .atan

�
e
r

�

7.4 Controller

Function in: m, θ, ψ, a,b; out: δr, δmax
s ; inout: q

1 e =
det(b−a,m−a)

%b−a%
2 if |e| > r then q = sign(e)
3 ϕ = atan2(b− a)
4 θ̄ = ϕ− 1

2.atan
�
e
r

�

5 if cos
�
ψ − θ̄

�
+ cos ζ < 0 then θ̄ = π + ψ − q.ζ.

6 if cos
�
θ − θ̄

�
≥ 0 then δr = δmax

r . sin
�
θ − θ̄

�

else δr = δmax
r .sign

�
sin

�
θ − θ̄

��

7 δmax
s = π

2 .
'
cos(ψ−θ̄)+1

2

(
.

7.5 Validation by simulation

7.6 Theoretical validation

When the wind is known, the sailboat with the heading

controller is described by

ẋ = f (x) .

The system

ẋ = f (x)

is Lyapunov-stable (1892) is there exists V (x) ≥ 0 such

that

V̇ (x) < 0 if x �= 0,

V (x) = 0 iff x = 0.

Definition. Consider a differentiable function V (x) : Rn→
R. The system is V -stable if

�
V (x) ≥ 0 ⇒ V̇ (x) < 0

�
.

Theorem. If the system ẋ = f (x) is V -stable then

(i) ∀x (0) ,∃t ≥ 0 such that V (x (t)) < 0
(ii) if V (x (t)) < 0 then ∀τ > 0, V (x (t+ τ)) < 0.

Now,
�
V (x) ≥ 0 ⇒ V̇ (x) < 0

�

⇔
�
V (x) ≥ 0⇒ ∂V

∂x (x) .f (x) < 0
�

⇔ ∀x, ∂V∂x (x) .f (x) < 0 or V (x) < 0

⇔ ¬
�
∃x, ∂V∂x (x) .f (x) ≥ 0 and V (x) ≥ 0

�

Theorem. We have
�
∂V
∂x (x) .f (x) ≥ 0
V (x) ≥ 0

inconsistent ⇔ ẋ = f (x) is V -stable.

Interval method could easily prove the V -stability.

Theorem. We have





∂V
∂x (x) .a ≥ 0
a ∈ F (x)
V (x) ≥ 0

inconsistent ⇔ ẋ ∈ F (x) is V -stable

Differential inclusion ẋ ∈ F (x) for the sailboat.

V (x) = x22 − r2max.

7.7 Parametric case

Consider the differential inclusion

ẋ ∈ F (x,p) .

We characterize the set P of all p such that the system is

V -stable.

7.8 Experimental validation

Brest

Show Dashboard

Brest-Douarnenez. January 17, 2012, 8am

Montrer la mise à l’eau

Middle of Atlantic ocean

350 km made by Vaimos in 53h, September 6-9, 2012.

Consequence.

It is possible for a sailboat robot to navigate inside a cor-

ridor.

Essential, to create circulation rules when robot swarms are

considered.

Essential to determine who has to pay in case of accident.

References.

Jaulin L., M. Kieffer, O. Didrit and E. Walter (2001), Ap-

plied Interval Analysis with Examples in Parameter and

State Estimation, Robust Control and Robotics, Springer-

Verlag,

L. Jaulin (2009), A nonlinear set-membership approach for

the localization and map building of an underwater robot

using interval constraint propagation, IEEE Transactions

on Robotics.

L. Jaulin and F. Le Bars (2012). An interval approach for

stability analysis; Application to sailboat robotics. IEEE

Transaction on Robotics.

L. Jaulin (2001). Path planning using intervals and graphs.

Reliable Computing.

N. Delanoue, L. Jaulin and B. Cottenceau (2005), Using

interval arithmetic to prove that a set is path-connected -

Theoretical Computer Science, Special issue: Real Num-

bers and Computers.

G. Chabert and L. Jaulin (2009), Contractor programming.

Artificial Intelligence.

