
Interval constraint propagation;

applications to control, estimation and robotics

Brest, UBO, Nov 13, 2009

Luc Jaulin,

ENSIETA, Brest, France

1 Set computation

1.1 Basic notions on set theory

We define

X ∩ Y def
= {x | x ∈ X and x ∈ Y}

X ∪ Y def
= {x | x ∈ X or x ∈ Y}

X \ Y def
= {x | x ∈ X and x /∈ Y}

X× Y def
= {(x, y) | x ∈ X and y ∈ Y}

projX (Z)
def
= {x ∈ X | ∃y ∈ Y, (x, y) ∈ Z}.

Exercise: If X = {a, b, c, d} and Y = {b, c, x, y},
then

X ∩ Y = ?

X ∪ Y = ?

X \ Y = ?

X×Y = ?

Exercise: If X = {a, b, c, d} and Y = {b, c, x, y},
then

X ∩ Y = {b, c}
X ∪ Y = {a, b, c, d, x, y}
X \ Y = {a, d}
X×Y = {(a, b), (a, c), (a, x), (a, y),

. . . , (d, b), (d, c), (d, x), (d, y)}

The direct image of X by f is

f (X) � {f(x) | x ∈ X}.
The reciprocal image of Y by f is

f−1 (Y) � {x ∈ X | f(x) ∈ Y}.

Exercise: If f is defined as follows

f(A) = ?.

f−1(B) = ?.

f−1(f(A)) = ?

f−1(f({b, c})) = ?.

Exercise: If f is defined as follows

f(A) = {2, 3, 4} = Im(f).

f−1(B) = {a, b, c, e} = dom(f).

f−1(f(A)) = {a, b, c, e} ⊂ A

f−1(f({b, c})) = {a, b, c}.

Exercise: If f(x) = x2, then

f([2, 3]) = ?

f−1([4, 9]) = ?.

Exercise: If f(x) = x2, then

f([2, 3]) = [4, 9]

f−1([4, 9]) = [−3,−2] ∪ [2, 3].

This is consistent with the property

f
(
f−1 (Y)

)
⊂ Y.

1.2 Interval arithmetic

If ⋄ ∈ {+,−, ., /,max,min}

[x] ⋄ [y] = [{x ⋄ y | x ∈ [x], y ∈ [y]}] .

For instance,

[−1, 3] + [2, 5] = [?, ?],
[−1, 3].[2, 5] = [?, ?],
[−1, 3]/[2, 5] = [?, ?],

[−1, 3] ∨ [2, 5] = [?, ?].

If ⋄ ∈ {+,−, ., /,max,min}

[x] ⋄ [y] = [{x ⋄ y | x ∈ [x], y ∈ [y]}] .

For instance,

[−1, 3] + [2, 5] = [1, 8],
[−1, 3].[2, 5] = [−5, 15],

[−1, 3]/[2, 5] = [−1
2,

3
2],

[−1, 3] ∨ [2, 5] = [2, 5].

[x−, x+] + [y−, y+] = [x− + y−, x+ + y+],
[x−, x+].[y−, y+] = [x−y− ∧ x+y− ∧ x−y+ ∧ x+y+,

x−y− ∨ x+y− ∨ x−y+ ∨ x+y+],
[x−, x+] ∨ [y−, y+] = [∨(x−, y−),∨(x+, y+)].

If f ∈ {cos, sin,sqr, sqrt, log, exp, . . . }

f ([x]) = [{f(x) | x ∈ [x]}] .
For instance,

sin ([0, π]) = ?,

sqr ([−1, 3]) = [−1, 3]2 =?,

abs ([−7, 1]) = ?,

sqrt ([−10, 4]) =
√
[−10, 4] =?,

log ([−2,−1]) = ?.

If f ∈ {cos, sin,sqr, sqrt, log, exp, . . . }

f ([x]) = [{f(x) | x ∈ [x]}] .
For instance,

sin ([0, π]) = [0, 1],

sqr ([−1, 3]) = [−1, 3]2 = [0, 9],

abs ([−7, 1]) = [0, 7],

sqrt ([−10, 4]) =
√
[−10, 4] = [0, 2],

log ([−2,−1]) = ∅.

1.3 Boxes

A box, or interval vector [x] of Rn is

[x] = [x−1 , x
+
1]× · · · × [x−n , x

+
n] = [x1]× · · · × [xn].

The set of all boxes of Rn will be denoted by IRn.

The width w ([x]) of a box [x] is the length of its largest

side. For instance

w([1, 2]× [−1, 3]) = 4

The principal plane of [x] is the symmetric plane [x]

perpendicular to its largest side.

1.4 Inclusion function

The interval function [f] from IRn to IRm, is an inclu-

sion function of f if

∀ [x] ∈ IRn, f([x]) ⊂ [f] ([x]).

Inclusion functions [f] and [f]∗; here, [f]∗ is minimal.

The inclusion function [f] is

monotonic if ([x] ⊂ [y]) ⇒ ([f] ([x]) ⊂ [f] ([y]))
minimal if ∀[x] ∈ IRn, [f] ([x]) = [f ([x])]
thin if w([x]) = 0 ⇒ w([f]([x]) = 0
convergent if w([x]) → 0 ⇒ w([f]([x]) → 0.

Convergent but non-monotonic inclusion function

Convergent and monotonic inclusion function

The natural inclusion function for f(x) = x2+2x+4

is

[f]([x]) = [x]2 + 2[x] + 4.

If [x] = [−3, 4], we have

[f]([−3, 4]) = [−3, 4]2 + 2[−3, 4] + 4

= [0, 16] + [−6, 8] + 4

= [−2, 28].

Note that f([−3, 4]) = [3, 28] ⊂ [f]([−3, 4]) = [−2, 28].

A minimal inclusion function for

f :
R2 → R3

(x1, x2) �→
(
x1x2, x

2
1, x1 − x2

)
.

is

[f] :
IR

2 → IR
3

([x1] , [x2]) →
(
[x1] ∗ [x2] , [x1]

2 , [x1]− [x2]
)
.

If f is given by the algorithm

Algorithm f(in: x = (x1, x2, x3), out: y = (y1, y2))
1 z := x1;
2 for k := 0 to 100
3 z := x2(z + kx3);
4 next;
5 y1 := z;
6 y2 := sin(zx1);

Its natural inclusion function is

Algorithm [f](in: [x], out: [y])
1 [z] := [x1];
2 for k := 0 to 100
3 [z] := [x2] ∗ ([z] + k ∗ [x3]);
4 next;
5 [y1] := [z] ;
6 [y2] := sin([z] ∗ [x1]);

Here, [f] is a convergent, thin and monotonic inclusion

function for f .

1.5 Subpavings

A subpaving of Rn is a set of non-overlapping boxes of

Rn.

Compact sets X can be bracketed between inner and

outer subpavings:

X
− ⊂ X ⊂ X+.

Example.

X = {(x1, x2)
∣∣∣ x21 + x22 ∈ [1, 2]}.

Set operations such as Z := X+Y, X := f−1 (Y) ,Z :=

X ∩ Y . . . can be approximated by subpaving opera-

tions.

1.6 Set inversion

Let f : Rn → Rm and let Y be a subset of Rm. Set

inversion is the characterization of

X = {x ∈ Rn | f(x) ∈ Y} = f−1(Y).

We shall use the following tests.

(i) [f]([x]) ⊂ Y ⇒ [x] ⊂ X
(ii) [f]([x]) ∩ Y = ∅ ⇒ [x] ∩ X = ∅.

Boxes for which these tests failed, will be bisected, ex-

cept if they are too small.

Stack-queue

A queue is a list on which two operations are allowed :

• add an element at the end (push)

• remove the first element (pull).

A stack is a list on which two operations are allowed :

• add an element at the beginning of the list (stack)

• remove the first element (pop).

Example: Let L be an empty queue.

k operation result
0 L = ∅
1 push (L, a) L = {a}
2 push (L, b) L = {a, b}
3 x := pull (L) x = a,L = {b}
4 x := pull (L) x = b,L = ∅.

If L is a stack, the table becomes

k operation result
0 L = ∅
1 stack (L, a) L = {a}
2 stack (L, b) L = {a, b}
3 x := pop (L) x = b,L = {a}
4 x := pop (L) x = a,L = ∅.

.

Algorithm Sivia(in: [x](0), f ,Y)
1 L := {[x](0)} ;
2 pull [x] from L;
3 if [f]([x]) ⊂ Y, draw([x], ’red’);
4 elseif [f]([x]) ∩ Y = ∅, draw([x], ’blue’);
5 elseif w([x]) < ε, {draw ([x], ’yellow’)};
6 else bisect [x] and push into L;
7 if L �= ∅, go to 2

If ∆X denotes the union of yellow boxes and if X− is

the union of red boxes then :

X
− ⊂ X ⊂ X− ∪∆X.

1.7 Image evaluation

Define

f (x1, x2) =

(
(x1 − 1)2 − 1 + x2
−x21 + (x2 − 1)2

)

,

and

X1 =
{
(x1, x2) ∈ R2

∣∣∣ x41 − x21 + 4x22 ∈ [−0.1, 0.1]
}
.

We shall compute X1, f (X1) and f
−1 ◦ f (X1).

2 Applications of set computation

2.1 Bounded-error estimation

Model : φ (p, t) = p1e
−p2t.

Prior feasible box for the parameters : [p] ⊂ R2

Measurement times : t1, t2, . . . , tm

Data bars : [y−1 , y+1], [y−2 , y+2], . . . , [y−m, y+m]

S = {p ∈ [p], φ (p, t1) ∈ [y−1 , y+1], . . . , φ (p, tm) ∈ [y−m, y+m]}

If

φ (p) =






φ (p, t1)

φ (p, tm)






and

[y] = [y−1 , y+1]× · · · × [y−m, y+m]

then

S = [p] ∩ φ−1 ([y]) .

Show Setdemo (Guillaume Baffet), available at

www.ensieta.fr/jaulin/demo.html

If now φ (p, t) = p1 sin (2πp2t) and tk = kδ, S

contains an infinite number of connected components.

2.2 Robustification against outliers

Define a relaxing function for the box [y] = [y1]×· · ·×
[yn]

λ(y) = π[y1]
(y1) + · · ·+ πyn

where

π[a,b](x)

{
= 1 if x ∈ [a, b]
= 0 if x /∈ [a, b].

Allow up to q of the n output variables yi to escape

their prior feasible intervals. The posterior feasible set

becomes

P̂q = {p ∈ [p] | π[y1]
(φ1(p))+· · ·+π[yn](φn(p)) � n−q}.

This is a set inversion problem. The set P̂q can thus be

characterized by Sivia.

As an illustration, consider the model

φ (p, t) = 20 exp(−p1t)− 8 exp(−p2t)

with the data bars represented on the figure below

(a) no outlier assumed; (b) one outlier assumed; (c)

two outliers assumed;

2.3 Sailboat

State equations





ẋ = v cos θ
ẏ = v sin θ − 1

θ̇ = ω

δ̇s = u1
δ̇r = u2
v̇ = fs sin δs − fr sin δr − v
ω̇ = (1− cos δs) fs − cos δr.fr − ω
fs = cos (θ + δs)− v sin δs
fr = v sin δr.

In a cruising phase

θ̇ = 0, δ̇s = 0, δ̇r = 0, v̇ = 0, ω̇ = 0.

i.e.,





0 = ω
0 = u1
0 = u2
0 = fs sin δs − fr sin δr − v
0 = (1− cos δs) fs − cos δr.fr − ω
fs = cos (θ + δs)− v sin δs
fr = v sin δr.

The polar diagram is

Sy = {(θ, v) | ∃fs, δs, fr, δr,
fs sin δs − fr sin δr − v = 0

(1− cos δs) fs − cos δrfr = 0
fs = cos (θ + δs)− v sin δs

fr = v sin δr }

3 Interval and graphs

3.1 Path planning

3.2 Counting connected components

(Collaboration with N. Delanoue and B. Cottenceau)

Figure 1:

The point v is a star for S ⊂ Rn if ∀x ∈ S, ∀α ∈ [0, 1],

αv + (1− α)x ∈ S. .

v1 is a star for S whereas v2 is not

The set S ⊂ Rn is star-shaped is there exists v such

that v is a star for S.

Theorem: Define the set

S
def
= {x ∈ [x]|f(x) ≤ 0}

where f is differentiable. We have the following impli-

cation
{
x ∈ [x] | f(x) = 0,

df

dx
(x).(x− v) ≤ 0

}
= ∅ ⇒ v is a star

If v is a star for S1 and a star for S2 then it is a star

for S1 ∩ S2 and for S1 ∪ S2.

Consider a subpaving P = {[p1], [p2], . . .} covering S.
The relation R defined by

[p]R[q] ⇔ S ∩ [p] ∩ [q] �= ∅
is star-spangled graph of the set S if

∀[p] ∈ P,S∩[p] is star-shaped.
For instance, a star-spangled graph for the set

S
def
=





(x, y) ∈ R2 |






x2 + 4y2 − 16

2 sinx− cos y + y2 − 3
2

−(x+ 5
2)

2 − 4(y − 2
5)

2 + 3
10




 ≤ 0






is

For each [p] of the paving P, a common star located

at the corner of [p] (represented in red) has been

found for all three constraints.

Theorem: The number of connected components of

the star-spangled graph of S is equal to that of S.

An extension of this approach has also been developed

with N. Delanoue to compute a triangulation homeo-

morphic to S.

4 Contractors

To characterize X ⊂ Rn, bisection algorithms bisect all

boxes in all directions and become inefficient. Interval

methods can still be useful if

• the solution set X is small (optimization problem,

solving equations),

• contraction procedures are used as much as possi-

ble,

• bisections are used only as a last resort.

4.1 Definition

The operator CX : IRn → IR
n is a contractor for X ⊂

Rn if

∀[x] ∈ IRn,

{
CX([x]) ⊂ [x] (contractance),
CX([x]) ∩ X = [x] ∩ X (completeness).

CX is monotonic if [x] ⊂ [y] ⇒ CX([x]) ⊂ CX([y])
CX is minimal if ∀[x] ∈ IRn, CX([x]) = [[x] ∩ X]
CX is thin if ∀x ∈ Rn, CX({x}) = {x} ∩ X
CX is idempotent if ∀[x] ∈ IRn, CX (CX([x])) = CX([x]).

CX is said to be convergent if

[x](k) → x ⇒ CX([x] (k)) → {x} ∩ X.

4.2 Projection of constraints

Let x, y, z be 3 variables such that

x ∈ [−∞, 5],

y ∈ [−∞, 4],

z ∈ [6,∞],

z = x+ y.

The values < 2 for x, < 1 for y and > 9 for z are

inconsistent.

To project a constraint (here, z = x + y), is to com-

pute the smallest intervals which contains all consistent

values.

For our example, this amounts to project onto x, y and

z the set

S = {(x, y, z) ∈ [−∞, 5]× [−∞, 4]× [6,∞] | z = x+ y} .

4.3 Numerical method for projection

Since x ∈ [−∞, 5], y ∈ [−∞, 4], z ∈ [6,∞] and z =

x+ y, we have

z = x+ y ⇒ z ∈ [6,∞] ∩ ([−∞, 5] + [−∞, 4])
= [6,∞] ∩ [−∞, 9] = [6, 9].

x = z − y ⇒ x ∈ [−∞, 5] ∩ ([6,∞]− [−∞, 4])
= [−∞, 5] ∩ [2,∞] = [2, 5].

y = z − x⇒ y ∈ [−∞, 4] ∩ ([6,∞]− [−∞, 5])
= [−∞, 4] ∩ [1,∞] = [1, 4].

The contractor associated with z = x+ y is.

Algorithm pplus(inout: [z], [x], [y])
1 [z] := [z] ∩ ([x] + [y]) ;
2 [x] := [x] ∩ ([z]− [y]) ;
3 [y] := [y] ∩ ([z]− [x]) .

The projection procedure developed for plus can be ex-

tended to other ternary constraints such as mult: z =

x ∗ y, or equivalently

mult �
{
(x, y, z) ∈ R3 | z = x ∗ y

}
.

The resulting projection procedure becomes

Algorithm pmult(inout: [z], [x], [y])
1 [z] := [z] ∩ ([x] ∗ [y]) ;
2 [x] := [x] ∩ ([z] ∗ 1/[y]) ;
3 [y] := [y] ∩ ([z] ∗ 1/[x]) .

Consider the binary constraint

exp � {(x, y) ∈ Rn|y = exp (x)} .
The associated contractor is

Algorithm pexp(inout: [y], [x])
1 [y] := [y] ∩ exp ([x]) ;
2 [x] := [x] ∩ log ([y]) .

Any constraint for which such a projection procedure is

available will be called a primitive constraint.

Projection of the sine constraint

4.4 Constraint propagation

A CSP (Constraint Satisfaction Problem) is composed

of

1) a set of variables V = {x1, . . . , xn} ,
2) a set of constraints C = {c1, . . . , cm} and

3) a set of interval domains {[x1], . . . , [xn]}.

Principle of propagation techniques: contract [x] =

[x1]× · · · × [xn] as follows:

(((((([x]⊓c1) ⊓ c2) ⊓ . . .) ⊓ cm)⊓c1)⊓c2) . . . ,
until a steady box is reached.

Example. Consider the system of two equations.

y = x2

y =
√
x.

We can build two contractors

C1 :

{
[y] = [y] ∩ [x]2

[x] = [x] ∩
√
[y]

associated to y = x2

C2 :

{
[y] = [y] ∩

√
[x]

[x] = [x] ∩ [y]2
associated to y =

√
x

4.5 Local consistency

If C∗
S1

and C∗
S2

are two minimal contractors for S1 and

S2 then

CS = C∗
S1
◦ C∗

S2
◦ C∗

S1
◦ C∗

S2
◦ . . .

is a contractor for S = S1 ∩ S2, but it is not always

optimal. This is the local consistency effect.

Exemple. Consider the system
{

y = 3 sin(x)
y = x

x ∈ R, y ∈ R.

4.6 Decomposition into primitive constraints

x+ sin(xy) ≤ 0,
x ∈ [−1, 1], y ∈ [−1, 1], z ∈ [−1, 1]

can be decomposed into





a = xy
b = sin(a)
c = x+ b

,
x ∈ [−1, 1] a ∈ [−∞,∞]
y ∈ [−1, 1] b ∈ [−∞,∞]
z ∈ [−1, 1] c ∈ [−∞, 0]

4.7 Set and contractors

A contractor represents a set of Rn. The set associated

with a contractor C is

set (C) = {x ∈ Rn, C({x}) = {x}} .
Its domain is

dom (C) = {x ∈ Rn, C({x}) = ∅} .

For instance, the set associated with the contractor

C1






[x1]
[x2]
[x3]






def
=






[x1] ∩ ([x3]− [x2])
[x2] ∩ ([x3]− [x1])
[x3] ∩ ([x1] + [x2])






is

set (C1) = {(x1, x2, x3) , x3 = x1 + x2} .
A contractor is also one way to represent one equation

x3 = x1 + x2.

4.8 Operations on contractors

intersection (C1 ∩ C2) ([x]) def
= C1 ([x]) ∩ C2 ([x])

union (C1 ∪ C2) ([x]) def
= [C1 ([x]) ∪ C2 ([x])]

composition (C1 ◦ C2) ([x]) def
= C1 (C2 ([x]))

repetition C∞ def
= C ◦ C ◦ C ◦ . . .

repeat intersection C1 ⊓ C2 = (C1 ∩ C2)∞
repeat union C1 ⊔ C2 = (C1 ∪ C2)∞

Consider the contractor C ([x], [y]), where [x] ∈ Rn, [y] ∈
Rp. We define the contractor

C∪[y] ([x]) =





⋃

y∈[y]
πx (C ([x],y))




 (projected union)

and also the contractor

C∩[y] ([x]) =
⋂

y∈[y]
πx (C ([x],y)) , (projected intersectio

We have

set
(
C∪[y]

)
= {x,∃y ∈ [y], (x,y) ∈ set (C)}

set
(
C∩[y]

)
= {x,∀y ∈ [y], (x,y) ∈ set (C)} .

4.9 QUIMPER

The collection of contractors {C1, . . . , Cm} is comple-

mentary if

set (C1) ∩ · · · ∩ set (Cm) = ∅.

Quimper is a high-level language for QUick Interval

Modeling and Programming in a bounded-ERror con-

text.

Quimper is an interpreted language for set computation.

A Quimper program is a set of complementary contrac-

tors.

Quimper returns m subpavings, where m is the number

of contractors

It is available at

http://ibex-lib.org/

5 Application of contractors

5.1 Bounded-error estimation

It is known that

Uz ∈ [6, 7]V, r ∈ [7, 8]Ω, U0 ∈ [6, 6.2]V
R ∈ [100, 110]Ω, E ∈ [18, 20]V, Iz ∈ [0,∞]A
I ∈]−∞,∞[A, Ic ∈]−∞,∞[A,Rc ∈ [50, 60]Ω.

The constraints are

Zener diode Iz = max(0, Uz−U0
r),

Ohm rule Uz = RcIc,
Current rule I = Ic + Iz,
Voltage rule E = RI + Uz.

IntervalPeeler contracts the domains into:

Uz ∈ [6, 007; 6, 518], r ∈ [7, 8]Ω,
U0 ∈ [6, 6.2]V,R ∈ [100, 110]Ω,
E ∈ [18, 20]V, Iz ∈ [0., 0.398]A
I ∈ [0.11; 0.14]A, Ic ∈ [0.1; 0, 13]A,
Rc ∈ [50, 60]Ω

5.2 SLAM

Redermor, GESMA

(Groupe d’Etude Sous-Marine de l’Atlantique)

Montrer la simulation

5.2.1 Sensors

GPS (Global positioning system), only at the surface.

t0 = 6000 s, ℓ0=(−4.4582279o, 48.2129206o)± 2.5m

tf = 12000 s, ℓf=(−4.4546607o, 48.2191297o)± 2.5m

Sonar (KLEIN 5400 side scan sonar).

Screenshot of SonarPro

Mine detecttion with SonarPro

Loch-Doppler returns the speed robot vr.

vr ∈ ṽr + 0.004 ∗ [−1, 1] .ṽr + 0.004 ∗ [−1, 1]

Inertial central (Octans III from IXSEA).





φ
θ
ψ




 ∈






φ̃

θ̃

ψ̃




+






1.75× 10−4. [−1, 1]
1.75× 10−4. [−1, 1]
5.27× 10−3. [−1, 1]




 .

Six mines have been detected.

i 0 1 2 3 4 5
τ(i) 7054 7092 7374 7748 9038 9688
σ(i) 1 2 1 0 1 5
r̃(i) 52.42 12.47 54.40 52.68 27.73 26.98

6 7 8 9 10 11
10024 10817 11172 11232 11279 11688

4 3 3 4 5 1
37.90 36.71 37.37 31.03 33.51 15.05

5.2.2 Constraints

t ∈ {6000.0, 6000.1, 6000.2, . . . , 11999.4},

i ∈ {0, 1, . . . , 11},
(

px(t)
py(t)

)

= 111120

(
0 1

cos
(
ℓy(t) ∗ π

180

)
0

)(
ℓx(t)− ℓ0x
ℓy(t)− ℓ0y

p(t) = (px(t), py(t), pz(t)),

Rψ(t) =






cosψ(t) − sinψ(t) 0
sinψ(t) cosψ(t) 0

0 0 1




 ,

Rθ(t) =






cos θ(t) 0 sin θ(t)
0 1 0

− sin θ(t) 0 cos θ(t)




 ,

Rϕ(t) =






1 0 0
0 cosϕ(t) − sinϕ(t)
0 sinϕ(t) cosϕ(t)




 ,

R(t) = Rψ(t)Rθ(t)Rϕ(t),

ṗ(t) = R(t).vr(t),

||m(σ(i))− p(τ(i))|| = r(i),

RT(τ(i)) (m(σ(i))− p(τ(i))) ∈ [0]× [0,∞]×2,

mz(σ(i))− pz(τ(i))− a(τ(i)) ∈ [−0.5, 0.5]

//---

Constants

N = 59996; // Number of time steps

Variables

R[N-1][3][3], // rotation matrices

p[N][3], // positions

v[N-1][3], // speed vectors

phi[N-1],theta[N-1],psi[N-1]; // Euler angles

px[N],py[N]; // for display only

//---

function R[3][3]=euler(phi,theta,psi)

cphi = cos(phi);

sphi = sin(phi);

ctheta = cos(theta);

stheta = sin(theta);

cpsi = cos(psi);

spsi = sin(psi);

R[1][1]=ctheta*cpsi;

R[1][2]=-cphi*spsi+stheta*cpsi*sphi;

R[1][3]=spsi*sphi+stheta*cpsi*cphi;

R[2][1]=ctheta*spsi;

R[2][2]=cpsi*cphi+stheta*spsi*sphi;

R[2][3]=-cpsi*sphi+stheta*cphi*spsi;

R[3][1]=-stheta;

R[3][2]=ctheta*sphi;

R[3][3]=ctheta*cphi;

end

contractor-list rotation

for k=1:N-1;

R[k]=euler(phi[k],theta[k],psi[k]);

end

end

//-------------------------------

contractor-list statequ

for k=1:N-1;

p[k+1]=p[k]+0.1*R[k]*v[k];

end

end

//-------------------------------

contractor init

inter k=1:N-1;

rotation(k)

end

end

contractor fwd

inter k=1:N-1;

statequ(k)

end

end

//-------------------------------

contractor bwd

inter k=1:N-1;

statequ(N-k)

end

end

main

p[1] :=read("gps_init.dat");

v :=read("Quimper_v.dat");

phi :=read("Quimper_phi.dat");

theta :=read("Quimper_theta.dat");

psi :=read("Quimper_psi.dat");

init;

fwd;

bwd;

column(p,px,1);

column(p,py,2);

print("--- Robot positions: ---");

newplot("gesmi.dat");

plot(px,py,color(rgb(1,1,1),rgb(0,0,0)));

end

5.2.3 GESMI

5.3 Robust state estimation

Portsmouth, July 12-15, 2007.

Illustration (in gray) of the q-relaxed intersection

the 6 sets X1, . . . ,X6 where q ∈ {2, 3, 4}

The feasible set for the state vector X(k + 1),

assuming at most q = 1 outlier, can be defined

recursively from X(k)

and from the data sets Y(k),Y(k − 1),Y(k − 2).

Assumption. Within any time window of length ℓ there

are less than q outliers.

The set of feasible state can be computed recursively

by

Xk+1 = fk (Xk) ∩
{q}⋂

i∈{0,...,ℓ}
fk◦fk−1◦ . . .◦fk−i◦g−1

k−i

(
Yk−i

)
.

Principle of the control of the underwater robot

Superposition of the poses of the robot

