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To characterize X C R", bisection algorithms bisect all
boxes in all directions and become inefficient. Interval
methods can still be useful if

e the solution set X is small (optimization problem,
solving equations),

e contraction procedures are used as much as possi-
ble,

e bisections are used only as a last resort.



1 Definition



The operator Cx : IR™ — IR" is a contractor for X C
R™ if

n | Cx([x]) C [X] (contractance),
vix] € IR, { Cx([x])NX =[x] "X (completeness).
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The operator C : IR"™ — IRR"™ is a contractor for the
equation f(x) =0, if

C([x]) C [x]

\VI[X] S HR”) { x € [X] et f (X) =0=x¢€ C([X])



Cx is monotonic if

x] C [y] = Cx([x]) C Cx([y])

Cx is minimal if

vix] € IR™, Cx([x]) = [[x] N X]

Cx is thin if

vx € R", Cx({x}) = {x}nX

Cx Is idempotent if

vix] € IR™, Cx (Cx([x])) = Cx([x])-




intersection | (C1 N C2) ([x]) ¥ ¢ ([x]) N Co ([X])

(C1UC) ([x]) &' [e1 (1x]) U s ([x])]

composition | (C1 o C2) ([x]) def C1(C2 ([x]))

répétition co¥escoco. .




Cx is said to be convergent if

x](k) = x = Cx([x](k)) — {x}nX.



2 Projection of constraints



Let =, vy, z be 3 variables such that

r € [—o0,5],
y € [—o0,4],
z € [6,00],
zZ = T +Y.

The values < 2 for x, < 1 for y and > 9 for z are
Inconsistent.



To project a constraint (here, z = = + y), is to com-
pute the smallest intervals which contains all consistent
values.

For our example, this amounts to project onto x,y and
z the set

S ={(z,y,2) € [-00,5] X [—00,4] X [6,00] | z=x + y}.



3 Numerical method for projec-

tion



Since x € [—00,5],y € [-00,4],2 € [6,00] and z =
x + y, we have

z=x+y= z€ [6,00]N([—00,5]+ [—00,4])

r=z—y= x € [—00,5]N([6,0] —[—00,4])
— :_0075] M [2700 — 275
Yy=z—r= yc —OO,4]ﬁ([6,00——OO,5)
= [—o0,4] N[1, 00] = [1, 4].




The contractor associated with z = x + y is.

Algorithm pplus(inout: [z], [x], [y])

L [2] := [l 0 ([=] + [9]);
2 [z] := [x] N ([2] = [9]);
3 [yl =yl (lz] = [z]) .




The projection procedure developed for plus can be ex-
tended to other ternary constraints such as mult: z =
x * 1, or equivalently

multé{(az,y,z)ER3 | z:x*y}.

The resulting projection procedure becomes

Algorithm pmult(inout: [z], [z], [y])
1 [z] := [2] N ([] * [9])
2 [z] = [z] N ([2] * 1/[y]) ;
3 [yl :==1[yln([z] *1/[z]).




Consider the binary constraint

exp = {(z,y) € R"|y = exp(z)} .

The associated contractor is

Algorithm pexp(inout: [y], [z])

1 [y] :== [yl Nexp([z]);
2 [z] :=[z]Nlog ([y]) -




Any constraint for which such a projection procedure is
available will be called a primitive constraint.



Example. Consider the primitive equation:

To = sinxy.









Backward contraction



Forward-backward contractor (HC4 revise)

For the equation

(21 +22) - 23 € [1,2],

we have the following contractor:

e_1|gorithm C (inout [z1], [z2], [x3])

a] = [z1] + [z2] /] a=w1+x2
b] = [a] - [z3] /] b=a-3
b] =[b] N [1,2] //bell,2]
03] = [23] N {4 /) a3 =1t

a] = [a] N &) /] a=2%

c1] = [z1] N [a] —[x2] // @1=0a—
zo] =[zo] N [a] —[z1] //xo=0a—mz




Properties

(CT°NC3®)™
(C1N(C2UC3))
{ C1 minimal

C> minimal

(C1 N Cp)™®
(C1NC2) U (C1NC3)

J U

C1 U Co minimal



Contractor on images

The robot with coordinates (x1, z3) is in the water.









4 Propagation



A CSP (Constraint Satisfaction Problem) is composed
of

1) a set of variables V = {x1,...,zn},
2) a set of constraints C = {cq,...,cm} and
3) a set of interval domains {[z1], ..., [zn]}.



Principle of propagation techniques: contract [x] =
[£1] X - - - X [zn] as follows:

((((((X]TTer) Mex) Me ) Mem) Mey) Mep) - -

until a steady box is reached.



Example. Consider the system of two equations.

y = a°

y = Vz.



We can build two contractors

vl =N [z]? . 2
Cq: { 2] = [2] N \/m associated toy =«

: [y]:[y]ﬂ\/m associated to y = v/«
62'{[x1=[x1m[y12 ted toy = v
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b Local consistency



If C§1 and C§2 are two minimal contractors for S7 and
So then

ngcglocgzocglocgzo...

is a contractor for S = S7 N Sy, but it is not always
optimal. This is the local consistency effect.



Exemple. Consider the system

(v

3sin(x)

. r€eR, yeR.
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6 Decomposition into primitive con-

straints



x + sin(zy) < 0,
S [_17 1]7y S [_17 1]

can be decomposed into
a = zy r € [-1,1] a € [—o0, ]

b= Sin(a) ) y € [_17 1] b e [_OO7OO]
c=x+b c € [—o0, 0]



7 Set and contractors



A contractor represents a set of R™. The set associated
with a contractor C is

set (C) = {x € R",C({x}) = {x}}.

lts domain is

dom (C) = {x € R",C({x}) = 0}.
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For instance, the set associated with the contractor

[z1] \ ¢ [ [x] O ([z3] = [22])
Ci| [z2] | = | [x2] N ([z3] — [71])
[x3] [3] N ([z1] + [z2])

set (C1) = {(x1,x2,23), 23 = 21 + 22} .
A contractor is also one way to represent one equation

r3 = xr1 + T2.



8 Operations on contractors



intersection (C1 N Co) ([x]) def C1 ([x]) NCa ([x])
(C1UCo) (Ix]) = €1 ([x]) U Co (Ix))]
composition (C10Co) ([x]) o C1(Co ([x]))
repetition C° def CoCoCo...

repeat intersection | C1 M Cy = (C1 NCy)™°

repeat union C1UCy = (CLUC)™®




Consider the contractor C ([x], [y]), where [x] € R", [y] €

IRP. We define the contractor

UM ([x]) =

c([x], [y]) [XIxIy]
A

T (C([x],¥))
(a)

\ \ C(Efcl,.V)

| W x|

J m(C([x],y))

| yE(y]

(projected union)

| ¥ x
eyl (1x
T



and also the contractor

cCI(x]) = () mx(C([x],y)), (projected intersecti
yElyl
¢ ([, y)) s A N

\ [x]x[y]

P | FT 77777_
A L4441 T
HliA (N
M ]
K
b
L4

(b)



We have

set ECU[Y]S ={x,3dy € [y], (x,y) € set (C)}

set (CV]) = {x, vy € [y],(x,y) € set (C)} .



9 QUIMPER (or IBEX 2.0)



The collection of contractors {Cq,...,Cm} is comple-
mentary if

set(C1) N---Nset(Cp) = 0.



Quimper is a high-level language for QUick Interval
Modeling and Programming in a bounded-ERror con-

text.
Quimper is an interpreted language for set computation.

A Quimper program is a set of complementary contrac-

tors.



Quimper returns m subpavings, where m is the number
of contractors

It i1s available at

http://ibex-1ib.org/



10 Circuits



Example 1




Domains
E € [23V,26V];I € [4A,8A];

U, € [10V,11V]; U, € [14V,17V];
P € [124W,130W]; R; € [0, oo[ and Ry € [0, oo.

Constraints

(i) P=FI, (i) E=(R1+ Ry) I, (iii) U3y = R11,
(iv) Up = RoI, (v) E=U;+ Us.



Solution set

[23,26]
[0, oo
[0, oo
[4, 8]

[10, 11]

[14, 17]

N\

\ [124,130]; /

(P=FEI
E=(R1+Ry)]I
Uy = BRI
Us = Rol

\ E=U;+ U




variables
E in [23 ,26];
I in [4,8];
Ul in [10,11];
U2 in [14 ,17];
P in [124,130];
R1 in [0 ,1e08 1;
R2 in [0 ,1e08 1;
contractor_list L
P=ExI;
E=(R1+R2) *I;
Ul=R1x*I;
U2=R2*1I;
E=U1+U2;

end



contractor C
compose (L) ;

end

contractor epsilon
precision(1);

end



Quimper returns

[24; 26] x [1.846;2.307] X [2.584; 3.355]
x [4.769; 5.417] x [10; 11] x [14; 16] x [124;130],

| D= [24; 26] : R]_ - [1.846; 2.307] ,
Ry € [2.584;3.355], I € [4.769;5.417],
Uy € [10;11], U, € [14;16],

P € [124;130] .



Example 2

Y~
~

A 4




It is known that

U, e[6,7]V, r € [7,8]Q, Up € [6,6.2]V
R € [100,110]Q, E € [18,20]V, I. € [0, c0]A
I €] —00,00[A, I €] — 00, 0[A, Re € [50,60]€2.

The constraints are

Zener diode I, = max(0, @Q)
Ohm rule U, = Rcle,
Currentrule I = 1.+ I,,

Voltage rule E = RI + U,.



Quimper contracts the domains into:

U, € [6,007;6,518],r € [7, 8]Q,

Up € [6,6.2]V, R € [100, 110]%,

E € [18,20]V, I, € [0.,0.398] A

I €[0.11;0.14]A, I. € [0.1;0,13]A,
R¢ € [50, 60]2



Exercise.

A robot measures its own distance to three marks. The
distances and the coordinates of the marks are as follows

mark XLy Y; dz'
1 [ 0] 0 [[22,23]
2 |10] 10 |[10,11]
3 30| —30][53,54]

Build the contractor associated with the pose of the
robot.



11 Proving robust stability



A CSP is infallible if any arbitrary instantiation of the
variables is a solution.



Consider the CSP

V = {z,y}
D = {[z].ly]}
C = { f(z,y) <0, g(z,y) <0}.
The CSP is infallible if
vz € [z],Vy € [y], f(z,y) <0 and g(z,y) <0,

< {(@,y) €] x[y] | f(z,y) >0org(z,y) >0} =0
& {(z,y) € [z] x [y] | max(f(z,y),9(z,y)) >0} = 0.



Consider a motorbike with a speed of 1m/s.
Angle of the handlebars: 6.

Rolling angle: ¢

Wanted rolling angle: ¢4

Measured rolling angle: ¢,,.

$als) | + az +ags | O(s) 1 ¢(s)

— Ts+1 s2 —

(1+2$+/<:52) «




The input-output relation of the closed-loop system is :
o + 3S
52 — al) (7s 4+ 1) 4+ (ao + a3s) (1 +2s + ksz)

Its characteristic polynomial is thus

Pl

Hs) =
(

P(s) = (32 — 041) (7s 4+ 1) 4+ (ao + a3s) (1 + 25 + k32>
= a3s3 + CL282 + ai1s + ap,
with

a3 = T + azk a> = ask +2a3 + 1
a; = a3z — 17T + 200 ag = —a1 + ao.



The Routh table is :

a3z ai
az ag
apa1—azag

an O
ag 0

azaj—asag
a2

The closed-loop system is stable if a3, a»,
and ag have the same sign.



Assume that it i1s known that

a1 €[8.8;9.2] ap € [2.8;3.2]
a3z €[0.8;1.2] T €[1.8;2.2]
ke [-3.2,-2.8].

The system is robustly stable if,

VOJ]_ < [Oé]_] ,VOQ € [052] ,VO&3 < [043] 7VT < [T] 7Vk S [k] '

ana1—as3a .
az, ap, —2 1a2 320 and ag have the same sign.




Now, we have the equivalence

b1, by, bz and bg have the same sign
< max(min (b1, bp, b3, bg) , — max (b1, b2, b3, b)) > 0

The robust stability condition amounts to proving that

Jay € [ai],3az € [ag], a3 € [ag], 37 € [1], 3k € [£],
aza1—azag ao)
&2 Y Y

- max(a3, a, a2a1a_2a3a07 CLO) ) <0

max( min (a3, as,

Is false,. ..



has

that the CSP

{ag,a1,a2,a3,a1, a0, 3,7, k},

{[ao] o] [e2] s [as] s [e2] s [as] s [ 7] [k]}

a1 = a3z — 1T + 200,
ag = —o1 + a9 ;
M1 = min (a3, an,

a
a2a1—a3zag a
an ?

mo> — max (a3, an,

max (ml, —m2) < 0.

\

no solution.

(a3 =T+ azk; ap = ask +2az3+ 1 ;

a2a1—a3zag .
a);

0)




This is easily proven by Quimper

variables

alphal in [8.8,9.2];
alpha2 in [2.8,3.2];
alpha3 in [0.8,1.2];
tau in [1.8,2.2];

k in [-3.2,-2.8];

r in [-1e08,0];

bl in [-1e08,0];

b2 in [0,-1e08];
a3,a2,al,al,b;



contractor_list L

a3=tautalpha3x*k;
a2=alpha2xk+2*alpha3+1;
al=alpha3-alphal*tau+2*alpha?2;
a0=alpha2-alphal;

bl=min(a3,a2, (a2*xal-a3*al)/a2,a0);
b2=max(a3,a2, (a2*al-a3*al)/a2,a0);
end

contractor C

compose (L)
end



12 Estimation problem



ym(P,t) = 20 exp(—p1t) — 8 exp(—pat).

— =
o [\l
T T

I N e R
e L S E—

jpooe

0 5] 10 15 20 25 30




i [£:] [y:]
1][-0.25,1.75] | [2.7,12.1]
2| [0.5,2.5] [1.04,7.14]
3| [1.25,3.25] | [-0.13,3.61]
4 2, 4] [~0.95, 1.15]
5 [5, 7] [—4.85, —0.29]
6| [8,10] | [-5.06, —0.36]
71 [12,14] | [-4.1, 0.04]
8| [16,18 [—3.16,0.3]
0| [20,22 [~2.5,0.51]
10| [24,26] [2,0.67]




The feasible set is

S = N {peR’|3tet]lymlp.ti) € luil}-
ic{1,...,10} S g

The complementary set is

S= U {peR|velllympt) ¢ il

ic{1,...,10} ¥
1




Define two contractors C; (p,t;) and C; (p,t;) such
that

{ set (C; (p, ) = {(p.t:), ym(p,t;) € [y}

We have

set (CZU [ti]> = 5
set <C_O[ti]) = S;.

7



Define two contractors

ce) = N ¢l
Cip) = U GM(plt)

We have set(C) =S et set(C_) =S.



constant
Y[10] = [[2.7,12.1]; [1.04,7.14];
[-0.13,3.61];[-0.95,1.15];
[-4.85,-0.29];[-5.06,-0.36];
[-4.1,-0.04]; [-3.16,0.3];
[-2.5,0.51]; [-2,0.67]];
variables
pl in [0,1.2]; p2 in [0,0.5];
parameters
t[10] in [[-0.25,1.75]; [0.5,2.5]; [1.25,3.25];
[2,4]; [5,7]; [8,10]; [12,14];
[16,18]; [20,22]; [24,26]];
function z=f(pl,p2,t)
z=20*exp (-pl*t) -8*exp(-p2*t) ;

end



contractor outer
inter (i=1:10,
proj_union(f(pl,p2,t[i]) in Y[il),t[il);
end
end
contractor inner
union (i=1:10,
proj_inter (f(pl,p2,t[i]) notin Y[il),t[il);
end
end
contractor epsilon
precision(0.01)

en






