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Chapter 4: Robust parameter
estimation
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Exercise. A robot measures its own distance to three
marks. The distances and the coordinates of the marks

are as follows

mark ZT; Y; di
1 [ 0] 0 |[22,23]
2 [10] 10 |[10,11]
3 30| —30][53,54]

1) Define the set X al all feasible positions.
2) Build the contractor associated with X.

2) Build the contractor associated with X.



Solution.

x= N (@) | @)+ @-wPeli.d]}

i€{1,2,3} X;
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n = U X

ie{1,2,3} i€{1,2,3}

U {(w,y) | (z— @)’ + (y —wi)’ € [_OO’ d'i_]
i€{1,2,3}
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1 Relaxed intersection



Dealing with outliers

C=(C1NC)U(CoNC3)U(C1NC3)



Consider m sets X1,...,X;, of R™. The g-relaxed

{q}
intersection ﬂ X; is the set of all x € R which belong

to all X;'s, except g at most.






Exercise. Compute
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Solution. we have




Exercise. Consider for instance the 8 intervals Xy
[174]1 XZ — [274]7X3 — [277]7X4: [679]7X5 —
[3,4], X6 = [3,7]. The q relaxed intersections are

{0} {1} {2} {3}

NX =2 NX=72 NX=72 NX=7
{4} {5} {6}

NX; =72 OX=7 NX=7




Exercise. Consider for instance the 8 intervals Xy
[174]1 XZ — [274]7X3 — [277]7X4: [679]7X5 —
[3,4], X6 = [3,7]. The q relaxed intersections are

{0} {1} {2} {3}
X, =0 NX=[34 NX=[34 X=][2
{4} {5} {6}




In the case where the X;'s are intervals, the relaxed in-
tersection can be computed efficiently with a complexity
of n logn.



Take all bounds of all intervals with their brackets.

Bounds [ 14|24 |2|716|9[3/4]|3

Brackets | [ | ] [[ [ [[ ][0T ]L]]]I




Sort the columns with respect the bounds:

Bounds |1 (22334 |4|4]|6

Brackets | [ | [ [[ [[[[ ][] []]I




Scan tfrom left to right, counting +1 for '[' and —1 for

T

Bounds |1 (22 |3 (3|4 4|4 |6|7|7|9
Brackets

Sum 1/2/3/4/5/4(3(2]3[2|1]0
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Read the g-intersections
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0 1 2 3 4 5 6 7 8 9 10

Set-membership function associated with the 6 intervals



Computing the g relaxed intersection of m boxes is
tractable.



2 4 6 &8 10 12

The black box is the 2-intersection of 9 boxes



Formal definition

{q}
Relaxed intersection ﬂ X; = U Xoy N+ NXy
{01, 0n—q}
{aq}
Relaxed union UXi = ﬂ Xo U UXg

{01, 0n—q}



Remark



Dual rule



Jordan rules




Proof. We have

{q}
X

U

{01, 0n—q}

A

{01,,0n—q}

Xo.lﬁ...

Xglu...

M XUn—q - ﬂ
{01, s0n—q}
{q}

U Xo'n_q = U X;.




Relaxation of contractors

We define the g-relaxed intersection between m con-

tractors

{q} {a}
C = M Ci| eV[x]eIR",C([x])=()Ci([x]).

ie{l,....m}
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2 Solving a relaxed set of equali-

ties

Solve

[ po—p?
ps+pi—1 =
P2 — p1

[ 2p2 +p1 — 2

N\

o O O o

with ¢ = 1.
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3 Probabilistic motivation
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Consider the error model

e =y —ib (pz
f(y,p)

y; is an inlier if e; € [e;] and an outlier otherwise. We

assume that
Vi, Pr(e; € [e]) ==

and that all e;'s are independent.



Equivalently,

f1(y,p) € [e1] with a probability 7

fm (¥, P) € [em] with a probability =



Having £ inliers follows a binomial distribution

ml

e k)!wk. (1—m)"




The probability of having more than g outliers is thus

—g—1

m
def m! _
0 ! !

Example. If m = 1000, ¢ = 900, 7 = 0.2, we get
v(q,m, ) = 7.04 X 10~10. Thus having more than
900 outliers can be seen as a rare event.



4 Robust bounded error estima-

tion



{q}
S = ﬂ {peR" | fi(p) € [uil}



We build the following contractors

C; : fi(p) € [y

Ci : fi(p) ¢ [wl
{aq}

c = NG
B {q} {a  {n—¢-1}
c = Na=UG= N G

Then we call a paver with C and C.



5 Testcase



Generation of data. m = 500 data

y; = p1sin (pot;) + e;, with a probability 0.2.

y; = r1exp (rot;) + e;, with a probability 0.2.

Y, — 1y
where t; = 0.02.4, i € {1,500}, e; : U ([~0.1,0.1])
and n; : N'(2,3). We took p* = (2,2)" and r* =
(4,—0.4)".



Estimation. We only know that
y; = p1sin (pot;) + e;, with a probability 0.2.
We want
Pr (p* e ]@) > 0.95

Since v (414,500,0.2) = 0.0468 and v (413,500,0.2) =
0.12, we should assume g = 414 outliers.
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6 Shape detection



Sauc'isse robot swimming inside a pool



A spheric buoy seen by Sauc'isse
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An implicit parameter set estimation problem amounts
to characterizing

P= () {peR"3yelyl().f(p,y)=0}
ie{1,...,m} B,

where p is the parameter vector, [y](%) is the ith mea-
surement box and f is the model function.



Consider the shape function f (p,y), where y € R?2
corresponds to a pixel and p is the shape vector.

Example (circle):

f(P,y) = (y1 — p1)* + (v2 — p2)* — 05
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The shape associated with p is
def

S(p) < {y e R*f(p,y) = 0.

Consider a set of (small) boxes in the image

Y =Alyl(), ..., [yl(m)}.

Each box is assumed to intersect the shape we want to
extract.



In our buoy example,
e ) corresponds to edge pixel boxes.

o f(P,y) = (y1—p1)°+ (y2 — p2)* — p3.

e p = (p1,p2, p3)T where p1, po are the coordinates
of the center of the circle and p3 its radius.



Now, in our shape extraction problem, a lot of [y](%)
are outlier.



The g relaxed feasible set is

(@ der R n - _
P = () {peR%3ye€[yl(i).f(p,y) =0}.
ie{l,....m}



An optimal contractor for the set
{P € [pl, 3y € [y], (y1 — p1)° + (y2 — p2)° — p§ = o} ,

B(in: [yl, [p]. out: [p])

d1] == [y1] — [p1];
dp] 1= y2 — [pz]
c1] : d1 ,

co] = [do]?;

3] == [p3]?;

o

=10, 0] N (fea] + [ea] — [es])
c1] N ([e] — [e2] + [e3]);
c2] N ([e] — [e1] + [e3]);
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c3] = [e3] N ([ea] + [e2] — [e]) ;
p3] N \E :
11 [dp] :=[do] N \E
12 [di] = [da] N y/[eal;
13 [p2] := [p2] N ([y2] — [d2]);
14 [p1] :== [p1l N ([y1] — [d4]) ;




q = 0.70 m (i.e. 70% of the data can be outlier)



q = 0.80 m (i.e. 80% of the data can be outlier)



q = 0.81 m (i.e. 81% of the data can be outlier)



O'Gorman and Clowes (1976), in the context of the
Hough transform (1972):

the local gradient of the image intensity is orthogonal

to the edge.






Now, y = (y1, y2, y3)T where y3 is the direction of the
gradient.



The gradient condition is

of ({gp,y)
y
det | 5/(p.y)

0y

cos (y3)
sin (y3)



For f(p,y) = (y1 — p1)2 + (y2 — p2)2 o p%’ we get

_ (y1 — p1)° + (v2 — p2)° — P} )
f(p,y) ( (y1 — p1)sin (y3) — (y2 — p2) COS(%) |



New outliers: the edge points that are on the shape,
but that do not satisfy the gradient condition.

The computing time is now 2 seconds instead of 15

seconds.



The Hough transform is defined by

n(p) =card{i € {1,...,m},3Jy € [y](¢),f(p,y) = 0}.
Hough method keeps all p such that n (p) > m — gq.

Instead, our approach solves 1 (p) > m — q.



7 Static localization

Robot with 24 ultrasonic telemeters
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After set inversion
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