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1 Path planning

















2 Counting connected components

(Collaboration with N. Delanoue and B. Cottenceau)



Figure 1:

The point v is a star for S ⊂ Rn if ∀x ∈ S, ∀α ∈ [0, 1],

αv + (1− α)x ∈ S. .



v1 is a star for S whereas v2 is not



The set S ⊂ Rn is star-shaped is there exists v such

that v is a star for S.



Theorem: Define the set

S
def
= {x ∈ [x]|f(x) ≤ 0} (1)

where f is differentiable. We have the following impli-

cation
�
x ∈ [x] | f(x) = 0,

df

dx
(x).(x− v) ≤ 0

�
= ∅ ⇒ v is a star

(2)



If v is a star for S1 and a star for S2 then it is a star

for S1 ∩ S2 and for S1 ∪ S2.



Consider a subpaving P = {[p1], [p2], . . .} covering S.

The relation R defined by

[p]R[q]⇔ S ∩ [p] ∩ [q] �= ∅

is star-spangled graph of the set S if

∀[p] ∈ P,S∩[p] is star-shaped.

For instance, a star-spangled graph for the set
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For each [p] of the paving P, a common star located

at the corner of [p] (represented in red) has been

found for all three constraints.



Theorem: The number of connected components of

the star-spangled graph of S is equal to that of S.

An extension of this approach has also been developed

with N. Delanoue to compute a triangulation homeo-

morphic to S.



3 Capture basin

(With M. Lhommeau and L. Hardouin)

�
ẋ (t) = f(x (t) ,u (t)),
x(0) = x0

u (t) ∈ [u] ∈ Rm is the control,x (t) ∈ Rn is the

state vector.

The solution of this ODE is denoted by ϕ (t ;x0,u(.)) .



Define two compact sets T andK such that T ⊂ K ⊂

Rn. T is the target and K is the viable set. Define the

capture basin C as

C = {x0 ∈ K | ∃t > 0,∃u (.) ,u ([0, t]) ⊂ [u], .
ϕ(t,x0,u (.)) ∈ T and ϕ ([0, t] ,x0,u (.)) ⊂ K}



Notation. If [t] ∈ IR, [x0] ∈ IR
n, [u] ∈ IRm

Φ([t] , [x0] , [u])
def
= {ϕ (t,x0,u (.)) , t ∈ [t] ,x0 ∈ [x0] ,u ([0,

Note that when [t] , [x0] , [u] are punctual, Φ(t,x0,u)

is a point of Rn which corresponds to the integration

of the ODE with a constant control u.



We have

(i) x0 ∈ T⇒ x0 ∈ C
(ii) x0 /∈ K⇒ x0 /∈ C
(iii) (u ∈ [u],Φ(t,x0,u) ∈ C,Φ([0, t],x0,u) ⊂ K)

⇒ x0 ∈ C
(iv) (Φ(t;x0, [u]) ∩C = ∅, Φ([0, t],x0, [u]) ∩T = ∅)

⇒ x0 /∈ C



Thus

(i) [x0] ⊂ T⇒ [x0] ⊂ C
(ii) [x0] ∩K = ∅ ⇒ [x0] ∩C = ∅
(iii) (u ∈ [u],Φ(t, [x0] ,u) ⊂ C,Φ([0, t], [x0] ,u) ⊂ K)

⇒ [x0] ⊂ C
(iv) (Φ(t, [x0] , [u]) ∩C = ∅, Φ([0, t], [x0] , [u]) ∩T = ∅)

⇒ [x0] ∩C = ∅



Algorithm (in: K,T; out: C−,C+)
1 C− := ∅;C+ is a union of boxes covering K;
2 repeat
3 take a box [x0] in C

+ (C+ has not changed)
4 if [x0] ⊂ T then C− := C− ∪ [x0] ; goto 2;
5 if [x0] ∩K = ∅, C+ := C+\ [x0]; goto 2;
6 take t ∈ R+; and u ∈ [u];
7 if Φ(t, [x0] ,u) ⊂ C

− and Φ([0, t], [x0] ,u) ⊂ K
then C− := C− ∪ [x0] ; goto 2;

8 if Φ(t, [x0] , [u]) ∩C
+ = ∅ and Φ([0, t], [x0] , [u]) ∩T

then C+ := C+\ [x0]; goto 2;
9 until no more change can be observed



After completion of the algorithm, we have

C− ⊂ C ⊂ C+.



Consider a rolling ball described by
�
ẋ1 = x2
ẋ2 = − sin (θ(x1))− x2 + u

(3)

where x1 is the curve position of the ball and x2 is its

speed. Moreover [u] := [−2, 2] ,K = [0, 12]×[−6, 6],

T = [3.5, 4.5]× [−1, 1] and

θ(x) = sin(1.1.x)−
1

2
sin(x)




