Interval robotics

Chapter 8: Intervals and graphs

Luc Jaulin,
ENSTA-Bretagne, Brest, France



1 Path planning
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Initial configuration: 7 = (0 0)" Goal configuration: 7= (17 0)"
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2 Counting connected components

(Collaboration with N. Delanoue and B. Cottenceau)
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Figure 1:

The point visa star for S C R"if vx € S, Va € [0, 1],
av+(l—a)x €8S..



V1 is a star for S whereas vs is not




The set S C R" is star-shaped is there exists v such
that v is a star for S.



Theorem: Define the set

s ¥ {x € [x]| f(x) < 0} (1)

where f is differentiable. We have the following impli-
cation

{x € [x] | f(x) =0, %(X)(x —v) < O} = () = v is a star
(2)




If v is a star for S7 and a star for Sy then it is a star
for S1 NSy and for S1 U S».



Consider a subpaving P = {[p1], [P>], . . -} covering S.
The relation R defined by

[pPIR[a] & Sn[p]Niq] # 0
is star-spangled graph of the set S if

V[p] € P, SN[p] is star-shaped.

For instance, a star-spangled graph for the set

( 22 + 4y2 — 16 ‘
def 2 : 2 _ 3
S = < (x,y) € R | 2sinez —cosy + Y- — 5 <0,
2
\ (@32 -4y -8’+5 )



For each [p] of the paving P, a common star located
at the corner of [p] (represented in red) has been
found for all three constraints.



Theorem: The number of connected components of
the star-spangled graph of S is equal to that of S.

An extension of this approach has also been developed
with N. Delanoue to compute a triangulation homeo-

morphic to S.




3 Capture basin

(With M. Lhommeau and L. Hardouin)

x(0) = xo
u(t) € [u] € R™ is the control,x(t) € R™ is the
state vector.

{X(t) = f(x(t),u(t)),

The solution of this ODE is denoted by ¢ (% ; xg, u(.)) .



Define two compact sets T and K such that T C K C
R™. T is the target and K is the viable set. Define the
capture basin C as

C={xgeK |3t >0,7Fu(.),u([0,t]) C [u], .
o(t,xg,u(.)) € T and ¢ ([0,t],xg,u(.)) C K}



Notation. If [¢{] € IR, [xg] € IR", [u] € TR™

® ([1], [xo] , [u]) & {e (£, x0,u(.)), t € [t], %0 € [x0],u ([0

Note that when [t], [xg] , [u] are punctual, ® (¢, xg, 1)
is a point of R™ which corresponds to the integration
of the ODE with a constant control u.



We have

(i) x0eT=x9e€C

(i) xg¢ K=x9¢ C

(iii) (u € [u], ®(t,xg,u) € C, d([0, 1], %0, u) C K)
= xg € C

(iv) (®(t:x0,[u]) N C =0, &([0,1], %0, [u]) " T = 0)
= X0 ¢ C



Thus

(i) [xo] CT=[x0] CC

(i) [xo]"NK=0=[xg] NC =0

(i) (u € [u], b(t, [xo] ,u) C C, &([0,1], [x] ,u) C K)
= [xq] C C

(iv) (&(t [xo], [u]) N C = 0., &([0,4], [xo] ,[u]) N'T = )
= [xg] NC =0



Algorithm (in: K, T; out: C—,C™)

C~ := (0; C™ is a union of boxes covering K;
repeat
take a box [xg] in CT (C™ has not changed)
if [xg] C T then C™ := C~ U [xg] ; goto 2;
if [xg] N K =0, CT := C™\ [xg]; goto 2;
take t € RT; and u € [u];
if ®(¢t, [xg],u) C C~ and ®([0,¢],[x0],u) C K
then C~ := C~ U [xg] ; goto 2;
8 if ®(t, [xo], [u]) N CT =0 and &([0,¢], [xq] , [u]) N T
then CT := C™\ [xq]; goto 2;
9 until no more change can be observed

~NOoO Ok~ iD=




After completion of the algorithm, we have

C - cCccC.



Consider a rolling ball described by

1 o (3)
o = —sin (0(331)) — T2+ U
where x7 is the curve position of the ball and x5 is its
speed. Moreover [u] :=[-2,2], K = [0, 12] x[—6, 6],
T = [3.5,4.5] x [-1, 1] and

6(x) =sin(l.1.z) — %sin(a:)
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