
Interval robotics

Chapter 3: Contractors
Luc Jaulin,

ENSTA-Bretagne, Brest, France

To characterize X ⊂ Rn, bisection algorithms bisect all

boxes in all directions and become inefficient. Interval

methods can still be useful if

• the solution set X is small (optimization problem,

solving equations),

• contraction procedures are used as much as possi-

ble,

• bisections are used only as a last resort.

1 Definition

The operator CX : IRn → IR
n is a contractor for X ⊂

Rn if

∀[x] ∈ IRn,

�
CX([x]) ⊂ [x] (contractance),
CX([x]) ∩ X = [x] ∩ X (completeness).

The operator C : IRn → IR
n is a contractor for the

equation f (x) = 0, if

∀[x] ∈ IRn,

�
C([x]) ⊂ [x]
x ∈ [x] et f (x) = 0⇒ x ∈ C([x])

CX is monotonic if [x] ⊂ [y]⇒ CX([x]) ⊂ CX([y])
CX is minimal if ∀[x] ∈ IRn, CX([x]) = [[x] ∩ X]
CX is thin if ∀x ∈ Rn, CX({x}) = {x} ∩ X
CX is idempotent if ∀[x] ∈ IRn, CX (CX([x])) = CX([x]).

intersection (C1 ∩ C2) ([x]) def
= C1 ([x]) ∩ C2 ([x])

union (C1 ∪ C2) ([x]) def
= [C1 ([x]) ∪ C2 ([x])]

composition (C1 ◦ C2) ([x]) def
= C1 (C2 ([x]))

répétition C∞ def
= C ◦ C ◦ C ◦ . . .

CX is said to be convergent if

[x](k)→ x ⇒ CX([x] (k))→ {x} ∩ X.

2 Projection of constraints

Let x, y, z be 3 variables such that

x ∈ [−∞, 5],

y ∈ [−∞, 4],

z ∈ [6,∞],
z = x+ y.

The values < 2 for x, < 1 for y and > 9 for z are

inconsistent.

To project a constraint (here, z = x + y), is to com-

pute the smallest intervals which contains all consistent

values.

For our example, this amounts to project onto x, y and

z the set

S = {(x, y, z) ∈ [−∞, 5]× [−∞, 4]× [6,∞] | z = x+ y} .

3 Numerical method for projec-

tion

Since x ∈ [−∞, 5], y ∈ [−∞, 4], z ∈ [6,∞] and z =

x+ y, we have

z = x+ y ⇒ z ∈ [6,∞] ∩ ([−∞, 5] + [−∞, 4])
= [6,∞] ∩ [−∞, 9] = [6, 9].

x = z − y ⇒ x ∈ [−∞, 5] ∩ ([6,∞]− [−∞, 4])
= [−∞, 5] ∩ [2,∞] = [2, 5].

y = z − x⇒ y ∈ [−∞, 4] ∩ ([6,∞]− [−∞, 5])
= [−∞, 4] ∩ [1,∞] = [1, 4].

The contractor associated with z = x+ y is.

Algorithm pplus(inout: [z], [x], [y])
1 [z] := [z] ∩ ([x] + [y]) ;
2 [x] := [x] ∩ ([z]− [y]) ;
3 [y] := [y] ∩ ([z]− [x]) .

The projection procedure developed for plus can be ex-

tended to other ternary constraints such as mult: z =

x ∗ y, or equivalently

mult �
�
(x, y, z) ∈ R3 | z = x ∗ y

�
.

The resulting projection procedure becomes

Algorithm pmult(inout: [z], [x], [y])
1 [z] := [z] ∩ ([x] ∗ [y]) ;
2 [x] := [x] ∩ ([z] ∗ 1/[y]) ;
3 [y] := [y] ∩ ([z] ∗ 1/[x]) .

Consider the binary constraint

exp � {(x, y) ∈ Rn|y = exp (x)} .
The associated contractor is

Algorithm pexp(inout: [y], [x])
1 [y] := [y] ∩ exp ([x]) ;
2 [x] := [x] ∩ log ([y]) .

Any constraint for which such a projection procedure is

available will be called a primitive constraint.

Example. Consider the primitive equation:

x2 = sinx1.

Forward contraction

Backward contraction

Forward-backward contractor (HC4 revise)

For the equation

(x1 + x2) · x3 ∈ [1, 2] ,
we have the following contractor:

algorithm C (inout [x1] , [x2] , [x3])
[a] = [x1] + [x2] // a = x1 + x2
[b] = [a] · [x3] // b = a · x3
[b] = [b] ∩ [1, 2] // b ∈ [1, 2]
[x3] = [x3] ∩ [b]

[a]
// x3 =

b
a

[a] = [a] ∩ [b]
[x3]

// a = b
x3

[x1] = [x1] ∩ [a]− [x2] // x1 = a− x2
[x2] = [x2] ∩ [a]− [x1] // x2 = a− x1

Properties

(C∞1 ∩ C∞2)∞ = (C1 ∩ C2)∞

(C1 ∩ (C2 ∪ C3)) ⊃ (C1 ∩ C2) ∪ (C1 ∩ C3)�
C1 minimal
C2 minimal

⇒ C1 ∪ C2 minimal

Contractor on images

The robot with coordinates (x1, x2) is in the water.

4 Propagation

A CSP (Constraint Satisfaction Problem) is composed

of

1) a set of variables V = {x1, . . . , xn} ,
2) a set of constraints C = {c1, . . . , cm} and

3) a set of interval domains {[x1], . . . , [xn]}.

Principle of propagation techniques: contract [x] =

[x1]× · · · × [xn] as follows:

(((((([x]⊓c1) ⊓ c2) ⊓ . . .) ⊓ cm)⊓c1)⊓c2) . . . ,
until a steady box is reached.

Example. Consider the system of two equations.

y = x2

y =
√
x.

We can build two contractors

C1 :
�
[y] = [y] ∩ [x]2
[x] = [x] ∩

�
[y]

associated to y = x2

C2 :
�
[y] = [y] ∩

�
[x]

[x] = [x] ∩ [y]2
associated to y =

√
x

5 Local consistency

If C∗
S1

and C∗
S2

are two minimal contractors for S1 and

S2 then

CS = C∗S1 ◦ C
∗
S2
◦ C∗

S1
◦ C∗

S2
◦ . . .

is a contractor for S = S1 ∩ S2, but it is not always

optimal. This is the local consistency effect.

Exemple. Consider the system
�

y = 3 sin(x)
y = x

x ∈ R, y ∈ R.

6 Decomposition into primitive con-

straints

x+ sin(xy) ≤ 0,
x ∈ [−1, 1], y ∈ [−1, 1]

can be decomposed into





a = xy
b = sin(a)
c = x+ b

,
x ∈ [−1, 1] a ∈ [−∞,∞]
y ∈ [−1, 1] b ∈ [−∞,∞]

c ∈ [−∞, 0]

7 Set and contractors

A contractor represents a set of Rn. The set associated

with a contractor C is

set (C) = {x ∈ Rn, C({x}) = {x}} .
Its domain is

dom (C) = {x ∈ Rn, C({x}) = ∅} .

For instance, the set associated with the contractor

C1





[x1]
[x2]
[x3]






def
=





[x1] ∩ ([x3]− [x2])
[x2] ∩ ([x3]− [x1])
[x3] ∩ ([x1] + [x2])






is

set (C1) = {(x1, x2, x3) , x3 = x1 + x2} .
A contractor is also one way to represent one equation

x3 = x1 + x2.

8 Operations on contractors

intersection (C1 ∩ C2) ([x]) def
= C1 ([x]) ∩ C2 ([x])

union (C1 ∪ C2) ([x]) def
= [C1 ([x]) ∪ C2 ([x])]

composition (C1 ◦ C2) ([x]) def
= C1 (C2 ([x]))

repetition C∞ def
= C ◦ C ◦ C ◦ . . .

repeat intersection C1 ⊓ C2 = (C1 ∩ C2)∞
repeat union C1 ⊔ C2 = (C1 ∪ C2)∞

Consider the contractor C ([x], [y]), where [x] ∈ Rn, [y] ∈
Rp. We define the contractor

C∪[y] ([x]) =





�

y∈[y]
πx (C ([x],y))




 (projected union)

and also the contractor

C∩[y] ([x]) =
�

y∈[y]
πx (C ([x],y)) , (projected intersectio

We have

set
�
C∪[y]

�
= {x,∃y ∈ [y], (x,y) ∈ set (C)}

set
�
C∩[y]

�
= {x,∀y ∈ [y], (x,y) ∈ set (C)} .

9 QUIMPER (or IBEX 2.0)

The collection of contractors {C1, . . . , Cm} is comple-

mentary if

set (C1) ∩ · · · ∩ set (Cm) = ∅.

Quimper is a high-level language for QUick Interval

Modeling and Programming in a bounded-ERror con-

text.

Quimper is an interpreted language for set computation.

A Quimper program is a set of complementary contrac-

tors.

Quimper returns m subpavings, where m is the number

of contractors

It is available at

http://ibex-lib.org/

10 Circuits

Example 1

Domains

E ∈ [23V, 26V]; I ∈ [4A, 8A];

U1 ∈ [10V, 11V];U2 ∈ [14V, 17V];
P ∈ [124W, 130W];R1 ∈ [0,∞[and R2 ∈ [0,∞[.
Constraints

(i) P = EI, (ii) E = (R1 +R2) I, (iii) U1 = R1I,
(iv) U2 = R2I, (v) E = U1 + U2.

Solution set

S =











E
R1
R2
I
U1
U2
P






∈






[23, 26]
[0,∞[
[0,∞[
[4, 8]
[10, 11]
[14, 17]
[124, 130];






,






P = EI
E = (R1 +R2) I
U1 = R1I
U2 = R2I
E = U1 + U2






variables

E in [23 ,26];

I in [4,8];

U1 in [10,11];

U2 in [14 ,17];

P in [124,130];

R1 in [0 ,1e08];

R2 in [0 ,1e08];

contractor_list L

P=E*I;

E=(R1+R2)*I;

U1=R1*I;

U2=R2*I;

E=U1+U2;

end

contractor C

compose(L);

end

contractor epsilon

precision(1);

end

Quimper returns

[24; 26]× [1.846; 2.307]× [2.584; 3.355]
× [4.769; 5.417]× [10; 11]× [14; 16]× [124; 130] ,

i.e.,

E ∈ [24; 26] , R1 ∈ [1.846; 2.307] ,
R2 ∈ [2.584; 3.355], I ∈ [4.769; 5.417] ,
U1 ∈ [10; 11] , U2 ∈ [14; 16] ,
P ∈ [124; 130] .

Example 2

It is known that

Uz ∈ [6, 7]V, r ∈ [7, 8]Ω, U0 ∈ [6, 6.2]V
R ∈ [100, 110]Ω, E ∈ [18, 20]V, Iz ∈ [0,∞]A
I ∈]−∞,∞[A, Ic ∈]−∞,∞[A,Rc ∈ [50, 60]Ω.

The constraints are

Zener diode Iz = max(0,
Uz−U0

r),
Ohm rule Uz = RcIc,
Current rule I = Ic + Iz,
Voltage rule E = RI + Uz.

Quimper contracts the domains into:

Uz ∈ [6, 007; 6, 518], r ∈ [7, 8]Ω,
U0 ∈ [6, 6.2]V,R ∈ [100, 110]Ω,
E ∈ [18, 20]V, Iz ∈ [0., 0.398]A
I ∈ [0.11; 0.14]A, Ic ∈ [0.1; 0, 13]A,
Rc ∈ [50, 60]Ω

Exercise.

A robot measures its own distance to three marks. The

distances and the coordinates of the marks are as follows

mark xi yi di
1 0 0 [22, 23]
2 10 10 [10, 11]
3 30 −30 [53, 54]

Build the contractor associated with the pose of the

robot.

11 Proving robust stability

A CSP is infallible if any arbitrary instantiation of the

variables is a solution.

Consider the CSP

V = {x, y}
D = {[x],[y]}
C = { f(x, y) ≤ 0, g(x, y) ≤ 0} .

The CSP is infallible if

∀x ∈ [x],∀y ∈ [y], f(x, y) ≤ 0 and g(x, y) ≤ 0,
⇔ {(x, y) ∈ [x]× [y] | f(x, y) > 0 or g(x, y) > 0} = ∅
⇔ {(x, y) ∈ [x]× [y] | max (f(x, y), g(x, y)) > 0} = ∅.

Consider a motorbike with a speed of 1m/s.

Angle of the handlebars: θ.

Rolling angle: φ

Wanted rolling angle: φd
Measured rolling angle: φm.

The input-output relation of the closed-loop system is :

φ(s) =
α2 + α3s�

s2 − α1
�
(τs+ 1) + (α2 + α3s)

�
1 + 2s+ ks2

�φd(

Its characteristic polynomial is thus

P (s) =
�
s2 − α1

�
(τs+ 1) + (α2 + α3s)

�
1 + 2s+ ks2

�

= a3s
3 + a2s

2 + a1s+ a0,

with

a3 = τ + α3k a2 = α2k + 2α3 + 1
a1 = α3 − α1τ + 2α2 a0 = −α1 + α2.

The Routh table is :

a3 a1
a2 a0
a2a1−a3a0

a2
0

a0 0

The closed-loop system is stable if a3, a2,
a2a1−a3a0

a2
and a0 have the same sign.

Assume that it is known that

α1 ∈ [8.8; 9.2] α2 ∈ [2.8; 3.2]
α3 ∈ [0.8; 1.2] τ ∈ [1.8; 2.2]

k ∈ [−3.2;−2.8].
The system is robustly stable if,

∀α1 ∈ [α1] ,∀α2 ∈ [α2] ,∀α3 ∈ [α3] ,∀τ ∈ [τ] ,∀k ∈ [k] ,
a3, a2,

a2a1−a3a0
a2

and a0 have the same sign.

Now, we have the equivalence

b1, b2, b3 and b4 have the same sign
⇔ max (min (b1, b2, b3, b4) ,−max (b1, b2, b3, b4)) > 0

The robust stability condition amounts to proving that

∃α1 ∈ [α1] ,∃α2 ∈ [α2] ,∃α3 ∈ [α3] ,∃τ ∈ [τ] ,∃k ∈ [k] ,
max(min

�
a3, a2,

a2a1−a3a0
a2

, a0
�
,

−max(a3, a2, a2a1−a3a0
a2

, a0)) ≤ 0
is false,. . .

i.e., that the CSP

V = {a0, a1, a2, a3, α1, α2, α3, τ , k},
D = {[α0] , [α1] , [α2] , [α3] , [α2] , [α3] , [τ] , [k]} ,

C =






a3 = τ + α3k ; a2 = α2k + 2α3 + 1 ;
a1 = α3 − α1τ + 2α2,
a0 = −α1 + α2 ;

m1 = min
�
a3, a2,

a2a1−a3a0
a2

, a0
�
;

m2 = max
�
a3, a2,

a2a1−a3a0
a2

, a0
�

max (m1,−m2) ≤ 0.






has no solution.

This is easily proven by Quimper

variables

alpha1 in [8.8,9.2];

alpha2 in [2.8,3.2];

alpha3 in [0.8,1.2];

tau in [1.8,2.2];

k in [-3.2,-2.8];

r in [-1e08,0];

b1 in [-1e08,0];

b2 in [0,-1e08];

a3,a2,a1,a0,b;

contractor_list L

a3=tau+alpha3*k;

a2=alpha2*k+2*alpha3+1;

a1=alpha3-alpha1*tau+2*alpha2;

a0=alpha2-alpha1;

b1=min(a3,a2,(a2*a1-a3*a0)/a2,a0);

b2=max(a3,a2,(a2*a1-a3*a0)/a2,a0);

end

contractor C

compose(L)

end

12 Estimation problem

ym(p, t) = 20 exp(−p1t)− 8 exp(−p2t).

.

i [ti] [yi]

1 [−0.25, 1.75] [2.7, 12.1]
2 [0.5, 2.5] [1.04, 7.14]
3 [1.25, 3.25] [−0.13, 3.61]
4 [2, 4] [−0.95, 1.15]
5 [5, 7] [−4.85,−0.29]
6 [8, 10] [−5.06,−0.36]
7 [12, 14] [−4.1,−0.04]
8 [16, 18] [−3.16, 0.3]
9 [20, 22] [−2.5, 0.51]
10 [24, 26] [−2, 0.67]

The feasible set is

S =
�

i∈{1,...,10}

�
p ∈ R2 | ∃ti ∈ [ti] | ym(p, ti) ∈ [yi]

�

� �� �
Si

.

The complementary set is

S̄ =
�

i∈{1,...,10}

�
p ∈ R2 | ∀ti ∈ [ti] | ym(p, ti) /∈ [yi]

�

� �� �
S̄i

Define two contractors Ci (p, ti) and C̄i (p, ti) such

that
�

set (Ci (p, ti)) = {(p, ti) , ym(p, ti) ∈ [yi]}
set

�
C̄i (p, ti)

�
= {(p, ti) , ym(p, ti) /∈ [yi]} .

We have

set

C∪[ti]i

!
= Si

set

C̄∩[ti]i

!
= S̄i.

Define two contractors

C ([p]) =
�

i∈{1,...,10}
C∪[ti]i ([p],ti)

C̄ ([p]) =
�

i∈{1,...,10}
C̄∩[ti]i ([p],ti) .

We have set(C) = S et set
�
C̄
�
= S̄.

constant

Y[10] = [[2.7,12.1]; [1.04,7.14];

[-0.13,3.61];[-0.95,1.15];

[-4.85,-0.29];[-5.06,-0.36];

[-4.1,-0.04]; [-3.16,0.3];

[-2.5,0.51]; [-2,0.67]];

variables

p1 in [0,1.2]; p2 in [0,0.5];

parameters

t[10] in [[-0.25,1.75]; [0.5,2.5]; [1.25,3.25];

[2,4]; [5,7]; [8,10]; [12,14];

[16,18]; [20,22]; [24,26]];

function z=f(p1,p2,t)

z=20*exp(-p1*t)-8*exp(-p2*t);

end

contractor outer

inter (i=1:10,

proj_union(f(p1,p2,t[i]) in Y[i]),t[i]);

end

end

contractor inner

union (i=1:10,

proj_inter(f(p1,p2,t[i]) notin Y[i]),t[i]);

end

end

contractor epsilon

precision(0.01)

en

