Interval Analysis for Cyber-Physical Systems

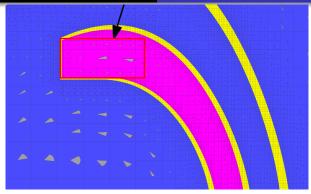
Luc Jaulin

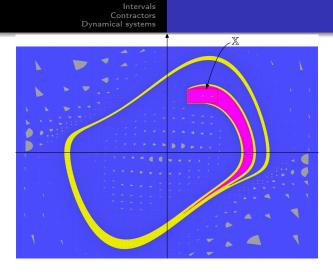
August 7, 2017

https://youtu.be/ItlAi-UMup8

< 一型

Image: A Image: A





Intervals

Contractors Dynamical systems

Intervals

Problem. Given $f : \mathbb{R}^n \to \mathbb{R}$ and a box $[\mathbf{x}] \subset \mathbb{R}^n$, prove that

 $\forall \mathbf{x} \in \left[\mathbf{x}\right], f\left(\mathbf{x}\right) \geq 0.$

Interval arithmetic can solve efficiently this problem.

• = • • = •

Example. Is the function

$$f(\mathbf{x}) = x_1 x_2 - (x_1 + x_2) \cos x_2 + \sin x_1 \cdot \sin x_2 + 2$$

always positive for $x_1, x_2 \in [-1, 1]$?

э

< □ > < 同

æ

▶ ★ 문 ▶ ★ 문 ▶

The *direct image* of X by f is

$$f(\mathbb{X}) \triangleq \{f(x) \mid x \in \mathbb{X}\}.$$

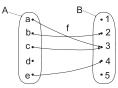
The *reciprocal image* of \mathbb{Y} by f is

$$f^{-1}(\mathbb{Y}) \triangleq \{x \in \mathbb{X} \mid f(x) \in \mathbb{Y}\}.$$

-

Intervals Contractors

Exercise: If *f* is defined as follows

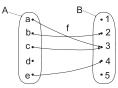


$$\begin{array}{rcl} f(A) &=& ?.\\ f^{-1}(B) &=& ?.\\ f^{-1}(f(A)) &=& ?\\ f^{-1}(f(\{b,c\})) &=& ?. \end{array}$$

æ

< ∃ >

Exercise: If *f* is defined as follows



$$\begin{array}{rcl} f(A) &=& \{2,3,4\} = Im(f). \\ f^{-1}(B) &=& \{a,b,c,e\} = \mathrm{dom}(f). \\ f^{-1}(f(A)) &=& \{a,b,c,e\} \subset A \\ f^{-1}(f(\{b,c\})) &=& \{a,b,c\}. \end{array}$$

æ

< ∃ >

Intervals

Contractors Dynamical systems

Exercise: If $f(x) = x^2$, then

$$\begin{array}{rcl} f([2,3]) &=& ?\\ f^{-1}([4,9]) &=& ?. \end{array}$$

イロト イポト イヨト イヨト

Exercise: If $f(x) = x^2$, then

$$f([2,3]) = [4,9]$$

$$f^{-1}([4,9]) = [-3,-2] \cup [2,3].$$

This is consistent with the property

$$f^{-1}(f(\mathbb{Y})) \supset \mathbb{Y}.$$

Intervals

Contractors Dynamical systems

Interval arithmetic

< • • • • **•**

æ

▶ ★ 문 ▶ ★ 문 ▶

 $\mathsf{lf} \diamond \in \{+,-,\cdot,/,\mathsf{max},\mathsf{min}\}$

$$[x]\diamond[y] \quad = \quad [\quad \{x\diamond y \mid x\in[x], y\in[y]\} \quad].$$

where $[\mathbb{A}]$ is the smallest interval which encloses $\mathbb{A} \subset \mathbb{R}.$

∃ → ∢

Exercise.

$$\begin{array}{ll} [-1,3]+[2,5] &= [?,?], \\ [-1,3]\cdot [2,5] &= [?,?], \\ [-2,6]/[2,5] &= [?,?]. \end{array}$$

イロン イロン イヨン イヨン

Ξ.

Solution.

$$\begin{array}{ll} [-1,3]+[2,5] &= [1,8], \\ [-1,3].[2,5] &= [-5,15], \\ [-2,6]/[2,5] &= [-1,3]. \end{array}$$

Luc Jaulin Interval Analysis for Cyber-Physical Systems

Exercise. Compute

$$[-2,2]/[-1,1] = [?,?].$$

Solution.

$$[-2,2]/[-1,1] = [-\infty,\infty].$$

Luc Jaulin Interval Analysis for Cyber-Physical Systems

$$\begin{aligned} & [x^-, x^+] + [y^-, y^+] = & [x^- + y^-, x^+ + y^+], \\ & [x^-, x^+] \cdot [y^-, y^+] = & [x^- y^- \wedge x^+ y^- \wedge x^- y^+ \wedge x^+ y^+, \\ & x^- y^- \vee x^+ y^- \vee x^- y^+ \vee x^+ y^+], \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > ... □

If $f \in \{\cos, \sin, sqr, sqrt, \log, exp, \dots\}$

 $f([x]) = [\{f(x) \mid x \in [x]\}].$

Exercise.

$$\begin{array}{rcl} \sin\left([0,\pi]\right) &=& ?,\\ \mathrm{sqr}\left([-1,3]\right) &=& [-1,3]^2 =?,\\ \mathrm{abs}\left([-7,1]\right) &=& ?,\\ \mathrm{sqrt}\left([-10,4]\right) &=& \sqrt{[-10,4]} =?,\\ \log\left([-2,-1]\right) &=& ?. \end{array}$$

イロン イロン イヨン イヨン

Ξ.

Solution.

$$\begin{aligned} & \sin([0,\pi]) &= [0,1], \\ & \operatorname{sqr}([-1,3]) &= [-1,3]^2 = [0,9], \\ & \operatorname{abs}([-7,1]) &= [0,7], \\ & \operatorname{sqrt}([-10,4]) &= \sqrt{[-10,4]} = [0,2], \\ & \log([-2,-1]) &= \emptyset. \end{aligned}$$

```
Intervals
Contractors
Dynamical systems
```

```
from pyibex import *
A=Interval(-2,3)
B=Interval(-5,3)
Z=Interval.ALL_REALS
```

```
print('A=',A)
print('A^2=',sqr(A))
print('A*B=',A*B)
print('sin(sqr(Z)=',sqr(sin(Z)))
```

```
X=IntervalVector([[2,4],[3,5]])
print('X=',X)
f = Function("x1","x2","(x1-1)^2+(x2-2)^2")
C=f.eval(X)
print('C=',C)
```

イロト イポト イヨト イヨト

< □ > < □ > < □ > < □ > < □ > < □ > ... □

Intervals Contractors

イロン イロン イヨン イヨン

A box, or interval vector $[\mathbf{x}]$ of \mathbb{R}^n is

$$[\mathbf{x}] = [x_1^-, x_1^+] \times \cdots \times [x_n^-, x_n^+] = [x_1] \times \cdots \times [x_n].$$

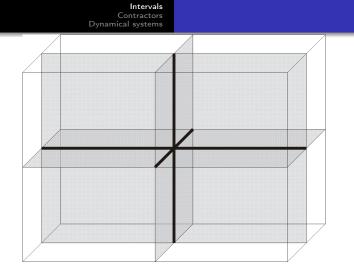
The set of all boxes of \mathbb{R}^n will be denoted by \mathbb{IR}^n .

The width w([x]) is the length of the largest side.

 $w([1,2] \times [-1,3]) = 4$

The *principal plane* of $[\mathbf{x}]$ is symmetric and perpendicular to the largest side.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



◆□▶ ◆舂▶ ◆注▶ ◆注▶ ─ 注。

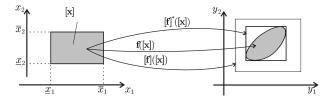
Inclusion function

< 一型

▶ ★ 문 ▶ ★ 문 ▶

 $[\mathbf{f}] : \mathbb{IR}^n \to \mathbb{IR}^m$ is an *inclusion function* of \mathbf{f} if

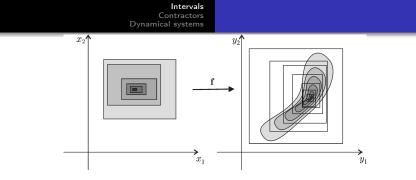
 $\forall [\mathsf{x}] \in \mathbb{IR}^n, \ \mathsf{f}([\mathsf{x}]) \subset [\mathsf{f}]([\mathsf{x}]).$



Inclusion functions [f] and $[f]^*$; here, $[f]^*$ is minimal.

э

A B A A B A



Exercise. The natural inclusion function for $f(x) = x^2 + 2x + 4$ is

$$[f]([x]) = [x]^2 + 2[x] + 4.$$

For [x] = [-3, 4], compute [f]([x]) and f([x]).

A B A A B A

Solution. If [x] = [-3, 4], we have

$$[f]([-3,4]) = [-3,4]^2 + 2[-3,4] + 4$$

= [0,16] + [-6,8] + 4
= [-2,28].

Note that $f([-3,4]) = [3,28] \subset [f]([-3,4]) = [-2,28]$.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

A minimal inclusion function for

$$\mathbf{f}: \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^3 \\ (x_1, x_2) & \mapsto & (x_1 x_2, x_1^2, x_1 - x_2) \,. \end{array}$$

$$[\mathbf{f}]: \begin{array}{ccc} \mathbb{I}\mathbb{R}^2 & \to & \mathbb{I}\mathbb{R}^3\\ ([x_1], [x_2]) & \to & \left([x_1] \cdot [x_2], [x_1]^2, [x_1] - [x_2]\right). \end{array}$$

イロン イロン イヨン イヨン

Intervals Contractors Dynamical systems

If \boldsymbol{f} is given by

Algorithm f(in:
$$\mathbf{x} = (x_1, x_2, x_3)$$
, out: $\mathbf{y} = (y_1, y_2)$)
1 $z := x_1$;
2 for $k := 0$ to 100
3 $z := x_2(z + k \cdot x_3)$;
4 next;
5 $y_1 := z$;
6 $y_2 := \sin(zx_1)$;

문 문 문

Intervals

Contractors Dynamical systems

Its natural inclusion function is

Algorithm [f](in: [x], out: [y])
1 [z] := [x₁];
2 for
$$k := 0$$
 to 100
3 [z] := [x₂] \cdot ([z] + $k \cdot$ [x₃]);
4 next;
5 [y₁] := [z];
6 [y₂] := sin([z] * [x₁]);

< 一型

▶ ★ 문 ▶ ★ 문 ▶

Set inversion

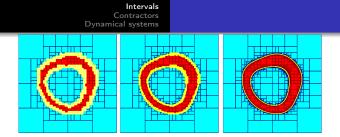
A subpaving of \mathbb{R}^n is a set of non-overlapping boxes of \mathbb{R}^n . Compact sets \mathbb{X} can be bracketed between inner and outer subpavings:

 $\mathbb{X}^{-}\subset\mathbb{X}\subset\mathbb{X}^{+}.$

Exercise. The set

$$\mathbb{X} = \{ (x_1, x_2) \mid x_1^2 + x_2^2 + \sin(x_1 + x_2) \in [4, 9] \}$$

are approximated by \mathbb{X}^- and \mathbb{X}^+ for different accuracies. Denote by $\mathbb{R}, \mathbb{Y}, \mathbb{B}$ the union of red, yellow, blue boxes. Denote by $\partial \mathbb{X}$ the boundary of \mathbb{X} .



$\mathbb{X}^{-}\cap\mathbb{B}=\emptyset$	yes or no
$\mathbb{X} \cap \mathbb{B} \neq \emptyset$	yes or no
$\mathbb{X}^+ = \mathbb{R} \cup \mathbb{Y}$	yes or no
$\partial \mathbb{X} \supset \mathbb{Y}$	yes or no

Solution. We have

イロン イロン イヨン イヨン

Set operations such as $\mathbb{Z} := \mathbb{X} + \mathbb{Y}, \ \mathbb{X} := f^{-1}(\mathbb{Y}), \mathbb{Z} := \mathbb{X} \cap \mathbb{Y} \dots$ can be approximated by subpaving operations.

Luc Jaulin Interval Analysis for Cyber-Physical Systems

If $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbb{Y} \subset \mathbb{R}^m$.

$$\mathbb{X} = \{ \mathsf{x} \in \mathbb{R}^n \mid \mathsf{f}(\mathsf{x}) \in \mathbb{Y} \} = \mathsf{f}^{-1}(\mathbb{Y}).$$

メロト メポト メヨト メヨト

Ξ.

Boxes for which these tests failed, will be bisected, except if they are too small [4].

< A

A B A A B A

Algorithm Sivia(in: $[x](0), f, \mathbb{Y}$) 1 $\mathscr{L} := \{[x](0)\};$ 2 pull [x] from $\mathscr{L};$ 3 if $[f]([x]) \subset \mathbb{Y}$, draw([x], 'red');4 elseif $[f]([x]) \cap \mathbb{Y} = \emptyset$, draw([x], 'blue');5 elseif $w([x]) < \varepsilon$, {draw ([x], 'yellow')}; 6 else bisect [x] and push into $\mathscr{L};$ 7 if $\mathscr{L} \neq \emptyset$, go to 2

• • • • • • • • •

If $\Delta \mathbb{X}$ denotes the union of yellow boxes and if \mathbb{X}^- is the union of red boxes then :

$$\mathbb{X}^- \subset \mathbb{X} \subset \underbrace{\mathbb{X}^- \cup \Delta \mathbb{X}}_{\mathbb{X}^+}.$$

< A

э

• = • • = •

Example: 4 rings

・ロト ・部ト ・ヨト ・ヨト

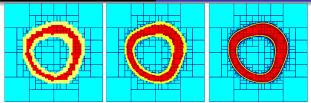
Contractors

Luc Jaulin Interval Analysis for Cyber-Physical Systems

< • • • • **•**

æ

▶ ★ 문 ▶ ★ 문 ▶



To characterize $\mathbb{X} \subset \mathbb{R}^n$, bisection algorithms bisect all boxes in all directions and become inefficient. Interval methods can still be useful if

- the solution set $\mathbb X$ is small (optimization problem, solving equations),
- contraction procedures are used as much as possible,
- bisections are used only as a last resort.

B b d B b

Definition

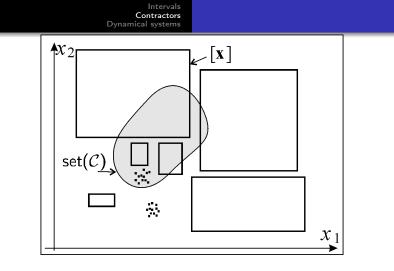
Luc Jaulin Interval Analysis for Cyber-Physical Systems

The operator $\mathscr{C}: \mathbb{IR}^n \to \mathbb{IR}^n$ is a *contractor* for $\mathbb{X} \subset \mathbb{R}^n$ if

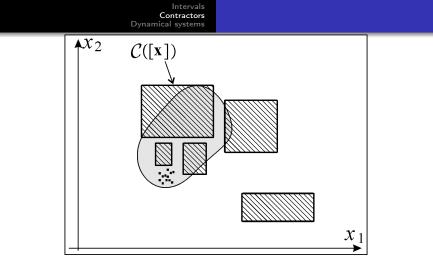
$$\forall [\mathbf{x}] \in \mathbb{IR}^n, \begin{cases} \mathscr{C}([\mathbf{x}]) \subset [\mathbf{x}] & \text{(contractance),} \\ \mathscr{C}([\mathbf{x}]) \cap \mathbb{X} = [\mathbf{x}] \cap \mathbb{X} & \text{(completeness).} \end{cases}$$

< A

A B A A B A



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



The operator $\mathscr{C} : \mathbb{IR}^n \to \mathbb{IR}^n$ is a *contractor* for the equation $f(\mathbf{x}) = 0$, if

$$\forall [\mathbf{x}] \in \mathbb{IR}^n, \begin{cases} \mathscr{C}([\mathbf{x}]) \subset [\mathbf{x}] \\ \mathbf{x} \in [\mathbf{x}] \text{ et } f(\mathbf{x}) = 0 \Rightarrow \mathbf{x} \in \mathscr{C}([\mathbf{x}]) \end{cases}$$

Constraint projections

Luc Jaulin Interval Analysis for Cyber-Physical Systems

э

Exercice. Let x, y, z be 3 variables such that

$$\begin{array}{rcl} x & \in & [-\infty,5], \\ y & \in & [-\infty,4], \\ z & \in & [6,\infty], \\ z & = & x+y. \end{array}$$

Contract the intervals for x, y, z.

-

Solution.

$$\begin{array}{rcl} [x] &=& [2,5] \\ [y] &=& [1,4] \\ [z] &=& [6,9] \end{array}$$

Luc Jaulin Interval Analysis for Cyber-Physical Systems

To project a constraint (here, z = x + y), is to compute the smallest intervals which contains all consistent values. For our example, this amounts to project onto x, y and z the set

$$\mathbb{S} = \{(x, y, z) \in [-\infty, 5] \times [-\infty, 4] \times [6, \infty] \mid z = x + y\}.$$

Numerical method for projection

э

-

Since $x \in [-\infty, 5], y \in [-\infty, 4], z \in [6, \infty]$ and z = x + y, we have

$$z = x + y \Rightarrow z \in [6,\infty] \cap ([-\infty,5] + [-\infty,4])$$

= [6,\overline] \cap [6,\overline] \cap [6,\overline].
$$x = z - y \Rightarrow x \in [-\infty,5] \cap ([6,\overline] - [-\infty,4])$$

= [-\overline,5] \cap [2,\overline] = [2,5].
$$y = z - x \Rightarrow y \in [-\infty,4] \cap ([6,\overline] - [-\overline,5])$$

= [-\overline,4] \cap [1,\overline] = [1,4].

∃ ► < ∃ ►</p>

3

The contractor associated with z = x + y is.

Algorithm pplus(inout:
$$[z], [x], [y]$$
)

 1
 $[z] := [z] \cap ([x] + [y]);$

 2
 $[x] := [x] \cap ([z] - [y]);$

 3
 $[y] := [y] \cap ([z] - [x]).$

< A

A B A A B A

The projection procedure can be extended to other ternary constraints such as mult: $z = x \cdot y$, or equivalently

$$\mathsf{mult} \triangleq \left\{ (x, y, z) \in \mathbb{R}^3 \mid z = x \cdot y \right\}.$$

The resulting projection procedure becomes

Algorithm pmult(inout:
$$[z], [x], [y]$$
)

 1
 $[z] := [z] \cap ([x] \cdot [y]);$

 2
 $[x] := [x] \cap ([z] \cdot 1/[y]);$

 3
 $[y] := [y] \cap ([z] \cdot 1/[x]).$

For the binary constraint

$$\exp \triangleq \{(x,y) \in \mathbb{R}^n | y = \exp(x)\},\$$

the associated contractor is

Algorithm pexp(inout:
$$[y], [x]$$
)
1 $[y] := [y] \cap \exp([x]);$
2 $[x] := [x] \cap \log([y]).$

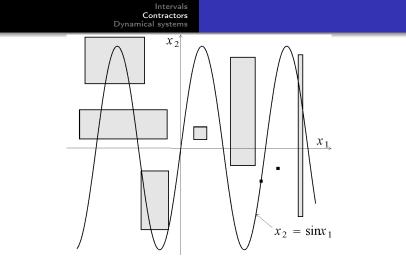
Any constraint for which such a projection procedure is available will be called a *primitive constraint*.

Example. Consider the primitive equation:

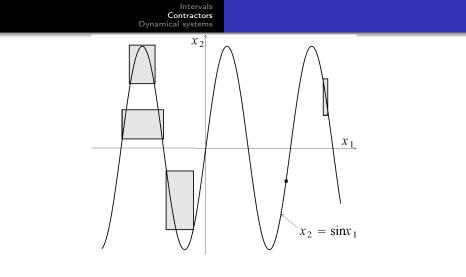
 $x_2 = \sin x_1.$

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Decomposition

$$x + \sin(xy) \le 0,$$

 $x \in [-1, 1], y \in [-1, 1]$

Luc Jaulin Interval Analysis for Cyber-Physical Systems

Decomposition

$$x + \sin(xy) \le 0,$$

 $x \in [-1, 1], y \in [-1, 1]$

can be decomposed into

$$\begin{cases} a = xy & x \in [-1,1] \quad a \in [-\infty,\infty] \\ b = \sin(a) & y \in [-1,1] \quad b \in [-\infty,\infty] \\ c = x + b & c \in [-\infty,0] \end{cases}$$

æ

< ∃ >

Forward-backward contractor (HC4 revise) For the equation

$$(x_1+x_2)\cdot x_3 \in [1,2],$$

we have the following contractor:

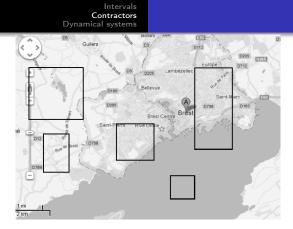
algorithm \mathscr{C} (inout $[x_1], [x_2], [x_3]$)	
$[a] = [x_1] + [x_2]$	% $a = x_1 + x_2$
$[b] = [a] \cdot [x_3]$	% $b = a \cdot x_3$
$[b] = [b] \cap [1,2]$	% $b \in [1,2]$
$[x_3] = [x_3] \cap \frac{[b]}{[a]}$	$x_3 = \frac{b}{a}$
$[a] = [a] \cap \frac{[b]}{[x_3]}$	% $a = \frac{b}{x_3}$
$[x_1] = [x_1] \cap [a] - [x_2]$	% $x_1 = a - x_2$
$[x_2] = [x_2] \cap [a] - [x_1]$	$% x_2 = a - x_1$

Contractor on images

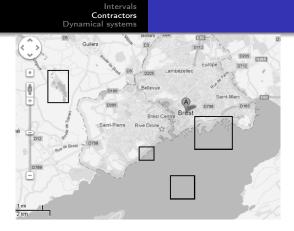
The robot with coordinates (x_1, x_2) is in the water.

э

э



◆□▶ ◆圖▶ ◆厘▶ ◆厘▶



◆□ → ◆□ → ◆三 → ◆三 →

Solving equations

æ

э

Consider the system of two equations.

$$y = x^2$$

$$y = \sqrt{x}.$$

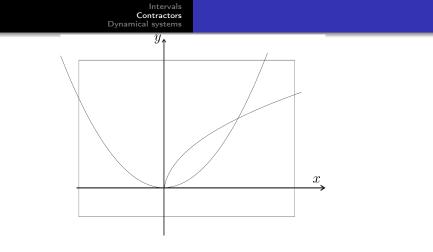
3 x 3

We can build two contractors

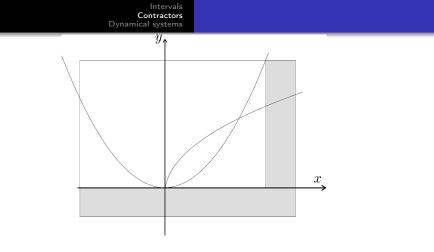
$$\mathscr{C}_{1}: \begin{cases} [y] = [y] \cap [x]^{2} \\ [x] = [x] \cap \sqrt{[y]} \end{cases} \text{ associated to } y = x^{2}$$

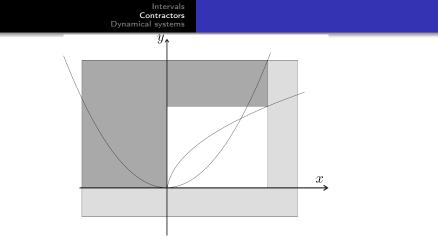
$$\mathscr{C}_2: \left\{ \begin{array}{l} |y| = |y| \cap \sqrt{|x|} \\ [x] = [x] \cap [y]^2 \end{array} \right. \text{ associated to } y = \sqrt{x}$$

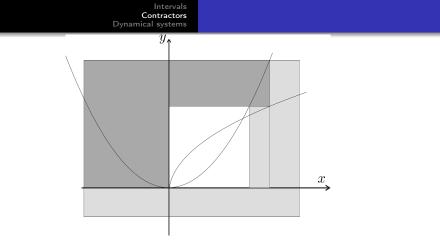
イロト イポト イヨト イヨト

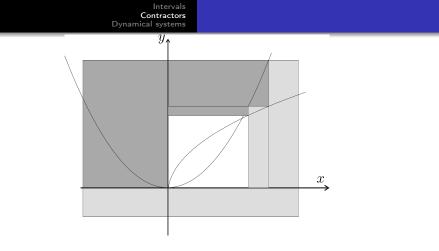


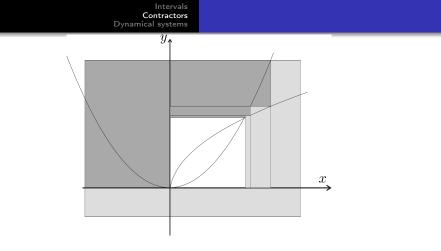
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

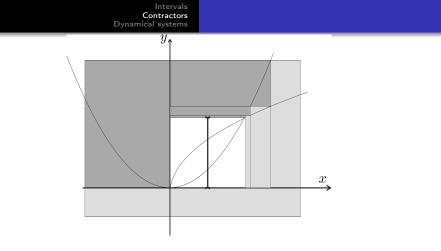




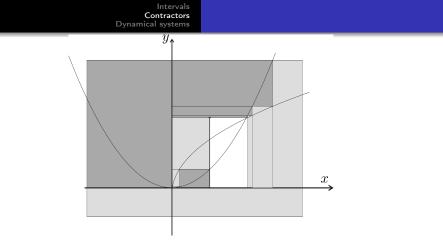


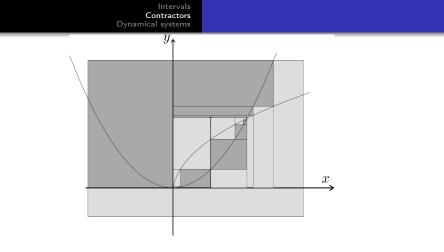






< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □





Example 2

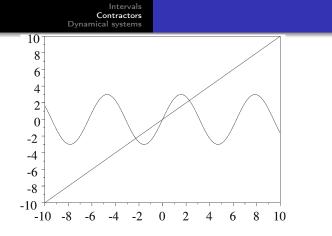
Luc Jaulin Interval Analysis for Cyber-Physical Systems

Exemple. Consider the system

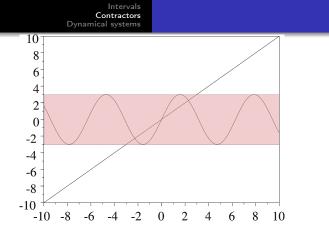
$$\begin{cases} y = 3\sin(x) \\ y = x \end{cases} \quad x \in \mathbb{R}, \ y \in \mathbb{R}.$$

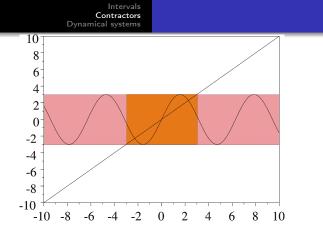
< 一型

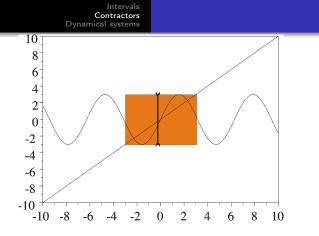
æ

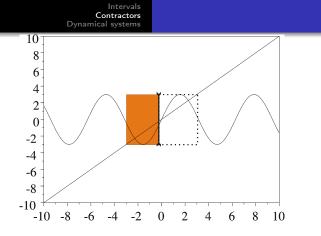


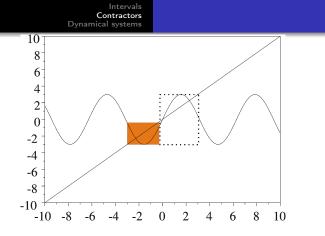
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

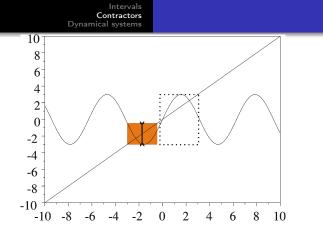


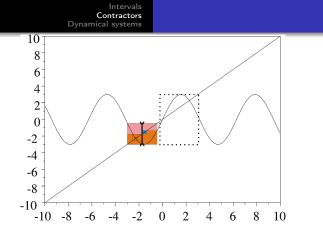


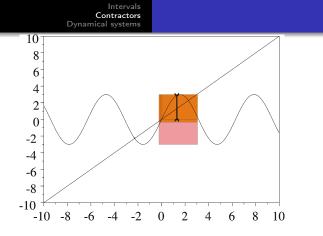


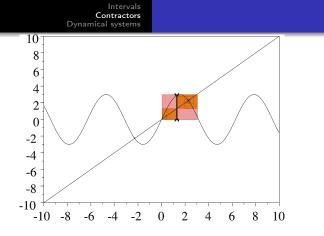












・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Some operations on contractors can be defined [1]

< A

• • = • • = •

э

intersection	$(\mathscr{C}_1 \cap \mathscr{C}_2)([\mathbf{x}]) = \mathscr{C}_1([\mathbf{x}]) \cap \mathscr{C}_2([\mathbf{x}])$
union	$(\mathscr{C}_1 \cup \mathscr{C}_2)([x]) = [\mathscr{C}_1([x]) \cup \mathscr{C}_2([x])]$
composition	$(\mathscr{C}_1 \circ \mathscr{C}_2)([x]) = \mathscr{C}_1(\mathscr{C}_2([x]))$
repetition	$\mathscr{C}^{\infty} = \mathscr{C} \circ \mathscr{C} \circ \mathscr{C} \circ \ldots$
repeat intersection	$\mathscr{C}_1 \sqcap \mathscr{C}_2 = (\mathscr{C}_1 \cap \mathscr{C}_2)^{\infty}$
repeat union	$\mathscr{C}_1 \sqcup \mathscr{C}_2 = (\mathscr{C}_1 \cup \mathscr{C}_2)^{\infty}$

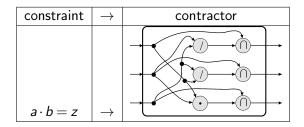
A link between matrices and contractors

Luc Jaulin Interval Analysis for Cyber-Physical Systems

э

A B A A B A

We have a matrix algebra and Matlab. We have: $var(\mathcal{L}) = \{a, h\}$, $covar(\mathcal{L}) = \{\alpha, \gamma\}$. But we cannot write: $var(\mathbf{A}) = \{a, h\}$, $covar(\mathbf{A}) = \{\alpha, \gamma\}$.



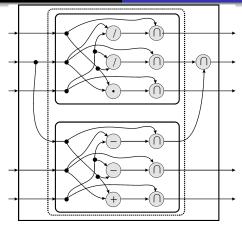
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

Contractor fusion

$$\begin{cases} a \cdot b = z \quad \to \quad \mathscr{C}_1 \\ b + c = d \quad \to \quad \mathscr{C}_2 \end{cases}$$

Since b occurs in both constraints, we fuse the two contractors as:

$$\begin{aligned} \mathscr{C} &= \mathscr{C}_1 \times \mathscr{C}_2 \big|_{(2,1)} \\ &= \mathscr{C}_1 | \mathscr{C}_2 \text{ (for short)} \end{aligned}$$



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Formalisation [2]

$$\left\{ \begin{array}{rll} \dot{x} &=& f(x,u) \\ y &=& g(x,u) \\ z_i &=& h(x,u,m_i) \end{array} \right. \label{eq:constraint}$$

(evolution equation) (observation equation) (mark equation)

3 k 3

Redermor (GESMA, Brest)

https://youtu.be/X0IqZxb-tFs

3 x 3

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

GPS (Global positioning system), only at the surface.

$$t_0 = 0000 \text{ s}, \quad \ell^0 = (-4.4582279^\circ, 48.2129206^\circ) \pm 2.5m$$

 $t_f = 6000 \text{ s}, \quad \ell^f = (-4.4546607^\circ, 48.2191297^\circ) \pm 2.5m$

э

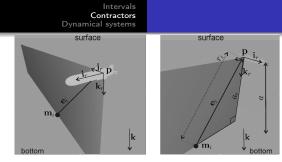
A B > A B >

Sonar (KLEIN 5400 side scan sonar).

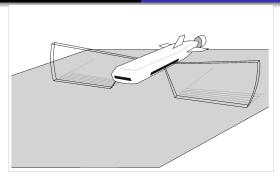
< A

► < Ξ > <</p>

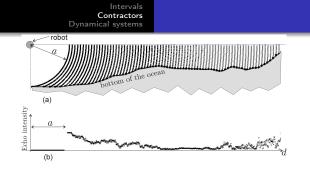
æ



(日) (部) (E) (E) (E)



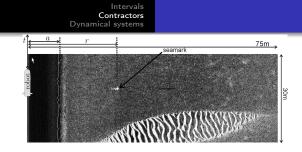
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・



Screenshot of SonarPro



Mine detection with SonarPro

イロト イポト イヨト イヨト

Loch-Doppler returns the speed robot v_r .

$$\mathbf{v}_r \in \widetilde{\mathbf{v}}_r + 0.004 * [-1, 1] . \widetilde{\mathbf{v}}_r + 0.004 * [-1, 1]$$

э

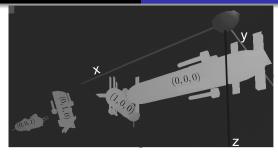
∃ ► < ∃ ►</p>

Inertial central (Octans III from IXSEA).

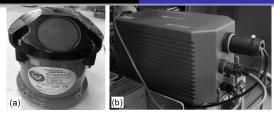
$$\left(\begin{array}{c} \phi \\ \theta \\ \psi \end{array}\right) \in \left(\begin{array}{c} \tilde{\phi} \\ \tilde{\theta} \\ \tilde{\psi} \end{array}\right) + \left(\begin{array}{c} 1.75 \times 10^{-4}.\left[-1,1\right] \\ 1.75 \times 10^{-4}.\left[-1,1\right] \\ 5.27 \times 10^{-3}.\left[-1,1\right] \end{array}\right).$$

æ

∃ ► < ∃ ►</p>



イロン イロン イヨン イヨン



Six mines have been detected.

i	0		1		2		3		4		5			
τ((i)	1054		1092		1374		1748		3038		3688		
σ((i)	1		2		1		0		1		5		
	i)	52.42		12.	12.47		54.40		52.68		27.73		26.98	
-				_		_						_	 ו	
	6					8		9		10		11		
	4024		48	4817		5172		5232		5279		5688		
	4		3		3		4		5		1			
	37.90		36.71		37.37		31.03		33.51		15.05			
-													1	

< 一型

• • = • • = •

Constraint Network

æ

• = • • = •

$$t \in \{6000.0, 6000.1, 6000.2, \dots, 11999.4\},$$

$$i \in \{0, 1, \dots, 11\},$$

$$\begin{pmatrix} p_{x}(t) \\ p_{y}(t) \end{pmatrix} = 111120 \begin{pmatrix} 0 & 1 \\ \cos\left(\ell_{y}(t) * \frac{\pi}{180}\right) & 0 \end{pmatrix} \begin{pmatrix} \ell_{x}(t) - \ell_{x}^{0} \\ \ell_{y}(t) - \ell_{y}^{0} \end{pmatrix},$$

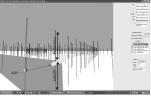
$$\mathbf{p}(t) = (p_{x}(t), p_{y}(t), p_{z}(t)),$$

$$\mathbf{R}_{\psi}(t) = \begin{pmatrix} \cos\psi(t) & -\sin\psi(t) & 0 \\ \sin\psi(t) & \cos\psi(t) & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$\mathbf{R}_{\theta}(t) = \begin{pmatrix} \cos\theta(t) & 0 & \sin\theta(t) \\ 0 & 1 & 0 \\ -\sin\theta(t) & 0 & \cos\theta(t) \end{pmatrix},$$
(1)

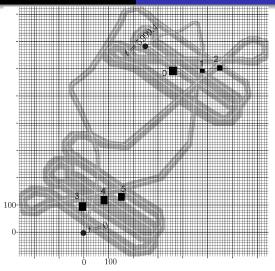
Luc Jaulin Interval Analysis for Cyber-Physical Systems

$$\begin{aligned} \mathbf{R}_{\varphi}(t) &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi(t) & -\sin \varphi(t) \\ 0 & \sin \varphi(t) & \cos \varphi(t) \end{pmatrix}, \\ \mathbf{R}(t) &= \mathbf{R}_{\psi}(t) \mathbf{R}_{\theta}(t) \mathbf{R}_{\varphi}(t), \\ \dot{\mathbf{p}}(t) &= \mathbf{R}(t) \cdot \mathbf{v}_{r}(t), \\ ||\mathbf{m}(\sigma(i)) - \mathbf{p}(\tau(i))|| &= r(i), \\ \mathbf{R}^{\mathsf{T}}(\tau(i)) (\mathbf{m}(\sigma(i)) - \mathbf{p}(\tau(i))) \in [0] \times [0, \infty]^{\times 2}, \\ m_{z}(\sigma(i)) - p_{z}(\tau(i)) - a(\tau(i)) \in [-0.5, 0.5] \end{aligned}$$

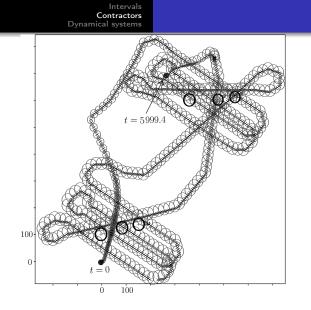


https://youtu.be/lzJtAfAT7h4

イロト イポト イヨト イヨト



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・



・ロト ・部ト ・モト ・モト

Dynamical systems

< 口 > < 同

æ

Image: A Image: A

Saiboat robots

Luc Jaulin Interval Analysis for Cyber-Physical Systems

æ

∃ ► < ∃ ►</p>

<ロ> (四) (四) (三) (三) (三)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

(日) (部) (E) (E) (E)

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

Vaimos

Luc Jaulin Interval Analysis for Cyber-Physical Systems

Vaimos (IFREMER and ENSTA)

https://youtu.be/tmfkKNM76Qg

э

< ∃ >

The robot satisfies a state equation

 $\dot{x}=f\left(x,u\right) .$

With the controller $u=g\left(x\right)\!,$ the robot satisfies an equation of the form

 $\dot{x}=f\left(x\right) .$

With all uncertainties, the robot satisfies

 $\dot{x}\in F\left(x\right)$

which is a differential inclusion.

э

Controller

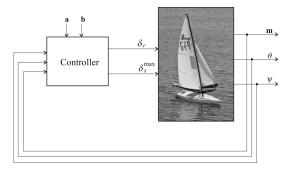
< □ > < 同

æ

▶ 《 문 ▶ 《 문 ▶

< □ > < □ > < □ > < □ > < □ > < □ > ... □

We follow a line following strategy [3]



イロト イポト イヨト イヨト

$$\begin{array}{ll} \textbf{Function in: } \mathbf{m}, \theta, \psi, \mathbf{a}, \mathbf{b}; & \text{out: } \delta_r, \delta_s^{\max}; & \text{inout: } q \\ 1 & e = \frac{\det(\mathbf{b}-\mathbf{a},\mathbf{m}-\mathbf{a})}{\|\mathbf{b}-\mathbf{a}\|} \\ 2 & \text{if } |e| > r \text{ then } q = \text{sign}(e) \\ 3 & \varphi = \operatorname{atan2}(\mathbf{b}-\mathbf{a}) \\ 4 & \bar{\theta} = \varphi - \frac{1}{2}.\operatorname{atan}\left(\frac{e}{r}\right) \\ 5 & \text{if } \cos\left(\psi - \bar{\theta}\right) + \cos\zeta < 0 \text{ then } \bar{\theta} = \pi + \psi - q.\zeta. \\ 6 & \delta_r = \operatorname{atan}\left(\tan\frac{\theta - \bar{\theta}}{2}\right) \\ 7 & \delta_s^{\max} = \frac{\pi}{2}.\left(\frac{\cos(\psi - \bar{\theta}) + 1}{2}\right). \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

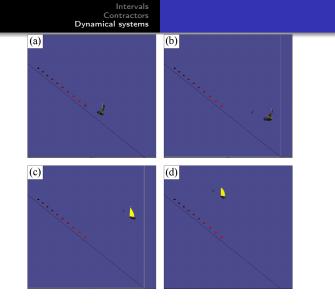
Validation by simulation

Luc Jaulin Interval Analysis for Cyber-Physical Systems

æ

A B A A B A

< □ > < □ > < □ > < □ > < □ > < □ > ... □



イロト イヨト イヨト イヨト

æ

Theoretical validation

æ

When the wind is known, the sailboat with the heading controller is described by

 $\dot{x}=f\left(x\right) .$

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The system

 $\dot{x} = f(x)$

is Lyapunov-stable (1892) is there exists $V(\mathbf{x}) \ge 0$ such that

$$\dot{V}(\mathbf{x}) < 0 \text{ if } \mathbf{x} \neq \mathbf{0},$$

 $V(\mathbf{x}) = 0 \text{ iff } \mathbf{x} = \mathbf{0}.$

э

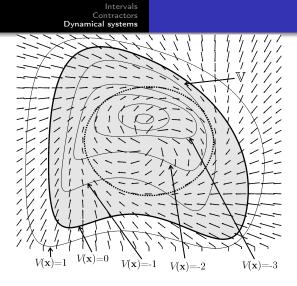
A B A A B A

Definition. Consider a differentiable function $V(x) : \mathbb{R}^n \to \mathbb{R}$. The system is V-stable if

$$\left(V(\mathbf{x}) \ge 0 \Rightarrow \dot{V}(\mathbf{x}) < 0\right).$$

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem. We have

$$\left\{ \begin{array}{l} \frac{\partial V}{\partial x}\left(x\right).f\left(x\right)\geq 0\\ V(x)\geq 0 \end{array} \right. \text{ inconsistent } \Leftrightarrow \ \dot{x}=f\left(x\right) \text{ is } V\text{-stable}.$$

Interval method could easily prove the V-stability.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Experimental validation

Luc Jaulin Interval Analysis for Cyber-Physical Systems

A B A A B A

æ

Brest

イロト イヨト イヨト イヨト

æ

イロト イロト イヨト イヨト 一日

Brest-Douarnenez. January 17, 2012, 8am

イロト イポト イヨト イヨト

Vaimos (IFREMER and ENSTA)

https://youtu.be/XxQ_KWI1q74

< ∃ >

イロト イロト イヨト イヨト 一日

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

◆□> ◆圖> ◆필> ◆필> 一里

Middle of Atlantic ocean

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

https://youtu.be/pb_KhcYZI_A

Luc Jaulin Interval Analysis for Cyber-Physical Systems

・ロト ・四ト ・ヨト ・ヨト

350 km made by Vaimos in 53h, September 6-9, 2012.

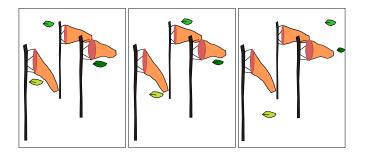
Eulerian state estimation

Luc Jaulin Interval Analysis for Cyber-Physical Systems

э

A B A A B A

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t))$$



Leaves: Lagrangian view of the wind; Flags: an Eulerian view [8]

Eulerian state estimation [7] can be formalized as:

$$\begin{array}{ll} (i) & \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)) & (\text{evolution}) \\ (ii) & \mathbf{x}(t_i) \in \mathbb{X}_i \subset \mathbb{R}^n & (\text{event}) \\ (iii) & \forall (i,j) \in \mathbb{J}, t_i \leq t_j & (\text{precedence}) \end{array}$$

Bracket the set $\mathbb{X} \subset \mathbb{R}^n$ of all feasible $\mathbf{x}(t)$.

< ∃ > < ∃ >

Invariant sets

Luc Jaulin Interval Analysis for Cyber-Physical Systems

< 口 > < 同

→ < E → < E →</p>

æ

Denote by φ the flow map of our system, *i.e.*, with $\mathbf{x}_0 = \mathbf{x}(0)$, the system reaches $\varphi(t, \mathbf{x}_0)$ at time t.

A B > A B >

A set \mathbb{A} is *positive invariant* if

$$\mathbf{x} \in \mathbb{A}, t \geq 0 \Longrightarrow \varphi(t, \mathbf{x}) \in \mathbb{A}.$$

The set of all positive invariant sets is a lattice, *i.e.*, the union and the intersection are closed.

Thus, the notion of *largest positive invariant set* contained in $\mathbb X$ can be defined.

The largest positive invariant set included in $\mathbb X$ is:

$$\mathit{Inv}^+(\mathbf{f},\mathbb{X}) = \{\mathbf{x}_0 \mid \forall t \ge 0, \varphi(t,\mathbf{x}_0) \in \mathbb{X}\}.$$

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Mazes allow us to compute an inner and an outer approximation for $Inv^+(\mathbf{f}, \mathbb{X})$.

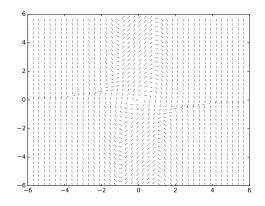
< A

A B A A B A

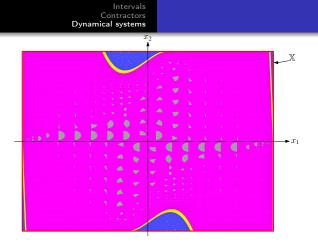
As an illustration, consider the Van der Pol system:

$$\begin{cases} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= (1 - x_1^2) \cdot x_2 - x_1 \end{cases}$$

イロト イポト イヨト イヨト



э



Largest positive invariant set $Inv^+(f, X)$

Largest negative invariant set.

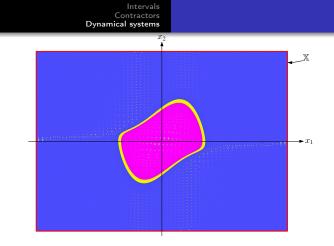
$$Inv^{-}(\mathbf{f},\mathbb{X}) = \{\mathbf{x}_0 \mid \forall t \leq 0, \varphi(t,\mathbf{x}_0) \in \mathbb{X}\}.$$

We have

$$Inv^{-}(\mathbf{f},\mathbb{X}) = Inv^{+}(-\mathbf{f},\mathbb{X}).$$

< A

A B A A B A



Largest negative invariant set $Inv^{-}(f, \mathbb{X})$

Largest invariant set

$$Inv(\mathbf{f}, \mathbb{X}) = \{\mathbf{x}_0 \mid \forall t \in \mathbb{R}, \varphi(t, \mathbf{x}_0) \in \mathbb{X}\}.$$

We have

$$\mathit{Inv}(f,\mathbb{X}) = \mathit{Inv}^+(-f,\mathbb{X}) \cap \mathit{Inv}^+(f,\mathbb{X}).$$

Thus $\textit{Inv}(f,\mathbb{X})$ can be defined in terms of largest positive invariant sets.

< ∃ > < ∃ >

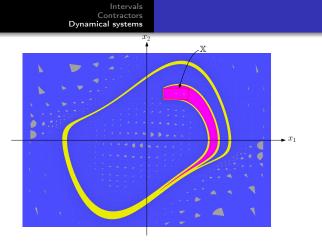
э

Forward reach set

$$\textit{Forw}(\mathbf{f},\mathbb{X}) = \{\mathbf{x} \mid \exists t \geq 0, \exists \mathbf{x}_0 \in \mathbb{X}, \varphi(t, \mathbf{x}_0) = \mathbf{x}\}.$$

We have

$$\mathit{Forw}(\mathbf{f},\mathbb{X}) = \overline{\mathit{Inv}^+(-\mathbf{f},\overline{\mathbb{X}})}$$
 .



$\textit{Forw}(f,\mathbb{X})$ for $\mathbb{X} = [0.4, 1.0] \times [1.4, 1.8]$

< 一型

• • = • • = •

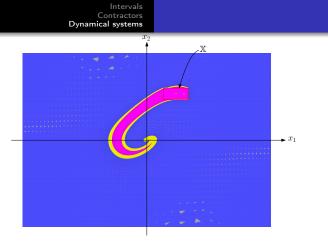
э

Backward reach set.

$$Back(\mathbf{f}, \mathbb{X}) = \{\mathbf{x}_0 \mid \exists t \ge 0, \varphi(t, \mathbf{x}_0) \in \mathbb{X}\}.$$

Since

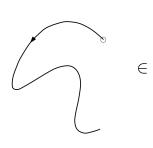
$$Back(\mathbf{f},\mathbb{X}) = \overline{Inv^+(\mathbf{f},\overline{\mathbb{X}})}$$
.

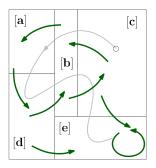


$\textit{Back}(f,\mathbb{X})$ for $\mathbb{X}=[0.4,1.0]\times[1.4,1.8].$

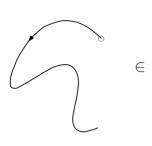
An *interval* is a *domain* which encloses a real number. A *polygon* is a *domain* which encloses a vector of \mathbb{R}^n . A *maze* is a *domain* which encloses a path.

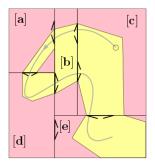
A maze is a set of paths.





Mazes can be made more accurate:





< 口 > < 同

э

• • = • • = •

Here, a maze \mathscr{L} is composed of [6][5].

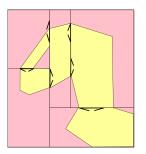
- A paving ${\mathscr P}$
- Doors between adjacent boxes

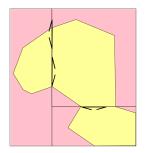
< 一型

글 > 글

The set of mazes forms a lattice with respect to \subset .

 \subset





< 口 > < 同

э

A B A A B A

Inner approximation

Luc Jaulin Interval Analysis for Cyber-Physical Systems

< 一型

• • = • • = •

Target contractor. If a box [x] of \mathscr{P} is outside X then remove [x] and close all doors entering in [x].

3.5

constraint $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$.

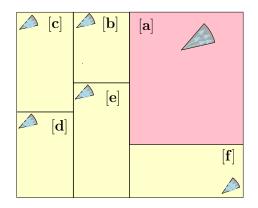
Flow contractor. For each box [x] of \mathcal{P} , we contract using the

-

Propagation

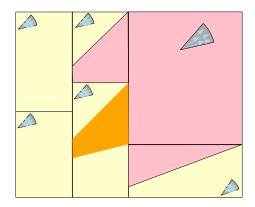
< 口 > < 同

→ < E → < E →</p>



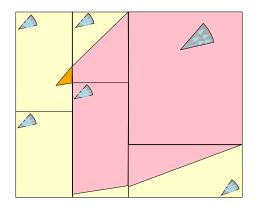
Yellow area: $\mathbb X$

イロン イロン イヨン イヨン



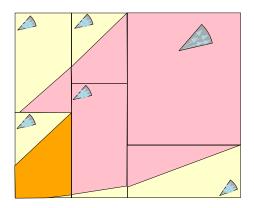
The red parts have been deleted

イロト イポト イヨト イヨト



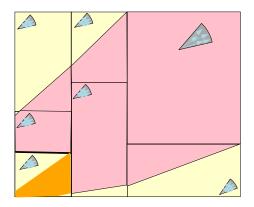
The yellow area is contracted

イロン イロン イヨン イヨン



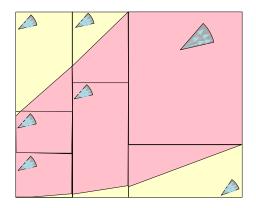
At each step, the yellow area encloses $Inv^+(\mathbb{X})$

イロト イポト イヨト イヨト



At each step, the red area is outside $Inv^+(\mathbb{X})$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・



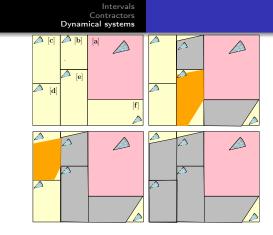
The yellow area encloses $Inv^+(\mathbb{X})$

イロン イロン イヨン イヨン

Inflation propagation

æ

A B A A B A



An interpretation can be given only when the fixed point is reached. The yellow area is an inner approximation of $Inv^+(X)$

Eulerian filter

æ

A B A A B A

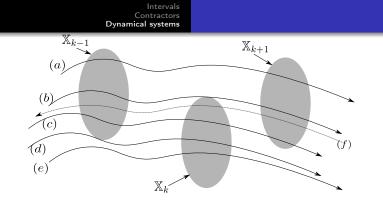
Define ℓ sets $\mathbb{X}_0, \mathbb{X}_1, \dots, \mathbb{X}_\ell$ of the state space. Define \mathbb{Z}_k^{forw} the set of all state vectors $\mathbf{x}(t)$ inside \mathbb{X}_k that have visited $\mathbb{X}_0, \mathbb{X}_1, \dots, \mathbb{X}_{k-1}$. We have

$$\mathbb{Z}_{k+1}^{\mathit{forw}} = \mathit{Forw}\left(\mathbb{Z}_{k}^{\mathit{forw}}
ight) \cap \mathbb{X}_{k+1}$$

with $\mathbb{Z}_0^{\text{forw}} = \mathbb{X}_0$.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

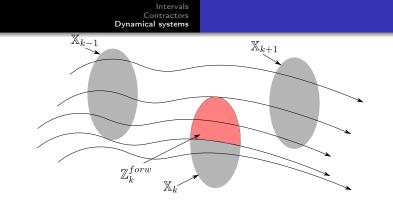
э



The trajectories (b),(c) are consistent with the sets X_{k-1}, X_k, X_{k+1}

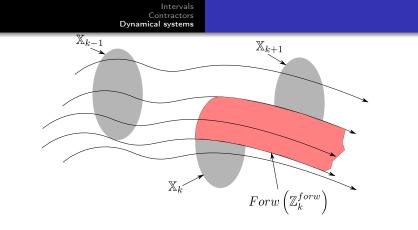
э

(4月) (4日) (4日)



Set \mathbb{Z}_{k}^{forw} of all $\mathbf{x}(t)$ in \mathbb{X}_{k} that have already visited $\mathbb{X}_{0}, \mathbb{X}_{1}, \dots, \mathbb{X}_{k-1}$

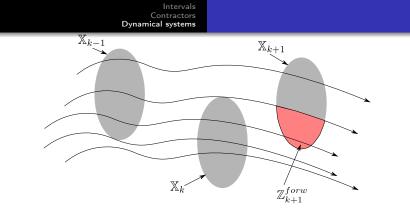
・ロト ・四ト ・ヨト ・ヨト



Forw (\mathbb{Z}_k^{forw}) corresponds to all states $\mathbf{x}(t)$ that have visited $\mathbb{X}_0, \mathbb{X}_1, \dots, \mathbb{X}_k$

(日) (四) (日) (日)

э



Set \mathbb{Z}_{k+1}^{forw} of all states $\mathbf{x}(t)$ in \mathbb{X}_{k+1} that have already visited $\mathbb{X}_0, \mathbb{X}_1, \dots, \mathbb{X}_k$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Eulerian smoother

Luc Jaulin Interval Analysis for Cyber-Physical Systems

æ

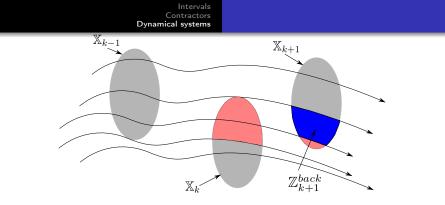
A B A A B A

Define the set \mathbb{Z}_{k}^{back} of all states $\mathbf{x}(t)$ inside \mathbb{X}_{k} that have visited $\mathbb{X}_{0}, \mathbb{X}_{1}, \ldots, \mathbb{X}_{k-1}$ in the past and will visit $\mathbb{X}_{k+1}, \ldots, \mathbb{X}_{\ell}$ in the future. We have

$$\mathbb{Z}_k^{\textit{back}} = \textit{Back}\left(\mathbb{Z}_{k+1}^{\textit{back}}
ight) \cap \mathbb{Z}_k^{\textit{forw}}$$

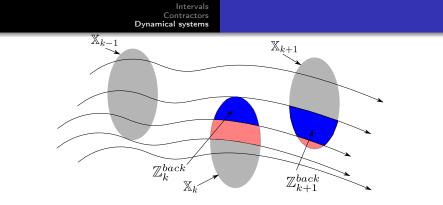
with $\mathbb{Z}_{\ell}^{back} = \mathbb{Z}_{\ell}^{forw}$. The will be called the *Eulerian smoother*.

• • • • • • • • • •



Set \mathbb{Z}_{k+1}^{back} of all states x(t) inside \mathbb{Z}_{k+1}^{forw} that will visit $\mathbb{X}_{k+2}, \dots, \mathbb{X}_{\ell}$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・



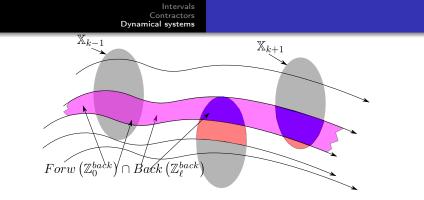
Set \mathbb{Z}_k^{back} of all states $\mathbf{x}(t)$ inside \mathbb{Z}_k^{forw} that will visit $\mathbb{X}_{k+1}, \dots, \mathbb{X}_{\ell}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

The set of trajectories that started inside \mathbb{X}_0 and visited the sets $\mathbb{X}_1,\mathbb{X}_2,\ldots,\mathbb{X}_{\ell-1}$ sequentially, and that ended in \mathbb{X}_ℓ can thus be enclosed by

Forw $\left(\mathbb{Z}_{0}^{back}\right) \cap Back\left(\mathbb{Z}_{\ell}^{back}\right)$.

A B A A B A



Set Forw $(\mathbb{Z}_0^{back}) \cap Back(\mathbb{Z}_\ell^{back})$ enclosing the trajectory consistent with the past and future visits

・聞き ・ ヨキ・ ・ ヨキ

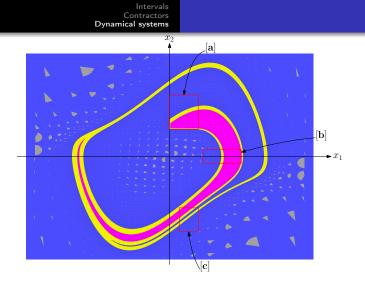
Example. Take the Van der Pol system with

$$\begin{array}{ll} \mathbb{X}_0 &= [\mathbf{a}] = [0, 0.6] \times [0.8, 1.8] \\ \mathbb{X}_1 &= [\mathbf{b}] = [0.7, 1.5] \times [-0.2, 0.2] \\ \mathbb{X}_2 &= [\mathbf{c}] = [0.2, 0.6] \times [-2.2, -1.5] \end{array}$$

< A

A B A A B A

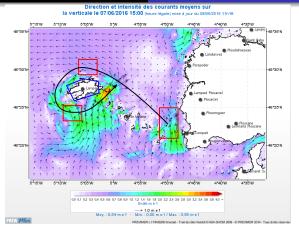
æ



Feasible states associated to the Eulerian state estimation problem

An application of Eulerian state estimation moving taking advantage of ocean currents.

A B A A B A



Visiting the three red boxes using a buoy that follows the currents is an Eulerian state estimation problem

(日) (同) (三) (三)

G. Chabert and L. Jaulin.

Contractor Programming.

Artificial Intelligence, 173:1079–1100, 2009.

🔋 L. Jaulin.

Range-only SLAM with occupancy maps; A set-membership approach.

IEEE Transaction on Robotics, 27(5):1004–1010, 2011.

🔋 L. Jaulin and F. Le Bars.

An Interval Approach for Stability Analysis; Application to Sailboat Robotics.

IEEE Transaction on Robotics, 27(5), 2012.

L. Jaulin and E. Walter.

Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis.

A (1) < A (1) < A (1) < A (1) </p>

Mathematics and Computers in Simulation, 35(2):123–137, 1993.

- T. Le Mézo L. Jaulin and B. Zerr. Bracketing the solutions of an ordinary differential equation with uncertain initial conditions. *Applied Mathematics and Computation*, 2017.
- T. Le Mézo, L. Jaulin, and B. Zerr.
 An interval approach to compute invariant sets.
 IEEE Transaction on Automatic Control, 2017.
- T. Le Mézo, L. Jaulin, and B. Zerr. Eulerian state estimation.
 In SWIM'17, Manchester, UK, 2017.
- Ian Mitchell, Alexandre M. Bayen, and Claire J. Tomlin. Validating a Hamilton-Jacobi Approximation to Hybrid System Reachable Sets.

• • • • •

In Maria Domenica Di Benedetto and Alberto Sangiovanni-Vincentelli, editors, *Hybrid Systems: Computation and Control*, number 2034 in Lecture Notes in Computer Science, pages 418–432. Springer Berlin Heidelberg, 2001.

3 1 4