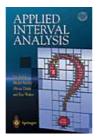
Linear and nonlinear control with intervals



### Luc Jaulin, Lab-STICC, ENSTA Bretagne

### 1 What is control theory ?

Consider one system

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$$

where  ${\bf x}$  is the state and  ${\bf u}$  is the control.

Control problem: Find a controller

$$\mathbf{u} = \mathbf{r}(\mathbf{x}, \mathbf{w}),$$

where  ${\bf w}$  is setpoint, such that the closed loop system behaves as desired.

## 2 What is interval analysis ?

**Problem**. Given  $f : \mathbb{R}^n \to \mathbb{R}$  and a box  $[\mathbf{x}] \subset \mathbb{R}^n$ , prove that

$$\forall \mathbf{x} \in \left[\mathbf{x}\right], f\left(\mathbf{x}\right) \geq \mathbf{0}.$$

Interval arithmetic can solve efficiently this problem.

**Example.** Is the function

 $f(\mathbf{x}) = x_1 x_2 - (x_1 + x_2) \cos x_2 + \sin x_1 \cdot \sin x_2 + 2$ always positive for  $x_1, x_2 \in [-1, 1]$  ? Interval arithmetic

$$egin{array}{rll} [-1,3]+[2,5]&=[1,8],\ [-1,3]\cdot[2,5]&=[-5,15],\ {
m abs}\,([-7,1])&=[0,7] \end{array}$$

The interval extension of

$$f(x_1, x_2) = x_1 \cdot x_2 - (x_1 + x_2) \cdot \cos x_2 + \sin x_1 \cdot \sin x_2 + 2$$
 is

$$[f]([x_1], [x_2]) = [x_1] \cdot [x_2] - ([x_1] + [x_2]) \cdot \cos [x_2] + \sin [x_1] \cdot \sin [x_2] + 2.$$

Theorem (Moore, 1970)

 $[f]([\mathbf{x}]) \subset \mathbb{R}^+ \Rightarrow \forall \mathbf{x} \in [\mathbf{x}], f(\mathbf{x}) \ge \mathbf{0}.$ 

# Stability of linear systems

Linear system

$$a_n y^{(n)} + \dots + a_1 \dot{y} + a_0 y = b_m u^{(m)} + \dots + b_1 \dot{u} + b_0 u.$$

The system is *stable* iff all roots of

$$P(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0.$$
  
are in  $\mathbb{C}^-$ .

#### **Routh table**

| $a_n$     | $a_{n-2}$             | $a_{n-4}$  | $a_{n-6}$ | • • • | 0 | 0 |
|-----------|-----------------------|------------|-----------|-------|---|---|
| $a_{n-1}$ | $a_{n-3}$             | $a_{n-5}$  | $a_{n-7}$ | •••   | 0 | 0 |
| $b_1$     | <i>b</i> <sub>2</sub> | <i>b</i> 3 |           |       | 0 | 0 |
| $c_1$     | <i>c</i> <sub>2</sub> | Сз         |           |       | 0 | 0 |
|           |                       |            |           |       |   | : |

with

$$b_{1} = \frac{a_{n-1}a_{n-2} - a_{n}a_{n-3}}{a_{n-1}} \quad b_{2} = \frac{a_{n-1}a_{n-4} - a_{n}a_{n-5}}{a_{n-1}} \quad \cdots$$
$$c_{1} = \frac{b_{1}a_{n-3} - a_{n-1}b_{2}}{b_{1}} \qquad c_{2} = \frac{b_{1}a_{n-5} - a_{n-1}b_{3}}{b_{1}} \quad \cdots$$
$$\vdots$$

The roots of P(s) are in  $\mathbb{C}^-$  if all entries on the left column have the same sign.

**Example**. One motorbike where  $\theta$  is the handlebar angle and  $\phi$  is the roll:

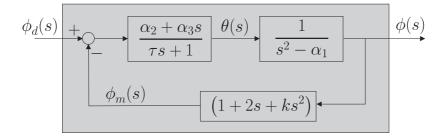
$$\phi(s) = \frac{1}{s^2 - \alpha_1} \theta(s)$$

Controller

$$\theta(s) = \frac{\alpha_2 + \alpha_3 s}{\tau s + 1} (\phi_d(s) - \phi_m(s))$$

Sensor:

$$\phi_m(s) = \left(1 + 2s + ks^2\right)\phi(s)$$



We have

$$\phi(s) = \frac{\alpha_2 + \alpha_3 s}{\left(s^2 - \alpha_1\right)\left(\tau s + 1\right) + \left(\alpha_2 + \alpha_3 s\right)\left(1 + 2s + ks^2\right)}\phi_d(s)$$

The characteristic polynomial is

$$(s^{2} - \alpha_{1}) (\tau s + 1) + (\alpha_{2} + \alpha_{3}s) (1 + 2s + ks^{2})$$
  
=  $a_{3}s^{3} + a_{2}s^{2} + a_{1}s + a_{0}$ 

with

$$a_{3} = \tau + \alpha_{3}k$$

$$a_{2} = \alpha_{2}k + 2\alpha_{3} + 1$$

$$a_{1} = \alpha_{3} - \alpha_{1}\tau + 2\alpha_{2}$$

$$a_{0} = -\alpha_{1} + \alpha_{2}.$$

The Routh table is:

| aз                            | $a_1$          |
|-------------------------------|----------------|
| $a_2$                         | a <sub>0</sub> |
| $\frac{a_2a_1 - a_3a_0}{a_2}$ | 0              |
|                               | 0              |

The system is stable if  $a_3, a_2, \frac{a_2a_1-a_3a_0}{a_2}$ ,  $a_0$  have the same sign.

For

$$\begin{array}{rcl} \alpha_1 & \in & [8.8, 9.2] \,, \alpha_2 \in [2.8, 3.2] \,, \alpha_3 \in [0.8, 1.2] \,, \\ \tau & \in & [1.8, 2.2] \,, k \in [-3.2, -2.8] \end{array}$$

we get the robust stability of the closed loop system.

## 4 Stability domains

The stability domain  $\mathbb{S}_p$  of

$$P(s, \mathbf{p}) = s^{n} + a_{n-1}(\mathbf{p})s^{n-1} + \ldots + a_{1}(\mathbf{p})s + a_{0}(\mathbf{p})$$

is the set of all  $\mathbf{p}$  such that  $P(s, \mathbf{p})$  is stable.

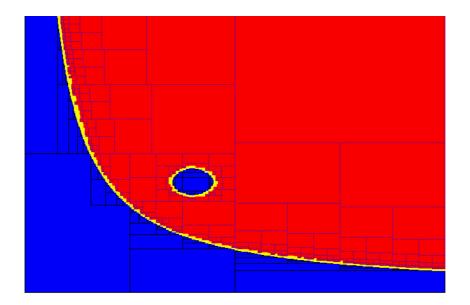
$$\mathbb{S}_{\mathsf{p}} \triangleq \{ \mathbf{p} \in \mathbb{R}^{n_{\mathsf{p}}} \mid \mathbf{r}(\mathbf{p}) > \mathbf{0} \} = \mathbf{r}^{-1} \left( ]\mathbf{0}, +\infty[^{\times n} 
ight).$$

Example. Consider

$$P(s, \mathbf{p}) = s^3 + (p_1 + p_2 + 2)s^2 + (p_1 + p_2 + 2)s + 2p_1p_2 + 6p_1 + 6p_2 + 2.25.$$

The Routh function is

$$\mathbf{r(p)} = \begin{pmatrix} p_1 + p_2 + 2\\ (p_1 - 1)^2 + (p_2 - 1)^2 - 0.25\\ 2(p_1 + 3)(p_2 + 3) - 16 + 0.25 \end{pmatrix}.$$



# 5 Interval polynomials

Kharitonov Theorem. The interval polynomial

$$[\mathbf{a}] = [\underline{a}_n, \overline{a}_n] s^n \times \cdots \times [\underline{a}_1, \overline{a}_1] s \times [\underline{a}_0, \overline{a}_0]$$

is robustly stable iff the four polynomials

 $\begin{array}{l} \underline{a}_{n}s^{n} + \underline{a}_{n-1}s^{n-1} + \overline{a}_{n-2}s^{n-2} + \overline{a}_{n-3}s^{n-3} + \underline{a}_{n-4}s^{n-4} + \dots \\ \overline{a}_{n}s^{n} + \underline{a}_{n-1}s^{n-1} + \underline{a}_{n-2}s^{n-2} + \overline{a}_{n-3}s^{n-3} + \overline{a}_{n-4}s^{n-4} + \dots \\ \overline{a}_{n}s^{n} + \overline{a}_{n-1}s^{n-1} + \underline{a}_{n-2}s^{n-2} + \underline{a}_{n-3}s^{n-3} + \overline{a}_{n-4}s^{n-4} + \dots \\ \underline{a}_{n}s^{n} + \overline{a}_{n-1}s^{n-1} + \overline{a}_{n-2}s^{n-2} + \underline{a}_{n-3}s^{n-3} + \underline{a}_{n-4}s^{n-4} + \dots \\ \end{array}$ are stable.

The family of polynomials

$$\mathbb{A} = \begin{array}{ll} \{p_5 s^4 + (p_4 + \cos^2(p_3)) s^3 + 2p_1 s^2 + p_2 \sqrt{p_4} s + p_1 \mid \\ p_1 \in 6 \pm 1, \ p_2 \in [3, 4], \ p_3 \in \pm \frac{\pi}{4}, \ p_4 \in [1, 2], \ p_5 \in [1, 2] \end{array}$$

is a subset of the interval polynomial

 $[\mathbf{a}] = [1, 2]s^4 + [3/2, 3]s^3 + [10, 14]s^2 + [3, 4\sqrt{2}]s + [5, 7].$ 

The Kharitonov polynomials associated with [a] are

$$K_{1}(s) = s^{4} + \frac{3}{2}s^{3} + 14s^{2} + 4\sqrt{2}s + 5,$$
  

$$K_{2}(s) = 2s^{4} + \frac{3}{2}s^{3} + 10s^{2} + 4\sqrt{2}s + 7,$$
  

$$K_{3}(s) = 2s^{4} + 3s^{3} + 10s^{2} + 3s + 7,$$
  

$$K_{4}(s) = s^{4} + 3s^{3} + 14s^{2} + 3s + 5.$$
(2)

Since all  $K_i(s)$  are stable, [a] is robustly stable, and so is A.

### 6 Control of a sailboat

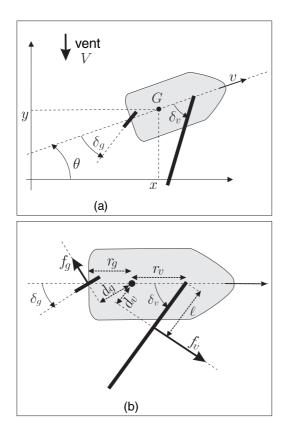
(Collaboration with P. Herrero)

A robot

$$\left\{ egin{array}{lll} \dot{\mathbf{x}} &=& \mathbf{f}(\mathbf{x},\mathbf{u}) \ \mathbf{y} &=& \mathbf{g}\left(\mathbf{x}
ight) \end{array} 
ight.$$

Set of feasible outputs

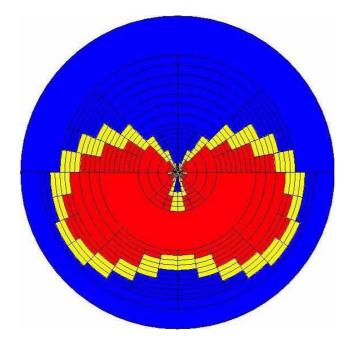
$$\mathbb{Y} = \left\{ \mathbf{y} \mid \exists \left( \mathbf{x}, \mathbf{u} 
ight), \ \mathbf{f}(\mathbf{x}, \mathbf{u}) = \mathbf{0}, \mathbf{y} = \mathbf{g}\left( \mathbf{x} 
ight) 
ight\}.$$

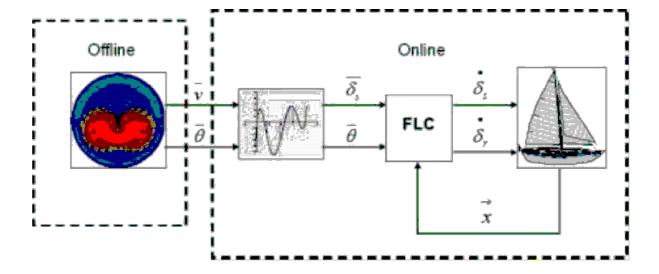


$$\begin{cases} \dot{x} = v\cos\theta, \\ \dot{y} = v\sin\theta - \beta V, \\ \dot{\theta} = \omega, \\ \dot{\delta}_s = u_1, \\ \dot{\delta}_r = u_2, \\ \dot{v} = \frac{f_s\sin\delta_s - f_r\sin\delta_r - \alpha_f v}{m}, \\ \dot{\omega} = \frac{(\ell - r_s\cos\delta_s)f_s - r_r\cos\delta_r f_r - \alpha_\theta \omega}{J}, \\ f_s = \alpha_s \left(V\cos\left(\theta + \delta_s\right) - v\sin\delta_s\right), \\ f_r = \alpha_r v\sin\delta_r. \end{cases}$$

Polar speed diagram of a sailboat.

$$\begin{split} \mathbb{W} &= \{ \begin{array}{c|c} (\theta, v) \mid & \exists (f_s, f_r, \delta_r, \delta_s) \\ 0 &= \frac{f_s \sin \delta_s - f_r \sin \delta_r - \alpha_f v}{M} \\ 0 &= \frac{(\ell - r_s \cos \delta_s) f_s - r_r \cos \delta_r f_r}{J} \\ f_s &= \alpha_s \left( V \cos \left(\theta + \delta_s\right) - v \sin \delta_s \right) \\ f_r &= \alpha_r v \sin \delta_r \end{split} \}. \end{split}$$

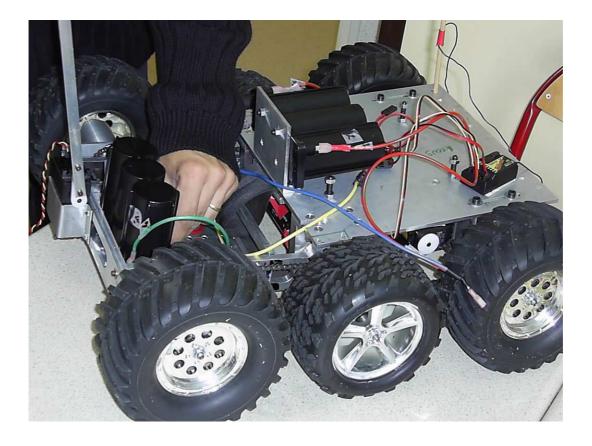




# 7 Control of a wheeled climbing robot

## 7.1 Context







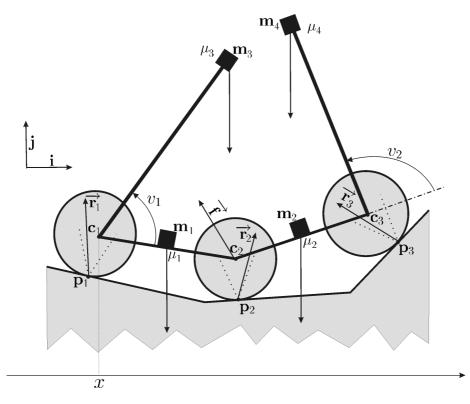




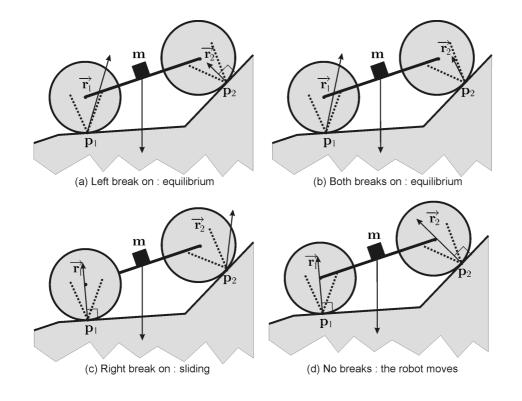




### 7.2 Idea



Mass transfer system to avoid any sliding



For (a), (b), (c) the fundamental principle of static is satisfied

#### 7.3 Formalization

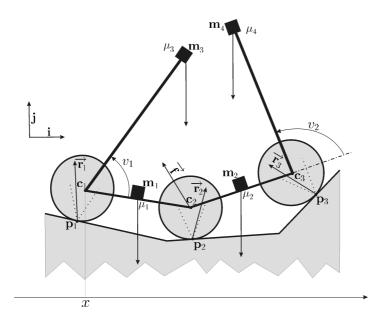
Consider the class of constrained dynamic robots

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$$
  
 $\mathbf{g}(\mathbf{x}(t), \mathbf{v}(t)) \leq \mathbf{0}.$ 

 $\mathbf{u}(t)$  is the evolution input vector,  $\mathbf{x}(t)$  is the state vector,  $\mathbf{v}(t)$  is the viable input vector.

- If  $g(x, v) = A(x).v + b(x) \le 0$  then a simplex method can find a feasible v.
- Otherwise, interval methods can be used to find a feasible **v**.

## 7.4 Resolution



$$\dot{x} = u,$$
  
$$\mathbf{g}(x, v_1, v_2) \le \mathbf{0}.$$

**Fundamental principle of static**. When the robot does not move,

$$\begin{cases}
-\overrightarrow{\mathbf{p}_{1}\mathbf{m}_{1}} \wedge \mu_{1}\mathbf{j} + \overrightarrow{\mathbf{p}_{1}\mathbf{c}_{2}} \wedge \overrightarrow{\mathbf{f}} - \overrightarrow{\mathbf{p}_{1}\mathbf{m}_{3}} \wedge \mu_{3}\mathbf{j} = \mathbf{0} \\
\overrightarrow{\mathbf{p}_{2}\mathbf{m}_{2}} \wedge \mu_{2}\mathbf{j} + \overrightarrow{\mathbf{p}_{2}\mathbf{c}_{2}} \wedge \overrightarrow{\mathbf{f}} - \overrightarrow{\mathbf{p}_{2}\mathbf{p}_{3}} \wedge \overrightarrow{\mathbf{r}}_{3} \\
\overrightarrow{\mathbf{p}_{2}\mathbf{m}_{4}} \wedge \mu_{4}\mathbf{j} = \mathbf{0} \\
\overrightarrow{\mathbf{r}_{1}} - (\mu_{1} + \mu_{3})\mathbf{j} + \overrightarrow{\mathbf{f}} = \mathbf{0} \\
\overrightarrow{\mathbf{r}_{2}} - \overrightarrow{\mathbf{f}} - (\mu_{2} + \mu_{4})\mathbf{j} + \overrightarrow{\mathbf{r}}_{3} = \mathbf{0}
\end{cases}$$

A scalar decomposition yields

$$-\mu_{1}(m_{1x} - p_{1x}) + (c_{2x} - p_{1x})f_{y} - (c_{2y} - p_{1y})f_{x} - \mu_{3}(m_{3x} - p_{1x}) = 0 \mu_{2}(m_{2x} - p_{2x}) + (c_{2x} - p_{2x})f_{y} - (c_{2y} - p_{2y})f_{x} - (p_{3x} - p_{2x})r_{3y} + (p_{3y} - p_{2y})r_{3x} + \mu_{4}(m_{4x} - p_{2x}) = 0 r_{1x} + f_{x} = 0 r_{1y} - \mu_{1} - \mu_{3} + f_{y} = 0 r_{2x} - f_{x} + r_{3x} = 0 r_{2y} - f_{y} - \mu_{2} - \mu_{4} + r_{3y} = 0$$

In a matrix form as

$$\mathbf{A}_1(x).\mathbf{y} = \mathbf{b}_1(x),$$

where

$$\mathbf{b}_{1}(x) = \begin{pmatrix} \mu_{1} (m_{1x} - p_{1x}) - \mu_{3} p_{1x} \\ \mu_{2} (m_{2x} - p_{2x}) - \mu_{4} p_{2x} \\ 0 \\ \mu_{1} + \mu_{3} \\ 0 \\ \mu_{2} + \mu_{4} \end{pmatrix}$$

and

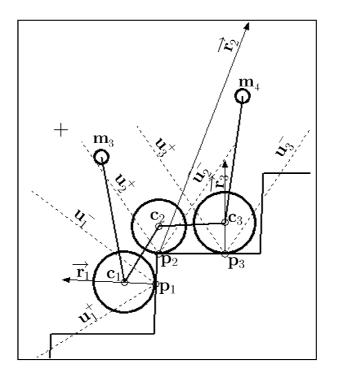
$$\mathbf{y} = (r_{1x}, r_{1y}, r_{2x}, r_{2y}, r_{3x}, r_{3y}, f_x, f_y, m_{3x}, m_{4x})^{\mathsf{T}}$$

We have 10 unknowns for 6 equations: our robot has a second order hyperstatic equilibrium.

**Non-sliding conditions**. None of the wheels will slide if all  $\overrightarrow{\mathbf{r}}_i$  belong to their Coulomb cone:

$$\mathbf{A}_{2}(x).\mathbf{y}\leq\mathbf{0},$$

where  $A_2(x)$  is given by



A configuration where the middle wheel is almost sliding.

**Collision avoidance**. The pendulums should not intersect the ground or the robot itself

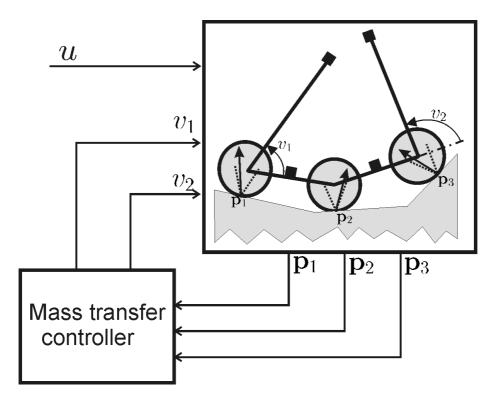
## 7.5 All constraints

Our robot can be described by

(i) 
$$\dot{x} = u$$
  
(ii)  $\mathbf{g}(x,v_1,v_2) \leq \mathbf{0}$ 

where (ii) is equivalent to

$$\exists \mathbf{y} = \begin{pmatrix} r_{1x}, r_{1y} \\ r_{2x}, r_{2y} \\ r_{3x}, r_{3y} \\ f_x, f_y \\ m_{3x}, m_{4x} \end{pmatrix}, \begin{cases} \mathbf{A}_1(x) \cdot \mathbf{y} = \mathbf{b}_1(x) \\ \mathbf{A}_2(x) \cdot \mathbf{y} \leq \mathbf{0} \\ \mathbf{A}_3(x) \cdot \mathbf{y} \leq \mathbf{0} \\ \mathbf{A}_3(x) \cdot \mathbf{y} \leq \mathbf{b}_3(x) \end{cases}$$



Angle friction coefficient:  $\phi = 0.54$ Radius of the wheels:  $\rho_1 = 85$ mm,  $\rho_2 = 75$ mm,  $\rho_3 = 85$ mm Lengths of the pendulums:  $\ell_1 = \ell_2 = 350$ mm Weights of the platforms:  $\mu_1 = \mu_2 = 70$ N Weights and the pendulum masses:  $\mu_3 = \mu_4 = 20$ N.

Height and the width of the stairs: 220mm and 280mm

