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1 What is control theory ?



Consider one system

ẋ = f(x,u)

where x is the state and u is the control.

Control problem: Find a controller

u = r(x,w),

where w is setpoint, such that the closed loop system

behaves as desired.



2 What is interval analysis ?



Problem. Given f : Rn → R and a box [x] ⊂ Rn,

prove that

∀x ∈ [x] , f (x) ≥ 0.

Interval arithmetic can solve efficiently this problem.



Example. Is the function

f (x) = x1x2− (x1 + x2) cosx2+ sinx1 · sinx2+ 2

always positive for x1, x2 ∈ [−1, 1] ?



Interval arithmetic

[−1, 3] + [2, 5] = [1, 8],
[−1, 3] · [2, 5] = [−5, 15],
abs ([−7, 1]) = [0, 7]



The interval extension of

f (x1, x2) = x1·x2−(x1 + x2)·cosx2+sinx1·sinx2+2

is

[f ] ([x1] , [x2]) = [x1] · [x2]− ([x1] + [x2]) · cos [x2]
+ sin [x1] · sin [x2] + 2.



Theorem (Moore, 1970)

[f ] ([x]) ⊂ R+⇒ ∀x ∈ [x] , f (x) ≥ 0.



3 Stability of linear systems



Linear system

any
(n)+ · · ·+a1ẏ+a0y = bmu(m)+· · ·+b1u̇+b0u.



The system is stable iff all roots of

P (s) = ans
n + an−1sn−1 + · · ·+ a1s+ a0.

are in C−.



Routh table

an an−2 an−4 an−6 . . . 0 0
an−1 an−3 an−5 an−7 . . . 0 0
b1 b2 b3 0 0
c1 c2 c3 0 0
... ... ... ... ...



with

b1 =
an−1an−2−anan−3

an−1
b2 =

an−1an−4−anan−5
an−1

. . .

c1 =
b1an−3−an−1b2

b1
c2 =

b1an−5−an−1b3
b1

. . .

. . . ...

The roots of P (s) are in C− if all entries on the left

column have the same sign.



Example. One motorbike where θ is the handlebar an-

gle and φ is the roll:

φ(s) =
1

s2 − α1
θ(s)



Controller

θ(s) =
α2 + α3s

τs+ 1
(φd(s)− φm(s))

Sensor:

φm(s) =
�
1 + 2s+ ks2

�
φ(s)





We have

φ(s) =
α2 + α3s�

s2 − α1
�
(τs+ 1) + (α2 + α3s)

�
1 + 2s+ ks2

�φd(s)



The characteristic polynomial is
�
s2 − α1

�
(τs+ 1) + (α2 + α3s)

�
1 + 2s+ ks2

�

= a3s
3 + a2s

2 + a1s+ a0

with

a3 = τ + α3k

a2 = α2k + 2α3 + 1

a1 = α3 − α1τ + 2α2

a0 = −α1 + α2.



The Routh table is:

a3 a1
a2 a0
a2a1−a3a0

a2
0

a0 0

(1)

The system is stable if a3, a2,
a2a1−a3a0

a2
, a0 have the

same sign.



For

α1 ∈ [8.8, 9.2] , α2 ∈ [2.8, 3.2] , α3 ∈ [0.8, 1.2] ,
τ ∈ [1.8, 2.2] , k ∈ [−3.2,−2.8]

we get the robust stability of the closed loop system.



4 Stability domains



The stability domain Sp of

P (s,p) = sn+an−1(p)sn−1+ . . .+a1(p)s+a0(p)

is the set of all p such that P (s,p) is stable.

Sp � {p ∈ Rnp | r(p) > 0} = r−1
�
]0,+∞[×n

�
.



Example. Consider

P (s,p) = s3 + (p1 + p2 + 2)s
2 + (p1 + p2 + 2)s

+ 2p1p2 + 6p1 + 6p2 + 2.25.

The Routh function is

r(p) =






p1 + p2 + 2
(p1 − 1)2 + (p2 − 1)2 − 0.25
2(p1 + 3)(p2 + 3)− 16 + 0.25




 .





5 Interval polynomials



Kharitonov Theorem. The interval polynomial

[a] = [an, an]s
n × · · · × [a1, a1]s× [a0, a0]

is robustly stable iff the four polynomials

ans
n + an−1sn−1 + an−2sn−2 + an−3sn−3 + an−4sn−4 + . . .

ansn + an−1sn−1 + an−2sn−2 + an−3sn−3 + an−4sn−4 + . . .
ansn + an−1sn−1 + an−2sn−2 + an−3sn−3 + an−4sn−4 + . . .
ans

n + an−1sn−1 + an−2sn−2 + an−3sn−3 + an−4sn−4 + . . .

are stable.



The family of polynomials

A = {p5s4 + (p4 + cos2(p3))s3 + 2p1s2 + p2
√

p4s+ p1 |
p1 ∈ 6± 1, p2 ∈ [3, 4], p3 ∈ ±π

4 , p4 ∈ [1, 2], p5 ∈ [1, 2
is a subset of the interval polynomial

[a] = [1, 2]s4+[3/2, 3]s3+[10, 14]s2+[3, 4
√
2]s+[5, 7].



The Kharitonov polynomials associated with [a] are

K1(s) = s4 + 3
2s
3 + 14s2 + 4

√
2s+ 5,

K2(s) = 2s4 + 3
2s
3 + 10s2 + 4

√
2s+ 7,

K3(s) = 2s4 + 3s3 + 10s2 + 3s+ 7,
K4(s) = s4 + 3s3 + 14s2 + 3s+ 5.

(2)

Since all Ki(s) are stable, [a] is robustly stable, and so

is A.



6 Control of a sailboat

(Collaboration with P. Herrero)



A robot
	
ẋ = f(x,u)
y = g (x)

Set of feasible outputs

Y = {y | ∃ (x,u) , f(x,u) = 0,y = g (x)} .










ẋ = v cos θ,
ẏ = v sin θ − βV,

θ̇ = ω,

δ̇s = u1,

δ̇r = u2,

v̇ =
fs sin δs−fr sin δr−αfv

m ,

ω̇ =
(ℓ−rs cos δs)fs−rr cos δrfr−αθω

J ,
fs = αs (V cos (θ + δs)− v sin δs) ,
fr = αrv sin δr.



Polar speed diagram of a sailboat.

W = { (θ, v) | ∃(fs, fr, δr, δs)
0 =

fs sin δs−fr sin δr−αfv
m

0 =
(ℓ−rs cos δs)fs−rr cos δrfr

J
fs = αs (V cos (θ + δs)− v sin δs)
fr = αrv sin δr }.







7 Control of a wheeled climbing

robot



7.1 Context

















7.2 Idea



Mass transfer system to avoid any sliding



For (a), (b), (c) the fundamental principle of static is satisfied



7.3 Formalization

Consider the class of constrained dynamic robots

ẋ(t) = f(x(t),u(t))
g(x(t),v(t)) ≤ 0.

u(t) is the evolution input vector,

x(t) is the state vector,

v(t) is the viable input vector.



• If g(x,v) = A(x).v + b(x) ≤ 0 then a simplex

method can find a feasible v.

• Otherwise, interval methods can be used to find a

feasible v.



7.4 Resolution



ẋ = u,
g(x, v1, v2) ≤ 0.



Fundamental principle of static. When the robot

does not move,





−−−−→p1m1 ∧ µ1j+
−−→p1c2 ∧

−→
f −−−−→p1m3 ∧ µ3j = 0

−−−→p2m2 ∧ µ2j+
−−→p2c2 ∧

−→
f −−−→p2p3 ∧−→r 3−−−→p2m4 ∧ µ4j = 0

−→r 1 − (µ1 + µ3)j+
−→
f = 0

−→r 2 −
−→
f − (µ2 + µ4)j+

−→r 3 = 0



A scalar decomposition yields





−µ1 (m1x − p1x) + (c2x − p1x) fy
−
�
c2y − p1y

�
fx − µ3 (m3x − p1x) = 0

µ2 (m2x − p2x) + (c2x − p2x) fy
−
�
c2y − p2y

�
fx− (p3x − p2x) r3y

+
�
p3y − p2y

�
r3x + µ4 (m4x − p2x) = 0

r1x + fx = 0
r1y − µ1 − µ3 + fy = 0

r2x − fx + r3x = 0
r2y − fy − µ2 − µ4 + r3y = 0



In a matrix form as

A1(x).y = b1(x),

where

A1(x) =






0 0 0 0 0 0
0 0 0 0 p2y−p3y p3x−p2x
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1

p1y−c2y c2x−p1x −µ3 0
c2y−p2y p2x−c2x 0 −µ4

1 0 0 0
0 1 0 0
−1 0 0 0
0 −1 0 0








b1(x) =






µ1 (m1x − p1x)− µ3p1x
µ2 (m2x − p2x)− µ4p2x

0
µ1 + µ3
0

µ2 + µ4






and

y =
�
r1x, r1y, r2x, r2y, r3x, r3y, fx, fy,m3x,m4x

�T
.



We have 10 unknowns for 6 equations: our robot has

a second order hyperstatic equilibrium.



Non-sliding conditions. None of the wheels will slide

if all −→r i belong to their Coulomb cone:

A2(x).y ≤ 0,

where A2(x) is given by





u−1y −u−1x 0 0

−u+1y u+1x 0 0

0 0 u−2y −u−2x
0 0 −u+2y u+2x
0 0 0 0
0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

u−3y −u−3x 0 0 0 0

−u+3y u+3x 0 0 0 0








A configuration where the middle wheel is almost

sliding.



Collision avoidance. The pendulums should not inter-

sect the ground or the robot itself
�
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

�

.y ∈
�
[mmin
3x ,mmax

3x ]

[mmin
4x ,mmax

4x ]

�

.



7.5 All constraints



Our robot can be described by

(i) ẋ = u
(ii) g(x,v1, v2) ≤ 0

where (ii) is equivalent to

∃y =






r1x, r1y
r2x, r2y
r3x, r3y
fx, fy

m3x,m4x






,






A1(x).y = b1(x)
A2(x).y ≤ 0

A3(x).y ≤ b3(x)





Angle friction coefficient: φ = 0.54

Radius of the wheels: ρ1 = 85mm, ρ2 = 75mm,

ρ3 = 85mm

Lengths of the pendulums: ℓ1 = ℓ2 = 350mm

Weights of the platforms: µ1 = µ2 = 70N

Weights and the pendulum masses: µ3 = µ4 = 20N.

Height and the width of the stairs: 220mm and 280mm




