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1 Basic SLAM








ẋ = f(x,u) (evolution equation)
y = g(x,u) (observation equation)
zi = h(x,u,mi) (mark equation)



Redermor, GESMA

(Groupe d’Etude Sous-Marine de l’Atlantique)





1.1 Sensors



GPS (Global positioning system), only at the surface.

t0 = 6000 s, ℓ0=(−4.4582279o, 48.2129206o)± 2.5m
tf = 12000 s, ℓ

f=(−4.4546607o, 48.2191297o)± 2.5m



Sonar (KLEIN 5400 side scan sonar).







Screenshot of SonarPro



Mine detection with SonarPro



Loch-Doppler returns the speed robot vr.

vr ∈ ṽr + 0.004 ∗ [−1, 1] .ṽr + 0.004 ∗ [−1, 1]



Inertial central (Octans III from IXSEA).
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Six mines have been detected.

i 0 1 2 3 4 5
τ(i) 7054 7092 7374 7748 9038 9688
σ(i) 1 2 1 0 1 5
r̃(i) 52.42 12.47 54.40 52.68 27.73 26.98

6 7 8 9 10 11
10024 10817 11172 11232 11279 11688
4 3 3 4 5 1

37.90 36.71 37.37 31.03 33.51 15.05



Exercise. Draw the association graph associated with

the detections.



1.2 Constraints



t ∈ {6000.0, 6000.1, 6000.2, . . . , 11999.4},

i ∈ {0, 1, . . . , 11},

�
px(t)
py(t)

�

= 111120

�
0 1

cos

ℓy(t) ∗

π
180

�
0

��
ℓx(t)− ℓ0x
ℓy(t)− ℓ0y

p(t) = (px(t), py(t), pz(t)),

Rψ(t) =





cosψ(t) − sinψ(t) 0
sinψ(t) cosψ(t) 0
0 0 1




 ,

Rθ(t) =






cos θ(t) 0 sin θ(t)
0 1 0

− sin θ(t) 0 cos θ(t)




 ,



Rϕ(t) =





1 0 0
0 cosϕ(t) − sinϕ(t)
0 sinϕ(t) cosϕ(t)




 ,

R(t) = Rψ(t)Rθ(t)Rϕ(t),

ṗ(t) = R(t).vr(t),

||m(σ(i))− p(τ(i))|| = r(i),

RT(τ(i)) (m(σ(i))− p(τ(i))) ∈ [0]× [0,∞]×2,

mz(σ(i))− pz(τ(i))− a(τ(i)) ∈ [−0.5, 0.5]



1.3 GESMI









Extended Kalman smoother



2 Intervals in lattices



2.1 Lattices



A lattice (E,≤) is a partially ordered set, closed under

least upper and greatest lower bounds.

The least upper bound of x and y is called the join:

x ∨ y.

The greatest lower bound is called the meet: x ∧ y.



The Cartesian product of two lattices (E1,≤1) and

(E2,≤2) is a lattice (E,≤) with

(a1, a2) ≤ (b1, b2)⇔ ((a1 ≤1 b1) and (a2 ≤2 b2)) .



Exercise. L = ((B,R) ,≤) is a lattice.

(false, 5) ∨ (true, 2) = ?
(false, 5) ∧ (true, 2) = ?
⊤ (L) = ?
⊥ (L) = ?



Example. The set (Rn,≤) is a lattice with

x ≤ y⇔ ∀i ∈ {1, . . . , n} , xi ≤ yi.



Example.

The powerset P (E) of all subsets of E is a lattice with

respect to the inclusion ⊂.

What is the meet ? What is the join ?



Example

The set F of all functions from R to Rn is a lattice

with

f ≤ g⇔ ∀t ∈ R, f(t) ≤ g(t)

An interval of F is called a tube.



Intervals. A closed interval (or interval for short) [x]

of a lattice E is a subset of E which satisfies

[x] = {x ∈ E | ∧ [x] ≤ x ≤ ∨[x]} .



The set IL of all intervals of a lattice L is also a lattice

with respect to ⊂.

Exercice. Draw the Hasse diagram of the set of Boolean

interval IB.



Graph intervals

Both ∅ and E are intervals of E.



Exercise. Contract the graph interval with respect to

the constraint "G is an equivalence relation".



Interval in the lattice (P (Rn) ,⊂)





An interval function (or tube) and a set interval



2.2 Interval arithmetic



[A],[B], [A] ∩ [B], [A] ∪ [B],

[A] \ [B], ([A]∪ [B]) \ ([A] ∩ [B]).



Intersection.

[A] ⊓ [B] = {X,X ∈ [A] and X ∈ [B]}

=
�
A
− ∪ B−,A+ ∩ B+

�
.







2.3 Contractors in lattices



A CSP is composed of a set of variables {x1, . . . , xn} ,

of constraints {c1, . . . , cm} and of domains {X1, . . . ,Xn} .

The domains Xi should belong to a lattice (Li,⊂).



For SLAM, the domains are

(i) intervals of Rn to represent the location of the

marks,

(ii) tubes to represent the unknown trajectory and

(iii) intervals of subsets of Rn to represent the free

space.





Example
�

A ⊂ B
A ∈ [A] ,B ∈ [B] .

Since

A ⊂ B⇔ A = A ∩ B⇔ B = A ∪ B.

the optimal contractor is
�
(i) [A] := [A] ⊓ ([A] ∩ [B])
(ii) [B] := [B] ⊓ ([A] ∪ [B])



Tarski theorem.

If (L,≤) is a lattice and f : L → L is monotonic

(i.e., a ≤ b ⇒ f (a) ≤ f (b)), then xk+1 = f (xk),

converges to the greatest x∞ such that
�
x∞ = f (x∞) (fixed point)
x∞ ≤ x0



2.4 Propagation



Consider the following CSP





(i) X ⊂ A
(ii) B ⊂ X
(iii) X ∩ C = ∅
(iv) f (X) = X,

where X ⊂ R2, f is a rotation of −π6 , and





A =
�
(x1, x2) , x

2
1 + x

2
2 ≤ 3

�

B =
�
(x1, x2) , (x1 − 0.5)

2 + x22 ≤ 0.3
�

C =
�
(x1, x2) , (x1 − 1)

2 + (x2 − 1)
2 ≤ 0.15

�



(a) [A]

(b) [B]

(c) [C]

(d) X ⊂ A

(e) B ⊂ X

(f) X ∩ C = ∅

(g) f (X) = X

(h) (f (X) = X)∞



3 Range-only SLAM with occupancy

maps



�
ẋ (t) = f (x (t) ,u (t)) (evolution equation)
z (t) = d (x (t) ,M) (map equation)

where t ∈ R, x ∈ Rn, u ∈ Rm, M ∈ C (Rq) is the

occupancy map.

Unknown: the map M and the trajectory x.



Impact, covering and dug zones





Tescase





ẋ1(t) = u1(t) cos (u2(t))
ẋ2(t) = u1(t) sin (u2(t))
z (t) = d (x (t) ,M) .

Actual trajectory and dug space







Width of the tubes [x] (t)



4 Range only SLAM with undis-

tinguishable marks



�
ẋ = f(x,u) (evolution equation)
(ti,Hi (x)) (sector list)



Example. A robot is located at (x1, x2) . If at time

t3 the robot detects one single mark at a distance d ∈

[4, 5]m,

H3 (x) :
�
a ∈ R2| (x1 − a1)

2 + (x2 − a2)
2 ∈ [16, 25]

�
.



The robot has detected the mark inside the ring



Theorem. Consider a set of marksM ⊂ Rq. Define

the free space as F = {p ∈ Rq | p /∈M}. Considerm

sectors H1, . . . ,Hm, each of them containing exactly

one mark and define a (i) =M∩Hi. We have

(i) Hi ⊂ Hj ⇒ a (i) = a (j)
(ii) Hi ∩Hj = ∅ ⇒ a (i) != a (j)
(iii) Hi ⊂ Hj ⇒ Hj\Hi ⊂ F.



Each of the two black zones contains a single mark

and that no mark exists in the hatched area.



(i) ẋ = f (x,u)
(ii) Hi = Hi (x (ti))
(iii) a (i) ∈ Hi
(iv) a (i) = a (j)⇔ gij = 1
(v) a (i) ∈ Hj ⇔ gij = 1
(vi) gij = 1⇒ Hj\Hi ⊂ F
(vii) a (i) /∈ F



Contractor graph



4.1 Testcase





Width of the tubes [x] (t)



Free space F.


