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1 Basic SLAM



<

f(x,u) (evolution equation)
g(x,u) (observation equation)
h(x,u,m;) (mark equation)



Redermor, GESMA
(Groupe d'Etude Sous-Marine de I'Atlantique)






1.1 Sensors



GPS (Global positioning system), only at the surface.

to =6000s, ¢O=(—4.4582279°,48.2129206°) + 2.5m
tp=12000s, £/=(—4.4546607°,48.2191297°) & 2.5m



Sonar (KLEIN 5400 side scan sonar).







Echo intensity
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Mine detection with SonarPro



Loch-Doppler returns the speed robot vy..

vy € Vi +0.004 % [—1,1] .V, + 0.004 * [—1, 1]



Inertial central (Octans Il from IXSEA).

1.75 x 1074.[-1, 1]
+ | 1.75 x 1074.[-1,1]
5.27 x 1073, [-1, 1]
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Six mines have been detected.

i 0 1 2 3 4 5
7(i) 7054 7002 7374 7748 9038 9688
o(i) 1 2 1 0 1 5

7(i) 52.42 12.47 54.40 52.68 27.73 26.98

6 I 3 9 10 11
10024 10817 11172 11232 11279 11688
4 3 3 4 5 1
3790 36.71 37.37 31.03 33.51 15.05




Exercise. Draw the association graph associated with
the detections.



1.2 Constraints



t € {6000.0,6000.1,6000.2,...,11999.4},

ie{0,1,..., 11},

pz(t) | _ 0 1 Cx(t) — €2
( (1) ) = 111120 ( cos (£y(t) * &) O ) ( £y (t) — 0
P(t) = (p(t), py(t), p2(t)),

cosy(t) —siny(t) O
Ry (t) = ( singp(t) cosi(t) O ) :

0 1
( cosf(t) 0 sinf(t) )
Ry(t) = 0 10 )
—sinf(t) 0 cosf(t)



1 0 0
Ry(t) = ( 0 cosp(t) —sinp(t) ) :

0 sing(t) cosp(t)
R(t) = Ry(t)Rg(t)Ry (1),
p(t) = R(t).vr(?),
[Im(o(2)) —p(7(2))[| = r(7),
R'(7(4)) (m(o(i)) — p(7(4))) € [0] x [0, 00] *2,

mz(o(2)) — pz(7(2)) — a(7(2)) € [-0.5,0.5]



1.3 GESMI



GESMI, for the estimation of seamarks using interval analysis
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2 Intervals in lattices



2.1 Lattices



A lattice (£, <) is a partially ordered set, closed under
least upper and greatest lower bounds.

The least upper bound of = and y is called the join:
T V.

The greatest lower bound is called the meet: x A y.



The Cartesian product of two lattices (£1,<1) and
(&2, <p) is a lattice (£, <) with

(a1,a2) < (b1,b2) & ((a1 <1 b1) and (a2 <2 b2)).



Exercise. £ = ((B,R), <) is a lattice.

(false,5) V (true, 2)
(false, 5) A (true, 2)
T(£)
L(£)



Example. The set (R", <) is a lattice with

X§y<:>W€{1,...,n},:c,i§yi.



Example.

The powerset P () of all subsets of | is a lattice with
respect to the inclusion C.

What is the meet ? What is the join 7



Example

The set F of all functions from R to R™ is a lattice
with
f<geVteR, £(t) <g(?)

An interval of F is called a tube.



Intervals. A closed interval (or interval for short) [x]
of a lattice € is a subset of £ which satisfies

[z] ={z €& | N[z] Lz < V][z]}.



The set IL of all intervals of a lattice £ is also a lattice
with respect to C.

Exercice. Draw the Hasse diagram of the set of Boolean
interval IB.
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Both @ and &€ are intervals of &.




Exercise. Contract the graph interval with respect to
the constraint "G is an equivalence relation".
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Interval in the lattice (P (R™), C)



[ANB,AUB]
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An interval function (or tube) and a set interval




2.2 Interval arithmetic
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(d)

[ALL[B], [A] N [B], [A] U [B],
[AJ\ [B], ([AJU[B]) \ ([A] N [B]).



Intersection.

[A]N[B] = {X,X € [A] and X € [B]}
[A— UB—, AT mBﬂ .
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2.3 Contractors in lattices



A CSP is composed of a set of variables {x1,...,zn},
of constraints {c1, ..., cm} and of domains {X{, ..., X, }.

The domains X; should belong to a lattice (£;, C).



For SLAM, the domains are

(i) intervals of R™ to represent the location of the
marks,

(ii) tubes to represent the unknown trajectory and

(iii) intervals of subsets of R™ to represent the free
space.
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Example

ACB
A € [A],B € [B].

Since
ACBsA=ANB< B=AUDB.

the optimal contractor is

{ (i) [A]:= [A] ™7 ([A] N [B])
(i) [B] := [B] 1 ([A] U [B])



Tarski theorem.

If (£,<) is a lattice and f : £L — L is monotonic

(e, a < b= f(a) < f(b)) then zpq = f(zk).
converges to the greatest xoo such that

{ Too = f (o)  (fixed point)

Too < T



2.4 Propagation



Consider the following CSP

(i) XCA
) (ii) BcCX
(i) XNC=20
| (v)  f(X) =X,
where X C R? f is a rotation of —%, and
(A = (z1,72), 2% + 23 < 3}
¢« B = {(x1,%2),(x1 — 0.5)2 + .CC% < 0.3}
C = {(e1,22), (w1 — 1)* + (22 — 1)* < 0.15}




(b)
(c)
(d)
(e)
(f)
(8)
(h)

[A]

[B]

[C]
XCA
BCX

XNnC=190
F(X) =X

(f (X) =X)™



3 Range-only SLAM with occupancy

maps



{ x(t) = f(x(t),u(t)) (evolution equation)
z(t) = d(x(t),M) (map equation)

where t € R, x € R", u € R™, M € C(R?) is the
occupancy map.

Unknown: the map M and the trajectory x.



Impact, covering and dug zones



S i1y ([0.2(¢1)D)
U 85, ([0.2(2)0)

Sty ({2(3)})




Tescase

r1(t) = wu1(t)cos (ux(t))
To(t) = wuy(t)sin (ux(t))
2 = d(x(t),M).

Actual trajectory and dug space
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4 Range only SLAM with undis-

tinguishable marks



x = f(x,u) (evolution equation)
(t;, H; (x)) (sector list)



Example. A robot is located at (z1,xz2). If at time
t3 the robot detects one single mark at a distance d €

[4, 5]m,

Hs (%) : {a € R?| (z1 — a1)? + (z2 — a2)? € [16, 25]} .






Theorem. Consider a set of marks M C RY. Define
the free spaceasF = {p € R? | p & M}. Consider m
sectors Hy, ..., H,, each of them containing exactly

one mark and define a (i) = M N H;. We have

(i) H; CH; = a(i) =a(y)
(i) H;NH; =0 = a(i) # a(y)
(iii) H; C ]H[j = Hj\Hi C F.



Each of the two black zones contains a single mark
and that no mark exists in the hatched area.



x = f (x,u)

H; = H; (x (%))

a(z) c H;

a(l)=a(j) =gy =1
a () E]H[j@gz'j =1
9ij = 1 :>HJ\HZ CF
a(i) ¢ F
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Contractor graph



4.1 Testcase
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