# Interval robotics

## Chapter 5: Robust observers

Luc Jaulin, ENSTA-Bretagne, Brest, France http://www.ensta-bretagne.fr/jaulin/

### State estimation

$$\left\{ egin{array}{ll} \mathbf{x}(k+1) &=& \mathbf{f}_k(\mathbf{x}(k),\mathbf{n}\left(k
ight)) \ \mathbf{y}(k) &=& \mathbf{g}_k(\mathbf{x}(k)), \end{array} 
ight.$$

with  $\mathbf{n}(k) \in \mathbb{N}(k)$  and  $\mathbf{y}(k) \in \mathbb{Y}(k)$ .

Without outliers

$$\mathbb{X}(k+1) = \mathbf{f}_k\left(\mathbb{X}(k), \mathbb{N}\left(k
ight)
ight) \cap \mathbf{g}_{k+1}^{-1}\left(\mathbb{Y}(k+1)
ight).$$

## 2 SAUC'E



#### Portsmouth, July 12-15, 2007.













### **3** Robust observer

Define

 $\begin{cases} \mathbf{f}_{k:k} (\mathbb{X}) & \stackrel{\text{def}}{=} \mathbb{X} \\ \mathbf{f}_{k_1:k_2+1} (\mathbb{X}) & \stackrel{\text{def}}{=} \mathbf{f}_{k_2} (\mathbf{f}_{k_1:k_2} (\mathbb{X}), \mathbb{N} (k_2)), \ k_1 \leq k_2. \end{cases}$ The set  $\mathbf{f}_{k_1:k_2} (\mathbb{X})$  represents the set of all  $\mathbf{x} (k_2)$ , consistent with  $\mathbf{x} (k_1) \in \mathbb{X}$ . Consider the set state estimator

$$\begin{cases} \mathbb{X}(k) = \mathbf{f}_{0:k}(\mathbb{X}(0)) & \text{if } k < m, \text{ (initialization step)} \\ \mathbb{X}(k) = \mathbf{f}_{k-m:k}(\mathbb{X}(k-m)) \cap \\ \{q\} \\ \bigcap_{i \in \{1,...,m\}} \mathbf{f}_{k-i:k} \circ \mathbf{g}_{k-i}^{-1}(\mathbb{Y}(k-i)) & \text{if } k \ge m \end{cases}$$



We assume

(i) within any time window of length m we have less than q outliers and

(ii)  $\mathbb{X}(0)$  contains  $\mathbf{x}(0)$ , then  $\mathbb{X}(k)$  encloses  $\mathbf{x}(k)$ .

What is the probability of this assumption ?

**Theorem**. Consider the sequence of sets  $X(0), X(1), \ldots$  built by the set observer. We have

 $\Pr\left(\mathbf{x}\left(k
ight)\in\mathbb{X}(k)
ight)\geqlpha~*~\Pr\left(\mathbf{x}\left(k-1
ight)\in\mathbb{X}(k-1)
ight)$  where

$$\alpha = \sqrt[m]{\sum_{i=m-q}^{m} \frac{m! \ \pi^{i} . \ (1-\pi)^{m-i}}{i! \ (m-i)!}}.$$

### 4 Underwater localization



#### SAUCISSE inside a swimming pool

The robot evolution is

$$\begin{cases} \dot{x}_1 = x_4 \cos x_3 \\ \dot{x}_2 = x_4 \sin x_3 \\ \dot{x}_3 = u_2 - u_1 \\ \dot{x}_4 = u_1 + u_2 - x_4, \end{cases}$$



Underwater robot moving inside a pool



Principle of the control of the underwater robot







Emmision diagram at time  $t = 16.2 \sec t$ 

| t(sec) | $Pr\left(\mathbf{x}\in\mathbb{X} ight)$ | Outliers |
|--------|-----------------------------------------|----------|
| 3.0    | $\geq$ 0.965                            | 58       |
| 6.0    | $\geq$ 0.932                            | 50       |
| 9.0    | $\geq$ 0.899                            | 42       |
| 12.0   | $\geq$ 0.869                            | 51       |
| 15.0   | $\geq$ 0.838                            | 51       |
| 16.2   | $\geq$ 0.827                            | 49       |

#### 5 Indoor localization

The robot is equipped with 24 ultrasonic telemetric sensors



#### Sivia computes the set of all consistent poses



If state equation of the robot are given

$$\begin{cases} \dot{x} = \rho \frac{\omega_{\rm r} + \omega_{\rm l}}{2} \cos \theta, \\ \dot{y} = \rho \frac{\omega_{\rm r} + \omega_{\rm l}}{2} \sin \theta \\ \dot{\theta} = \rho \frac{\omega_{\rm r} - \omega_{\rm l}}{\delta} \end{cases}$$

a set counterpart of the Kalman filter can be implemented.



## 6 Comparison with the Kalman filter



A robot (unicycle type) which measures the angle  $y_1$  corresponding to the mark **m** 

$$\begin{cases} \dot{x}_1 = x_4 \cos x_3 \\ \dot{x}_2 = x_4 \sin x_3 \\ \dot{x}_3 = u_1 \\ \dot{x}_4 = u_2 \end{cases}$$

$$\left\{ egin{array}{ll} y_1 &=& {
m atan2}\,(m_y-x_2,m_x-x_1)+x_3, &k\in \mathbb{Z} \ y_2 &=& x_3 \ y_3 &=& x_4. \end{array} 
ight.$$

**Scenario 1**. The measurement noises as well as the state noises are all Gaussian and centered with a variance of 0.01.

**Scenario 2**. With a probability of 5%, an outlier for  $y_1$  is generated.

**Scenario 3**. This scenario is similar to Scenario 1 but a bias of 0.5 is added to  $y_1$ .

For RSO, m = 50, q = 10.



Scenario 1: All noises are Gaussian



Scenario 2: 1% of the data are outliers



Scenario 3. An unknown bias has been added to  $y_1$ .