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Exercise. A robot measures its own distance to three

marks. The distances and the coordinates of the marks

are

mark xi yi di
1 0 0 [22, 23]
2 10 10 [10, 11]
3 30 −30 [53, 54]

1) Define the set X al all feasible positions.

2) Build the contractor associated with X.

2) Build the contractor associated with X.
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1 Relaxed intersection



Dealing with outliers

C = (C1 ∩ C2) ∪ (C2 ∩ C3) ∪ (C1 ∩ C3)



Consider m sets X1, . . . ,Xm of Rn. The q-relaxed

intersection
{q}�
Xi is the set of all x ∈ R

n which belong

to all Xi’s, except q at most.

We have

x ∈
{q}�
Xi⇔ # {i|x ∈ Xi} ≥ m− q





Exercise. Compute

{0}�
Xi = ?

{1}�
Xi = ?

{5}�
Xi = ?

{6}�
Xi = ?



Solution. we have

{0}�
Xi = ∅

{1}�
Xi = ∅

{5}�
Xi =

�
Xi

{6}�
Xi = R2



Exercise. Consider 8 intervals: X1 = [1, 4], X2 =

[2, 4],X3 = [2, 7],X4 = [6, 9],X5 = [3, 4],X6 =

[3, 7]. Compute

{0}�
Xi = ?,

{1}�
Xi = ?,

{2}�
Xi = ?,

{3}�
Xi = ?,

{4}�
Xi = ?,

{5}�
Xi = ?,

{6}�
Xi = ?.



Solution. ForX1 = [1, 4], X2 = [2, 4],X3 = [2, 7],X4 =

[6, 9],X5 = [3, 4],X6 = [3, 7], we have

{0}�
Xi = ∅,

{1}�
Xi = [3, 4],

{2}�
Xi = [3, 4],

{3}�
Xi = [2, 4] ∪ [6, 7],

{4}�
Xi = [2, 7],

{5}�
Xi = [1, 9],

{6}�
Xi = R.



If Xi’s are intervals, the relaxed intersection can be

computed with a complexity of m logm.



Take all bounds of all intervals with their brackets.

Bounds 1 4 2 4 2 7 6 9 3 4 3 7
Brackets [ ] [ ] [ ] [ ] [ ] [ ]



Sort the columns with respect the bounds:

Bounds 1 2 2 3 3 4 4 4 6 7 7 9
Brackets [ [ [ [ [ ] ] ] [ ] ] ]



Scan from left to right, counting +1 for ’[’ and −1 for

’]’:

Bounds 1 2 2 3 3 4 4 4 6 7 7 9
Brackets [ [ [ [ [ ] ] ] [ ] ] ]
Sum 1 2 3 4 5 4 3 2 3 2 1 0



Read the q-intersections

Set-membership function associated with the 6 intervals



Computing the q relaxed intersection of m boxes is

tractable.



The black box is the 2-intersection of 9 boxes



Formal definition

{q}�
Xi =




{σ1,...,σm−q}

Xσ1 ∩ · · · ∩ Xσm−q

{q}

Xi =

�

{σ1,...,σm−q}

Xσ1 ∪ · · · ∪ Xσm−q



Remark

{0}�
Xi =

�
Xi

{0}

Xi =



Xi



De Morgan’s law

{q}�
Xi =

{q}

Xi
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Xi =

{q}�
Xi.



Proof. We have

{q}�
Xi =

�
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=

�
{σ1,...,σm−q}

Xσ1 ∩ · · · ∩ Xσm−q
=

�
{σ1,...,σm−q}

Xσ1 ∪ · · · ∪ Xσm−q

=
{q}

Xi.



Dual rule

{q}�
Xi =

{m−q−1}

Xi



Proof. We have

{m−q−1}

Xi

(de Morgan)
=

{m−q−1}�
Xi

=
�
x | #

�
i|x ∈ Xi

�
≥ m− (m− q − 1)

�

=
�
x | #

�
i|x ∈ Xi

�
< q + 1

�

Now

#
�
i|x ∈ Xi

�
+ # {i|x ∈ Xi} = m

or equivalently

#
�
i|x ∈ Xi

�
= m−# {i|x ∈ Xi}

Thus

{m−q−1}

Xi = {x | m−# {i|x ∈ Xi} < q + 1}

= {x | # {i|x ∈ Xi} > m− q − 1}
= {x | # {i|x ∈ Xi} ≥ m− q}

=
{q}�
Xi



From the De Morgan’s law and the dual rules, we get

{q}�
Xi =

{m−q−1}

Xi =

{m−q−1}�
Xi



Relaxation of contractors

We define the q-relaxed intersection between m con-

tractors

C =




{q}�

i∈{1,...,m}

Ci


⇔ ∀ [x] ∈ IRn, C ([x]) =

{q}�
Ci ([x]) .















2 Solving a relaxed set of equali-

ties

Solve




p2 − p
2
1 = 0

p2
2 + p2

1 − 1 = 0
p2 − p1 = 0
2p2 + p1 − 2 = 0

with q = 1.































3 Probabilistic motivation









Consider the error model

e =y −ψ (p)� �� 	
f(y,p)

.

yi is an inlier if ei ∈ [ei] and an outlier otherwise. We

assume that

∀i, Pr (ei ∈ [ei]) = π

and that all ei’s are independent.



Equivalently,




f1 (y,p) ∈ [e1] with a probability π
... ...

fm (y,p) ∈ [em] with a probability π



Having k inliers follows a binomial distribution

m!

k! (m− k)!
πk. (1− π)m−k .



The probability of having more than q outliers is thus

γ (q,m, π)
def
=
m−q−1�

k=0

m!

k! (m− k)!
πk. (1− π)m−k .

Example. If m = 1000, q = 900, π = 0.2, we get

γ (q,m, π) = 7.04 × 10−16. Thus having more than

900 outliers can be seen as a rare event.



4 Robust bounded error estima-

tion



S =
{q}�

i

{p ∈ Rn | fi (p) ∈ [yi]}



We build the following contractors

Ci : fi (p) ∈ [yi]

Ci : fi (p) /∈ [yi]

C =
{q}�

i

Ci

C =
{q}�

i

Ci =
{q}


i

Ci =
{n−q−1}�

Ci

Then we call a paver with C and C.



5 Testcase



Generation of data. m = 500 data




yi = p1 sin (p2ti) + ei, with a probability 0.2.
yi = r1 exp (r2ti) + ei, with a probability 0.2.
yi = ni

where ti = 0.02.i, i ∈ {1, 500}, ei : U ([−0.1, 0.1])

and ni : N (2, 3). We took p∗ = (2, 2)T and r∗ =

(4,−0.4)T.



Estimation. We only know that

yi = p1 sin (p2ti) + ei,with a probability 0.2.

We want

Pr
�
p∗ ∈ �P

�
≥ 0.95

Since γ (414, 500, 0.2) = 0.0468 and γ (413, 500, 0.2) =

0.12, we should assume q = 414 outliers.





6 Shape detection



Sauc’isse robot swimming inside a pool



A spheric buoy seen by Sauc’isse









An implicit parameter set estimation problem amounts

to characterizing

P =
�

i∈{1,...,m}

{p ∈ Rn,∃y ∈ [y](i), f (p,y) = 0}� �� 	
Pi

where p is the parameter vector, [y](i) is the ith mea-

surement box and f is the model function.



Consider the shape function f (p,y), where y ∈ R2

corresponds to a pixel and p is the shape vector.

Example (circle):

f (p,y) = (y1 − p1)2 + (y2 − p2)2 − p2
3.





The shape associated with p is

S (p)
def
=
�
y ∈ R2, f (p,y) = 0

�
.

Consider a set of (small) boxes in the image

Y = {[y](1), . . . , [y](m)} .

Each box is assumed to intersect the shape we want to

extract.



In our buoy example,

• Y corresponds to edge pixel boxes.

• f (p,y) = (y1 − p1)2 + (y2 − p2)2 − p2
3.

• p = (p1, p2, p3)T where p1, p2 are the coordinates

of the center of the circle and p3 its radius.



Now, in our shape extraction problem, a lot of [y](i)

are outlier.



The q relaxed feasible set is

P
{q} def

=
{q}�

i∈{1,...,m}

{p ∈ Rn,∃y ∈ [y](i), f (p,y) = 0} .



An optimal contractor for the set
�
p ∈ [p],∃y ∈ [y], (y1 − p1)2 + (y2 − p2)2 − p2

3 = 0
�
.

FB(in: [y], [p], out: [p])
1 [d1] := [y1]− [p1] ;
2 [d2] := [y2]− [p2] ;

3 [c1] := [d1]2 ;

4 [c2] := [d2]2 ;

5 [c3] := [p3]2 ;
6 [e] := [0, 0] ∩ ([c1] + [c2]− [c3]) ;
7 [c1] := [c1] ∩ ([e]− [c2] + [c3]) ;
8 [c2] := [c2] ∩ ([e]− [c1] + [c3]) ;
9 [c3] := [c3] ∩ ([c1] + [c2]− [e]) ;

10 [p̄3] := [p3] ∩
�

[c3];

11 [d2] := [d2] ∩
�

[c2];

12 [d1] := [d1] ∩
�

[c1];

13 [p2] := [p2] ∩ ([y2]− [d2]) ;
14 [p1] := [p1] ∩ ([y1]− [d1]) ;



q = 0.70 m (i.e. 70% of the data can be outlier)



q = 0.80 m (i.e. 80% of the data can be outlier)



q = 0.81 m (i.e. 81% of the data can be outlier)



O’Gorman and Clowes (1976), in the context of the

Hough transform (1972):

the local gradient of the image intensity is orthogonal

to the edge.





Now, y = (y1, y2, y3)T where y3 is the direction of the

gradient.



The gradient condition is

det



∂f(p,y)
∂y1

cos (y3)
∂f(p,y)
∂y2

sin (y3)


 = 0.



For f (p,y) = (y1 − p1)2 + (y2 − p2)2 − p2
3, we get

f (p,y) =

 
(y1 − p1)2 + (y2 − p2)2 − p2

3
(y1 − p1) sin (y3)− (y2 − p2) cos (y3)

!
.



New outliers: the edge points that are on the shape,

but that do not satisfy the gradient condition.

The computing time is now 2 seconds instead of 15

seconds.



The Hough transform is defined by

η (p) = card {i ∈ {1, . . . ,m},∃y ∈ [y](i), f (p,y) = 0} .

Hough method keeps all p such that η (p) ≥ m− q.

Instead, our approach solves η (p) ≥ m− q.



7 Static localization

Robot with 24 ultrasonic telemeters





After set inversion


